Improvement Theory
A Retrospective

David Sands

With thanks to former co-authors
Andy Moran and Jorgen Gustavsson

Pure Functional Programming

...Is cool because there are many natural
observational equivalences between
programs

at+bz=b+a
tail(h:t) = t
LHS = RHS

and we can use these anywhere in a program
to obtain an equivalent program

Equivalence is nice

Equivalence is nice

Problem 1

It's all the same to equivalence

but some programs are “more equal than others”

Problem 1: Example

If we replace a + b with b + a then surely
nothing bad could happen... could it?

* Time complexity?
— cannot change
« Space complexity?
— asymptotic speedup or slowdown possible!

Problem 2

Replacing equals by equals is fool-proof
...Isn’t it?

repeat :: a -> [a]

repeat X = X : repeat Xx .
- P t = tail (h:t)

RHS = x : tail (x : repeat x)

X : tail (repeat x)

e 11

RHS = LHS

=4 repeat x = x : tail (repeat x)
B

Improvement Theory

* Improvement Theory developed to solve
problem (making sure that
optimisations never make things worse, no
matter what)

* Surprisingly, improvement theory provides
a solution to problem ¢

A Taster

A brief taste from a heap of papers about
Improvement

* Improvement Theory

» Correctness of Program Transformation by
Improvement

« Reasoning about Improvement: The tick
algebra

¢ Space Improvement

From Equivalence to Improvement

When are two programs equivalent?

Observational Equivalence

P and Q are observationally equivalent,
P=Q
Iff
INn whatever program context we use

them, they yield the same observable
outcome:

/\ ¥CL]. obs(C[P]) = obs(C[Q])

Defined using 7

an operational
semantics

Improvement (Time)

Program phrase P is improved by Q,
P> Q
Iff
P=Q and
INn whatever program context we use

them, Q Is never slower than P
VC[.]. time(C[P]) > time(C[Q])

Defined using
an operational

semantics Also studied an asymptotic definition. Not in this talk

Problem 2, stated more precisely

The following proof rule is sound

P=0Q
letx=Pinxzletx=Q In X
: . . Not true
It does not justify the bad transformation becauseris a
free variable

(AX. X:rXx) = (Ax. x:tail (rx))
letr=(AX. x:rx) = letr=(\Xx. x: tail (r x))

but does not allow any interesting program
transformations either!

The Improvement Theorem

Sands, POPL'95
Total Correctness by Local Improvement...

In the informal transformation we used the unsound rule

letx=PinP=letx=PinQ
letx=Pinxzletx=Q In X

The Improvement Theorem

letx=PIinP > letx=PinQ
letx=Pinx pletx=QInX

The bad transformation is not justified because replacing RHS
with LHS Is not an improvement.

The Improvement Theorem

What's it good for?

 The first sound Unfold-Fold transformation method
for functional programs [POPL'95]

« General correctness criteria for recursion-

memoization-based program transformations
[Sands, ESOP’95]

— higher-order deforestation [” |
— partial evaluation [Welinder, PhD’96 |
— supercompilation [Jonsson and Nordlander, POPL'09]

« Arobust proof method insensitive to wacky
language features [Lassen & Moran, MFCS’99]

The tick algebra:
how reason with >

Basic laws can be established (with some effort)
R[case b of {...pat, => a, ...}] <> case b of {...pat, => R[a;] ...}

To enable equational reasoning such laws are used
together with the tick algebra

— The tick (v') Is a representation of a basic computation
step (it is just the identity function)

LHS <> vRHS
v (If Bthen Pelse Q) <> 1f B then v'P else vQ

Have we also Solved Problem 17

* Not quite — so far we used a call-by-name
computation model (easy to work with, but
not resource-correct for Haskell)

Enter: Moran & Sands, POPL'99
Improvement in a Lazy Context:
An Operational Theory for Call-by-need

« Atruly semantic theory for call-by-need

— Subsumes call-by-need lambda calculus [Ariola, Maraist,
Odersky,Felliesen, Wadler, POPL'95]

— Shows that it can only speed-up programs by a constant
factor!

— Improvement theorem etc. etc.

Space Improvement

Modest aim: when Is a transformation
guaranteed not to make space
consumption worse by more than a
constant factor a+ Db b+a

let xs = [1..n]
a = head xs
b = last xs
ina+b b + a

O(1) O(n)

Space Improvement

Two major problems ('99)

— are there any interesting space
Improvements?

— even If their are, will we be able to prove
them?

Key ingredients:

1. Asimple abstract machine (no gré
nonsense) for modelling space

2. A PhD student with a very big brain :f-" .

Space Improvement

There are nontrivial space improvements!

E.g. Beta-var is a space improvement
(AX.M)y >, M[X:=y]
* To prove them we need to work with non asymptotic
space improvement
* Developed fixedpoint induction principle

— Improvement theorem unsound for space
— Example:

(XS ++yS) ++zS <>, XS ++ (yS ++2z5S)

but only if heap and stack are added!

Gustavsson & Sands, ICFP’'01
Possibilities and Limitations of Call-by-need
Space Improvement

Never mind the ticks,
make way for the space gadgets!

Spikes short-lived local maxima in
heap/stack usage

AM = case True of {True => M}
Dummies

MM =lety=xinM (y fresh)
Weights: ;M long lived extra heap usage
Baloons: zero weights (handle with care!)

Conclusions

« Several uses for time improvement and
the improvement theorem In particular

* No takers for space improvement @
— Need to make tools to make it easier to use?

 Still a lot of things that could be explored

— Big hard problem: space-safe strictness
analysis

fyx=x+y fyx=y seq x seq x+y

