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Power
• Power consumption is a key factor in modern processor design

• Architectural design decisions make great impact on power

• Need better models to make better decisions!

• The Dilemma:

• Architectural-level: Wattch, SimplePower, etc.

• Still inaccurate

• RTL/Gate-level: PowerTheater, Cadence RC, etc.

• Requires full design

• Can be very slow
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FAST

• FPGA-Accelerated Simulation Technology (FAST)

• Partition simulator into:

• Functional Model (FM)

• simulates ISA, peripheral functionality

• Timing Model (TM)

• simulates timing, details of microarchitecture

• Place TM on hardware!

• Runs significantly faster without losing accuracy
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FAST Bird’s-eye view
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Power Models for FAST
• Identify key contributor signals to power consumption 

and create models based on them

• “Architectural Signals”

• Available at high-level

• Cache hit/miss signals, RegFile write data

• Have more impact on power as they drive more logic 
and have larger fan-out
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Experiments

• Applied proposed approach to Freescale z650 
embedded processor

• 32-bit Power ISA

• 7-stage in-order pipeline

• 32KB Unified L1 cache (8-way)

• MMU

• Run PowerTheater on entire RTL
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Example (Caches)

• Only used “Sum of Cache Bank Enable signals”

• Cache Reads: Access all ways in a set-associative cache

• Cache Writes: Access specific way only

PowerTheater

Modeled Power

Cache Read

Cache Write
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Example (Reg File)

• Only used “Hamming Distance of Reg File Write Data”

• The spikes in power indicate more bits have flipped, resulting in 
more power consumption

PowerTheater

Modeled Power
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Total Power (z650 core)

• Only used Cache / Register File signals

• All other modules are lumped as constant

• Linear model (aX+bY+c)

• Modeled power tracks PowerTheater fairly accurately

PowerTheater

Modeled Power
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Results 
(Average Power)

• Less than 2% off of RTL PowerTheater estimation
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Results
(Cycle-by-Cycle Power)

• Measured as RMS average of difference between PowerTheater 
and Modeled power

• Less than 20% off!
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What about other irregular logic?

• Macromodeling [GuptaTVLSI2000]

• Avg Input Signal Probability
• How many ones?

• Avg Input Transition Density
• How many bits flip?

• Avg Input Spatial Correlation Coeff
• How close are the ones?

• Look-up Table populated using carefully crafted input vectors

• Markov Chain Sequence Generator [LiuICCAD2002]

• Generate 2000 vectors per LUT entry
12
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Macromodeling Results
• ISCAS-85 Benchmark circuits (ALUs, etc.)

• Compared against Synopsys PrimeTime estimates

• TSMC 130nm library

• Cycle-by-Cycle power modeled within 20%!

0

10

20

30

40

c1355 c1908 c2670 c3540 c432 c499 c5315 c6288 c7552 c880 mean

M
od

el
in

g 
Er

ro
r 

(%
)

AVG RMS
Cycle-by-Cycle RMS

18.1%

6.4%

13Dam Sunwoo
13



Integration with 
Architectural Simulators

• Can use any architectural simulator

• Power models only use signals that are available 
at high-level

• Runs significantly faster than RTL simulation 

• FPGA-Accelerated Simulation Technologies (FAST) 
Simulators

• Power Models very suitable for FPGAs

• Virtually no overhead on simulation performance

• Even faster! (10 MIPS?)
14Dam Sunwoo
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Conclusion

• High-level Power Models

• Can model average power very accurately (<2%)

• Can model cycle-by-cycle power at reasonable 
accuracy (<20%)

• Can run significantly faster than RTL tools

• Useful to not only hardware designers but also to 
software developers
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TechTransfer
• Industrial Liaisons

• James C. Holt (Freescale)

• Carl E. Lemonds (AMD)

• Peng Yang (Freescale)

• Internships

• IBM Austin Research Lab (2006)

• Freescale (2008)

• Publications

• ICCAD 2007, MICRO 2007, MTV 2007
16

16



Thank you!

•Questions?
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Backup Slides
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Power Breakdown

 28 Computer

increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic 
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are 
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy 
on instruction and data supply. Thus, as a first step 
in developing an efficient embedded processor, seeing 
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data 
(28 percent) and instructions (42 percent). Performing 
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the 
operations the computation actually requires—with 
the balance spent on overhead, such as updating loop 
indices and calculating memory addresses. The energy 
spent on useful arithmetic is similar to that spent on 
arithmetic in the hardwired implementation: Both use 
similar arithmetic units.

A programmable processor’s high overhead derives 
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ 
multiplies), the processor spends 70 pJ on instruction 
supply and 47 pJ on data supply. This overhead is even 
higher, though, because 1.7 instructions must be fetched 
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction 
supply energy. The 8-Kbyte instruction cache consumes 
most of the energy. Fetching each instruction requires 
accessing both ways of the two-way set-associative cache 
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline 
registers consume an additional 12 pJ, passing each 
instruction down the five-stage RISC pipeline. Thus 

the total energy of supplying each instruction is 119pJ 
to control a 10-pJ arithmetic operation. Moreover, 
because of overhead instructions, 1.7 instructions must 
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy. 
Here the 8-Kbyte data cache (array, tags, and control) 
accounts for 50 percent of the data supply energy. The 
40-word multiported general-purpose register file 
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data 
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of 
energy. Two words must be supplied and one consumed 
for every 10-pJ arithmetic operation. 

