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Our Approach:

   (1) declare ASTs using extensible data types
   (2) define decorations as extensions
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Key Challenge:

How do we declare eXtensible data types, where 
GHC does not support them off-the-shelf?



Key Idea:

Use same old parameterisation for extensibility!
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Extensions? I’ve heard that before!

● Nominal vs Structural
● Syntactic Completeness:

rows and columns (and …)
● Within Haskell now
● Generic programming is a plus, 

not a must



Current Status

● Extensible HsSyn AST
● Liberated Parser from GHC
● Automation Using Template Haskell
● Syntax



Next Steps

● Performance Tests
● Splitting GHC into packages 
● Replacing TH AST
● Direct Reflection in TH
● Extensible data types as 

language features


