An extensible strategy language for
describing cognitive skills
Bastiaan Heeren! Johan Jeuring!?

! Open University of the Netherlands
2 Utrecht University

May 5, 2017, Chalmers, Goteborg

8 Open Universiteit
www.ou.nl

Intelligent tutoring system (ITS) §1

v

Problem-solving procedures (cognitive skills/strategies) can
be found in many domains:

e Solving equations (mathematics)

e Constructing programs (computer science)

e Practicing communication skills (e.g. pharmacy)
o ...

v

ITSs can help students to practice such tasks

v

ITSs are almost as effective as human tutors (VanLehn, 2011)

v

ITSs have an inner loop for solving tasks step by step

8 [An extensible strategy language for describing cognitive skills |

Intelligent tutoring system (ITS) §1

v

Problem-solving procedures (cognitive skills/strategies) can
be found in many domains:

e Solving equations (mathematics)

e Constructing programs (computer science)

e Practicing communication skills (e.g. pharmacy)
o ...

v

ITSs can help students to practice such tasks

v

ITSs are almost as effective as human tutors (VanLehn, 2011)

v

ITSs have an inner loop for solving tasks step by step

How can we specify problem-solving procedures and automati-
cally calculate feedback and hints?

= We define an extensible strategy language (DSL).

8 [An extensible strategy language for describing cognitive skills |

Axiomatic proofs (Lodder et al.) §1

Axiomatic
BE
1 prp Assumption Rule | Modus Ponens
2 p—arp-q Assumption Qrs®.Brs®—y)=Yulrsy
98 pp-aqorer Srso stepnr
999 poqgorepor Deduction 998 Arso—uy 2 stepnr
1000 g=reP—a-P-n Deduction 999 Suarew stepnr

® Show complete derivation @ Gomplete my derivation

» Construct proofs by applying rules (forward and backward)
» Feedback after each step (also for common mistakes)

» Hints and worked-out solutions available

8 [An extensible strategy language for describing cognitive skills |

Functional programming tutor (Gerdes et al.) &1

B

All Exercises
=3 haskell
533 encoding
=] frombin
2t

=] butlast
=] compress
=] dropevery
=] dupli
=] elementat
=] encode
=] identity
=] myconcat
=] myfilter
=] mylast
=] mylength
=] myreverse
=] pack
=] palindrome
=] primes
= range
=] removeat
= repli
= rotate

Ask-Elle

Description 2

Write a function that converts a list of bits to the corresponding integer
value: fromBin :: [Int] -> Int. For example:

> fromBin [1,0,1,0,1,0]
42

> fromBin [1,0,1]
5

fromBin = ?
where
opnab=7?%2+2?

|+

S

Help »|

You can follow one of the following strategies:
Implement fromBin using the fold! Prelude function.

Explanation
Multiply n by two and add b.

Hint

Introduce the integer 2.

More Help 2
Refine the current term to

fromBin =

» Develop programs by step-wise refining holes (?)

8 » Feedback and hints calculated from model solutions

[An extensible strategy language for describing cognitive skills |

Communicate! serious game (Jeuring et al.) §1

TR°M u moet het natuurijk ook nog|leren...

Jezelf voorstellen ' contact maken ' informatie verzamelen | procedure uitieggen | reactie geven

» Game for practicing interpersonal communication skills

8 » Final score and feedback afterwards

[An extensible strategy language for describing cognitive skills |

Example: adding fractions §2

Problem-solving procedure

. Find lowest common denominator (LCD)

—

2. Convert fractions to LCD as denominator
3. Add resulting fractions
4. Simplify final result

FindLCD 1 4 Convert 5 4 Convert 5 s Add 13 Simplify
— §+3 E E_|_g B ﬁ+To:>ﬁ E 1ﬁ v

N|=
+
S

8 [An extensible strategy language for describing cognitive skills | 6

Example: adding fractions §2

Problem-solving procedure

1. Find lowest common denominator (LCD)
2. Convert fractions to LCD as denominator
3. Add resulting fractions

4. Simplify final result

FindLCD Convert Convert 5 Add 13 Simplify

1, 4 5 | 4 8
+5 = 3+t35 = ts = Ww6tio = 10 — lig VY

N|=
S

Procedure specified as a strategy:

FindLCD; many (somewhere Convert); Add; try Simplify

8 [An extensible strategy language for describing cognitive skills | 6

Strategy language

What are the requirements for the strategy language?

