
FPGA-Based Power Models for
Early System-Level
Power Estimation

Dam Sunwoo1, Hassan Al-Sukhni2, Jim Holt2, Derek Chiou1

1Department of Electrical and Computer Engineering
The University of Texas at Austin

2Freescale Semiconductor Inc.
(sunwoo@ece.utexas.edu)

Theme/Task: 1633.001
1

mailto:sunwoo@ece.utexas.edu
mailto:sunwoo@ece.utexas.edu

Power
• Power consumption is a key factor in modern processor design

• Architectural design decisions make great impact on power

• Need better models to make better decisions!

• The Dilemma:

• Architectural-level: Wattch, SimplePower, etc.

• Still inaccurate

• RTL/Gate-level: PowerTheater, Cadence RC, etc.

• Requires full design

• Can be very slow

2Dam Sunwoo
2

FAST

• FPGA-Accelerated Simulation Technology (FAST)

• Partition simulator into:

• Functional Model (FM)

• simulates ISA, peripheral functionality

• Timing Model (TM)

• simulates timing, details of microarchitecture

• Place TM on hardware!

• Runs significantly faster without losing accuracy

3Dam Sunwoo

[ICCAD2007, MICRO2007]

3

FAST Bird’s-eye view

!
Timing Model (TM)

!

Interface

Functional Model (FM)

FPGAHost Processor

Traces

Feedback

4Dam Sunwoo
4

Power Models for FAST
• Identify key contributor signals to power consumption

and create models based on them

• “Architectural Signals”

• Available at high-level

• Cache hit/miss signals, RegFile write data

• Have more impact on power as they drive more logic
and have larger fan-out

5Dam Sunwoo
5

Experiments

• Applied proposed approach to Freescale z650
embedded processor

• 32-bit Power ISA

• 7-stage in-order pipeline

• 32KB Unified L1 cache (8-way)

• MMU

• Run PowerTheater on entire RTL

6Dam Sunwoo
6

Example (Caches)

• Only used “Sum of Cache Bank Enable signals”

• Cache Reads: Access all ways in a set-associative cache

• Cache Writes: Access specific way only

PowerTheater

Modeled Power

Cache Read

Cache Write

Dam Sunwoo
7

Example (Reg File)

• Only used “Hamming Distance of Reg File Write Data”

• The spikes in power indicate more bits have flipped, resulting in
more power consumption

PowerTheater

Modeled Power

8Dam Sunwoo
8

Total Power (z650 core)

• Only used Cache / Register File signals

• All other modules are lumped as constant

• Linear model (aX+bY+c)

• Modeled power tracks PowerTheater fairly accurately

PowerTheater

Modeled Power

9Dam Sunwoo
9

Results
(Average Power)

• Less than 2% off of RTL PowerTheater estimation

0

2

4

6

8

10

dh
ry

hip
er

1

co
mpr

es
s

ad
pc

m de
s

po
cs

ag

bm
ar

k0
1

bil
v1

br
ev

bc
nt

bfi
eld au

to

MEA
N

M
od

el
in

g
Er

ro
r

(%
) Modeling Error of Estimating Average Power (%)

1.88%

10Dam Sunwoo
10

Results
(Cycle-by-Cycle Power)

• Measured as RMS average of difference between PowerTheater
and Modeled power

• Less than 20% off!

0

5

10

15

20

25

dh
ry

hip
er

1

co
mpr

es
s

ad
pc

m de
s

po
cs

ag

bm
ar

k0
1

bil
v1

br
ev

bc
nt

bfi
eld au

to

MEA
N

M
od

el
in

g
Er

ro
r

(%
) Modeling Error of Estimating Cycle-by-Cycle Power (%)

16.24%

11Dam Sunwoo
11

What about other irregular logic?

• Macromodeling [GuptaTVLSI2000]

• Avg Input Signal Probability
• How many ones?

• Avg Input Transition Density
• How many bits flip?

• Avg Input Spatial Correlation Coeff
• How close are the ones?

• Look-up Table populated using carefully crafted input vectors

• Markov Chain Sequence Generator [LiuICCAD2002]

• Generate 2000 vectors per LUT entry
12

010 100 011

Dam Sunwoo
12

Macromodeling Results
• ISCAS-85 Benchmark circuits (ALUs, etc.)

• Compared against Synopsys PrimeTime estimates

• TSMC 130nm library

• Cycle-by-Cycle power modeled within 20%!

0

10

20

30

40

c1355 c1908 c2670 c3540 c432 c499 c5315 c6288 c7552 c880 mean

M
od

el
in

g
Er

ro
r

(%
)

AVG RMS
Cycle-by-Cycle RMS

18.1%

6.4%

13Dam Sunwoo
13

Integration with
Architectural Simulators

• Can use any architectural simulator

• Power models only use signals that are available
at high-level

• Runs significantly faster than RTL simulation

• FPGA-Accelerated Simulation Technologies (FAST)
Simulators

• Power Models very suitable for FPGAs

• Virtually no overhead on simulation performance

• Even faster! (10 MIPS?)
14Dam Sunwoo

14

Conclusion

• High-level Power Models

• Can model average power very accurately (<2%)

• Can model cycle-by-cycle power at reasonable
accuracy (<20%)

• Can run significantly faster than RTL tools

• Useful to not only hardware designers but also to
software developers

15Dam Sunwoo
15

TechTransfer
• Industrial Liaisons

• James C. Holt (Freescale)

• Carl E. Lemonds (AMD)

• Peng Yang (Freescale)

• Internships

• IBM Austin Research Lab (2006)

• Freescale (2008)

• Publications

• ICCAD 2007, MICRO 2007, MTV 2007
16

16

Thank you!

