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Pure Functional Programming 

…is cool because there are many natural 
observational equivalences between 
programs

and we can use these anywhere in a program 
to obtain an equivalent program

a + b b + a

tail(h:t) t

LHS RHS



Equivalence is nice



Equivalence is nice



Problem 1

It’s all the same to equivalence

but some programs are “more equal than others”



Problem 1: Example

If we replace a + b with b + a then surely 

nothing bad could happen… could it?

• Time complexity?   

– cannot change

• Space complexity? 

– asymptotic speedup or slowdown possible!



Problem 2

Replacing equals by equals is fool-proof 

…isn’t it?

repeat :: a -> [a]
repeat x = x : repeat x

RHS x : tail (x : repeat x)

t tail (h:t)

repeat x = x : tail (repeat x)

x : tail (repeat x)
RHS LHS



Improvement Theory

• Improvement Theory developed to solve 

problem              (making sure that 

optimisations never make things worse, no 

matter what)

• Surprisingly, improvement theory provides 

a solution to problem 



A Taster

A brief taste from a heap of papers about 
improvement

• Improvement Theory

• Correctness of Program Transformation by 
Improvement

• Reasoning about Improvement: The tick 
algebra

• Space Improvement



From Equivalence to Improvement

When are two programs equivalent?



Observational Equivalence

P and Q are observationally equivalent, 

P Q

iff

in whatever program context we use 

them, they yield the same observable 

outcome: 

8C[.]. obs(C[P]) = obs(C[Q])

Defined using 

an operational 

semantics



Improvement (Time)

Program phrase P is improved by Q,

P B Q 

iff

P Q  and 

in whatever program context we use 

them, Q is never slower than P

8C[.]. time(C[P]) ¸ time(C[Q])
Defined using 

an operational 

semantics Also studied an asymptotic definition. Not in this talk



Problem 2, stated more precisely

The following proof rule is sound

P Q                   .

let x = P in x let x = Q in x

It does not justify the bad transformation

(¸ x. x: r x) (¸ x. x : tail (r x))         .

let r = (¸ x. x: r x)  let r = (¸ x. x : tail (r x))

but does not allow any interesting program 
transformations either! 

Not true 

because r is a 

free variable



The Improvement Theorem

In the informal transformation we used the unsound rule

let x = P in P let x = P in Q .

let x = P in x let x = Q in x

The bad transformation is not justified because replacing RHS
with LHS is not an improvement. 

Sands, POPL’95

Total Correctness by Local Improvement...

The Improvement Theorem

let x = P in P  B  let x = P in Q .

let x = P in x   B let x = Q in x



The Improvement Theorem

What’s it good for?

• The first sound Unfold-Fold transformation method 
for functional programs [POPL’95]

• General correctness criteria for recursion-
memoization-based program transformations 
[Sands, ESOP’95]

– higher-order deforestation [ ” ]

– partial evaluation [Welinder, PhD’96 ]

– supercompilation [Jonsson and Nordlander, POPL’09]

• A robust proof method insensitive to wacky 
language features [Lassen & Moran, MFCS’99]



The tick algebra:
how reason with B

Basic laws can be established (with some effort) 

R[case b of {...pati => ai ...}] CB case b of {...pati => R[ai] ...}

To enable equational reasoning such laws are used 
together with the tick algebra
– The tick (X) is a representation of a basic computation

step (it is just the identity function)

LHS CB XRHS

X(if B then P else Q) CB if B then XP else XQ



Have we also Solved Problem 1?

• Not quite – so far we used a call-by-name 
computation model (easy to work with, but 
not resource-correct for Haskell)

Enter: 

• A truly semantic theory for call-by-need
– Subsumes call-by-need lambda calculus [Ariola, Maraist, 

Odersky,Felliesen, Wadler, POPL’95]

– Shows that it can only speed-up programs by a constant 
factor!

– Improvement theorem etc. etc.

Moran & Sands, POPL’99

Improvement in a Lazy Context: 

An Operational Theory for Call-by-need



Space Improvement

Modest aim: when is a transformation 

guaranteed not to make space 

consumption worse by more than a 

constant factor   a + b b + a

let xs = [1..n]
a = head xs
b = last xs

in a + b b + a

O(1) O(n)



Space Improvement

Two major problems (’99)

– are there any interesting space 

improvements?

– even if their are, will we be able to prove 

them?

Key ingredients:

1. A simple abstract machine (no graph 

nonsense) for modelling space

2. A PhD student with a very big brain 



Space Improvement

There are nontrivial space improvements!

E.g. Beta-var is a space improvement

(¸ x.M) y Bs M[x := y]

• To prove them we need to work with non asymptotic 
space improvement

• Developed fixedpoint induction principle  
– improvement theorem unsound for space

– Example:

(xs ++ ys) ++zs CBs xs ++ (ys ++zs)

but only if heap and stack are added!

Gustavsson & Sands, ICFP’01

Possibilities and Limitations of Call-by-need 

Space Improvement



Never mind the ticks, 

make way for the space gadgets!

• Spikes short-lived local maxima in 

heap/stack usage

*M ´ case True of {True => M}

• Dummies
{x}M ´ let y = x in M  (y fresh)

• Weights: mM long lived extra heap usage

• Baloons: zero weights (handle with care!) 

n



Conclusions

• Several uses for time improvement and 

the improvement theorem in particular

• No takers for space improvement 

– Need to make tools to make it easier to use?

• Still a lot of things that could be explored

– Big hard problem: space-safe strictness 

analysis

f y x = x + y f y x = y `seq` x `seq` x + y




