
Trees That Grow

Shayan Najd
Laboratory for Foundations of Computer Science,

 The University of Edinburgh

Chalmers University, December 2016

Simon
Peyton Jones

Simon
Peyton Jones

Richard
Eisenberg

Alan
Zimmerman

Niklas
Broberg

Jacques
Carette

Edward Kmett Ryan TrinkleHaskell
Community

GHC

GHC
● Haskell

Abstract Syntax Tree

GHC
● AST

GHC
● AST
● Parser

GHC
● AST
● Parser
● Printer

GHC
● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC

● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC

● AST ● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC

● AST
● Parser

● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC

● AST
● Parser
● Printer

● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC Template Haskell

[| |]

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

Haskell Suite
(Haskell-Src-Exts) GHC Template Haskell

[| |]

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

● AST

Haskell Suite
(Haskell-Src-Exts) GHC Template Haskell

[| |]

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

● AST
● Parser

Haskell Suite
(Haskell-Src-Exts) GHC Template Haskell

[| |]

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer

Haskell Suite
(Haskell-Src-Exts) GHC Template Haskell

[| |]

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

● AST
● Parser
● Printer
● ...

Quoted
Domain-Specific

Languages
(QDSLs)

● AST

Quoted
Domain-Specific

Languages
(QDSLs)

● AST
● Parser

Quoted
Domain-Specific

Languages
(QDSLs)

● AST
● Parser
● Printer

Quoted
Domain-Specific

Languages
(QDSLs)

● AST
● Parser
● Printer
● ...

Quoted
Domain-Specific

Languages
(QDSLs)

● AST
● Parser
● Printer
● Type Inference Engine
● Desugaring Machinery
● ...

Quoted
Domain-Specific

Languages
(QDSLs)

GHC

GHC

● AST

GHC

● AST
● Parser

GHC

● AST
● Parser
● Printer

GHC

● AST
● Parser
● Printer
● ...

GHC

● AST
● Parser
● Printer
● Type Inference Engine
● Desugaring Machinery
● ...

Haskell Suite GHC Template Haskell

[| |]
The Problem

Tree-Decoration Problem

V.S.

Compilers

Phase I Phase II

Tree-Decoration Problem

V.S.
Undecorated Decorated

Tree-Decoration Problem

V.S.
Undecorated Decorated

Tree-Decoration Problem

V.S.

+

Undecorated Decorated

Tree-Decoration Problem

V.S.

+

Undecorated Decorated

Tree-Decoration Problem

V.S.

+

+

Undecorated Decorated

Common Practice

Phase I Phase II

Phase I Phase II

V.S.
Undecorated Partly Decorated Fully Decorated

Fully Decorated Fully Decorated Fully Decorated

Common Practice

Phase I Phase II

Fully Decorated Fully Decorated Fully Decorated

Unnecessary Information & Dependencies
No Duplication

Common Practice

Phase I Phase II

Undecorated Partly Decorated Fully Decorated

No Unnecessary Information & Dependencies
Duplication

Our Approach:

 (1) declare ASTs using extensible data types
 (2) define decorations as extensions

X

Common Practice

Phase I Phase II

Undecorated Partly Decorated Fully Decorated

No Unnecessary Information & Dependencies
Duplication

Our Approach

Phase I Phase II

Undecorated Partly Decorated Fully Decorated

X

Our Approach

Phase I Phase II

Undecorated Partly Decorated Fully Decorated

X
No Unnecessary Information & Dependencies
No Duplications

Key Challenge:

How do we declare eXtensible data types, where
GHC does not support them off-the-shelf?

Key Idea:

Use same old parameterisation for extensibility!

X

*

Our Encoding

Demo

Extensions? I’ve heard that before!

● Nominal vs Structural
● Syntactic Completeness:

rows and columns (and …)
● Within Haskell now
● Generic programming is a plus,

not a must

Current Status

● Extensible HsSyn AST
● Liberated Parser from GHC
● Automation Using Template Haskell
● Syntax

Next Steps

● Performance Tests
● Splitting GHC into packages
● Replacing TH AST
● Direct Reflection in TH
● Extensible data types as

language features