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the 
energy of actually carrying out the instruction. It is 
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and 
instruction supply.

Instruction supply energy can be reduced 50X by 
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline. 
Since most of the instruction-supply energy cycles an 
instruction cache, to reduce this number the processor 
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power 
microprocessor (ELM) supplies instructions from a 
small set of distributed instruction registers rather than 
from the cache. The cost of reading an instruction bit 
from this instruction register file (IRF) is 0.1 pJ versus 
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level 
of the instruction memory hierarchy, and we might ask 
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not 

Figure 1. Embedded processor efficiency. Supplying data and 
instructions consumes 70 percent of the processor’s energy; 
performing arithmetic consumes only 6 percent.
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Figure 2. Instruction-supply energy breakdown. The 8-Kbyte 
instruction cache consumes the bulk of the energy, while fetching 
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.
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to reduce energy. To maximize performance, the hier-
archy’s lowest level is sized as large as possible while 
still being accessible in a single cycle. Making the cache 
smaller would only decrease performance by increas-
ing the miss rate, without affecting cycle time. For this 
reason, level 1 instruction caches are typically 8 to 64 
Kbytes. Optimizing for energy requires minimizing the 
hierarchy’s bottom level while still capturing the criti-
cal loops of the kernels that dominate media applica-
tions. The ELM has an IRF with 64 registers that can 
be partitioned so that smaller loops need only cycle the 
registers’ bit lines as needed to hold the loop.

The ELM processor manages the IRF as a register file, 
with the compiler allocating registers and performing 
transfers—not as a cache, where hardware performs 
allocation and transfers reactively at runtime. Explicit 
management of the IRF has two main advantages. First, 
it avoids stalls by prefetching a block of instructions into 
the IRF as soon as the processor identifies the block to 
be executed. In contrast, a cache waits until the first 
instruction is needed, then stalls the processor while 
it fetches the instruction from backing memory. Some 
caches use hardware prefetch engines to avoid this prob-
lem, but they burn power, often fetch unneeded instruc-
tions, and rarely anticipate branches off the straight-line 
instruction sequence. In addition to being more efficient, 
explicit management better manages cases where the 
working set does not quite fit in the IRF.

With an explicitly managed IRF reducing the cost 
of fetching each bit of instruction from 3.4 pJ to 0.1 pJ,  
the 0.4-pJ cost of moving this bit down the pipeline 
now appears large. The ELM processor eliminates 
these pipeline instruction registers by exposing the 
pipeline. With a conventional, hidden pipeline, the pro-
cessor fetches an instruction that takes many cycles all 
at once, then delays it via a series of pipeline registers 

Figure 4. Stanford efficient low-power microprocessor. The 
processor supplies instructions from a small set of distributed 
instruction registers rather than from the cache.
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Figure 3. Data-supply energy breakdown. The 8-Kbyte data 
cache—array, tags, and control—accounts for 50 percent of the 
data-supply energy. The 40-word multiported general-purpose 
register file accounts for 41 percent of the energy; pipeline 
registers account for the balance. 
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Table 1. Storage hierarchies.

RISC instruction cache 8 Kbytes (2-way)
Read – tags  26
Read – array  81
Read – total  107 pJ

RISC data cache 8 Kbytes (2-way)
Read – tags 26
Read – array  81
Read – total  107 pJ
Write – tags 27
Write – array  94
Write – total  121 pJ

RISC register file [2R + 1W] 40 x 32-bit
Read  17 pJ
Write  22 pJ

ELM instruction memory 8 Kbytes 
Read 128-bits 66 pJ

ELM instruction registers 64 x 128-bit
Read 128-bits 16 pJ
Write 128-bits 18 pJ

ELM data memory 8 Kbytes
Read 33 pJ
Write 29 pJ

ELM XRF [1R + 1W] – 2 files 16 x 32-bit
Read 14 pJ
Write 9 pJ

ELM ORF [2R + 2W] – 1 file per ALU 4 x 32-bit
Read 1.3 pJ
Write 1.8 pJ

36%

11%

53%

Cache RegFile Others

Stanford ELM processor
[DallyIEEEComputers2008]
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Why is “Reg File Write Data” 
important?

• Write Data is broadcast

• Although only one register is 
“write-enabled”, switching still 
occurs at all register inputs

• Write Data is globally routed

Reg0

Reg1

Reg2

Regn

WE0

WE1

WE2

WEn

Reg Write Data
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Benchmarks
• Profiled power model using one benchmark

• Ran 12 different benchmarks from standard 
benchmark suites

• Dhrystone, Hiperstone, etc.

• Sampled 10,000ns from VCD dump

• Simulating 10,000ns in PowerTheater takes 
around 4 hours

Other
Benchmarks

VCD dump

PowerTheater

Our Model
Benchmark
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