o

1. Universal: not for one particular domain (reusable)

2. Extensible: easy to extend language with new patterns
3.
4

. Compositional: combine simple procedures into more

Feedback and hints: should be available at any time

complex procedures

Adaptable: possible to customize procedures

6. Efficient: hints and feedback can be calculated in a

reasonable amount of time

The strategy language needs a rigorous semantics

[An extensible strategy language for describing cognitive skills |

§2

Core grammar

> Starting point: a minimal language

e Support for choice: <>
e Left-hand side of prefix (—) is restricted to rules (r)

s,t = succeed | fail | s<|>t | r—s

8 [An extensible strategy language for describing cognitive skills |

§3

Core grammar

> Starting point: a minimal language

e Support for choice: <>
e Left-hand side of prefix (—) is restricted to rules (r)

s,t = succeed | fail | s<|>t | r—s

» Approach: define which traces are allowed by a strategy
> Trace set includes partial traces and unsuccessful traces
» Example of a successful trace:

FindLCD Convert Convert Add Simplify

— +E2 =58 = 13

+ 1 10

N
(SN

8 [An extensible strategy language for describing cognitive skills |

Semantics: empty and firsts

> empty: is the strategy (successfully) finished?

empty(succeed) = true
empty(fail) = false
empty(s <[> t) = empty(s) V empty(t)
empty(r —s) = false

» firsts: calculates which rules can be taken at this point,
together with their remainders (finite map):

firsts(succeed) = ()

firsts(fail) =

firsts(s <[> t) = firsts(s) W firsts(t)
firsts(r —s) ={r—s}

8 [An extensible strategy language for describing cognitive skills |

§3

Traces §3

» Not all rules suggested by firsts can be applied to current
object a:

steps(s,a) = {(r,t,b) | r— t € firsts(s),b € r(a)}

» Calculate the set of traces:

traces(s,a) = {a} U{a v | empty(s)}
U {a "> x| (r,t,b) € steps(s, a), x € traces(t, b)}

8 [An extensible strategy language for describing cognitive skills | 10

Equality §3

Two strategies are equal when their traces are equal:

(s =t) =qger Va: traces(s,a) = traces(t, a)

v

With equality, we can formulate algebraic laws, e.g.:

e Choice (<[>) is associative, and has fail as its unit element
o Prefix (—) is left-distributive over choice

v

Laws help to reason about strategies

v

Laws help to optimize strategies

v

Laws help to extend the strategy language

8 [An extensible strategy language for describing cognitive skills | 11

Extension: sequential composition §4

> s <> t: first do s, then t

> Sequences can be compiled into the core language:

succeed <G> t='t

fail <> t = fail

(s1 <> s) s> t=(s1 <> t) <> (2 <> 1)
(r—s) <ot=r— (s>t

» New laws follow from this definition:

e Sequence (<x>) is associative, and has succeed as its unit
element
e Sequence distributes over choice

8 [An extensible strategy language for describing cognitive skills |

12

Extension: repetition §4

> Apply strategy s optionally, zero or more times, or one or
more times:

option s = s <[> succeed
many s = option (s <x> many s)

manyl s = s <&> many s

» For many we need a fixed-point combinator

> Also: greedy variants for option, many, and manyl

8 [An extensible strategy language for describing cognitive skills |

13

More extensions

v

Traversal combinators: for domains with sub-terms

e somewhere, oncebu, innermost, etc.

v

Interleaving: switch between strategies, e.g.
{alag} <%> {bl} = { aiarby, aibias, biaia }

v

Permutation

v

Topological sorts: for re-ordering statements
e Based on a program’s data-flow graph

v

Initial prefixes: allow a conversation to stop at any time

v

Left-biased choice: do s, or else t

v

Preference: prefer some traces (hints) over other traces

8 [An extensible strategy language for describing cognitive skills |

§4

14

Conclusions §5

We

presented a strategy language that:
is compositional

is extensible (with new patterns)
has a precise semantics (with laws)

works for many domains

Traces can be used for generating feedback and hints

Similar to other formalisms (CSP, rewriting systems), but
specific for tools in education

For more information, see the project websites:
http://ideas.cs.uu.nl/
http://ideastest.cs.uu.nl/

[An extensible strategy language for describing cognitive skills |

15

http://ideas.cs.uu.nl/
http://ideastest.cs.uu.nl/

	Introduction
	Problem-solving procedures
	Semantics
	Extensions
	Conclusions