•Questions?

17

Backup Slides

18

Power Breakdown

 28 Computer

increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy
on instruction and data supply. Thus, as a first step
in developing an efficient embedded processor, seeing
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data
(28 percent) and instructions (42 percent). Performing
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the
operations the computation actually requires—with
the balance spent on overhead, such as updating loop
indices and calculating memory addresses. The energy
spent on useful arithmetic is similar to that spent on
arithmetic in the hardwired implementation: Both use
similar arithmetic units.

A programmable processor’s high overhead derives
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ
multiplies), the processor spends 70 pJ on instruction
supply and 47 pJ on data supply. This overhead is even
higher, though, because 1.7 instructions must be fetched
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction
supply energy. The 8-Kbyte instruction cache consumes
most of the energy. Fetching each instruction requires
accessing both ways of the two-way set-associative cache
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline
registers consume an additional 12 pJ, passing each
instruction down the five-stage RISC pipeline. Thus

the total energy of supplying each instruction is 119pJ
to control a 10-pJ arithmetic operation. Moreover,
because of overhead instructions, 1.7 instructions must
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy.
Here the 8-Kbyte data cache (array, tags, and control)
accounts for 50 percent of the data supply energy. The
40-word multiported general-purpose register file
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of
energy. Two words must be supplied and one consumed
for every 10-pJ arithmetic operation.

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the
energy of actually carrying out the instruction. It is
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and
instruction supply.

Instruction supply energy can be reduced 50X by
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline.
Since most of the instruction-supply energy cycles an
instruction cache, to reduce this number the processor
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power
microprocessor (ELM) supplies instructions from a
small set of distributed instruction registers rather than
from the cache. The cost of reading an instruction bit
from this instruction register file (IRF) is 0.1 pJ versus
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level
of the instruction memory hierarchy, and we might ask
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not

Figure 1. Embedded processor efficiency. Supplying data and
instructions consumes 70 percent of the processor’s energy;
performing arithmetic consumes only 6 percent.

Instruction
supply42%

24%

6%

28%

Clock +
control logic

Arithmetic

Data
supply

Figure 2. Instruction-supply energy breakdown. The 8-Kbyte
instruction cache consumes the bulk of the energy, while fetching
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.

8% 4%

21%

67%

Pipeline
registers

Cache
controller

Cache
tags

Cache
array

 28 Computer

increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy
on instruction and data supply. Thus, as a first step
in developing an efficient embedded processor, seeing
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data
(28 percent) and instructions (42 percent). Performing
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the
operations the computation actually requires—with
the balance spent on overhead, such as updating loop
indices and calculating memory addresses. The energy
spent on useful arithmetic is similar to that spent on
arithmetic in the hardwired implementation: Both use
similar arithmetic units.

A programmable processor’s high overhead derives
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ
multiplies), the processor spends 70 pJ on instruction
supply and 47 pJ on data supply. This overhead is even
higher, though, because 1.7 instructions must be fetched
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction
supply energy. The 8-Kbyte instruction cache consumes
most of the energy. Fetching each instruction requires
accessing both ways of the two-way set-associative cache
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline
registers consume an additional 12 pJ, passing each
instruction down the five-stage RISC pipeline. Thus

the total energy of supplying each instruction is 119pJ
to control a 10-pJ arithmetic operation. Moreover,
because of overhead instructions, 1.7 instructions must
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy.
Here the 8-Kbyte data cache (array, tags, and control)
accounts for 50 percent of the data supply energy. The
40-word multiported general-purpose register file
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of
energy. Two words must be supplied and one consumed
for every 10-pJ arithmetic operation.

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the
energy of actually carrying out the instruction. It is
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and
instruction supply.

Instruction supply energy can be reduced 50X by
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline.
Since most of the instruction-supply energy cycles an
instruction cache, to reduce this number the processor
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power
microprocessor (ELM) supplies instructions from a
small set of distributed instruction registers rather than
from the cache. The cost of reading an instruction bit
from this instruction register file (IRF) is 0.1 pJ versus
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level
of the instruction memory hierarchy, and we might ask
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not

Figure 1. Embedded processor efficiency. Supplying data and
instructions consumes 70 percent of the processor’s energy;
performing arithmetic consumes only 6 percent.

Instruction
supply42%

24%

6%

28%

Clock +
control logic

Arithmetic

Data
supply

Figure 2. Instruction-supply energy breakdown. The 8-Kbyte
instruction cache consumes the bulk of the energy, while fetching
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.

8% 4%

21%

67%

Pipeline
registers

Cache
controller

Cache
tags

Cache
array

 July 2008 29

to reduce energy. To maximize performance, the hier-
archy’s lowest level is sized as large as possible while
still being accessible in a single cycle. Making the cache
smaller would only decrease performance by increas-
ing the miss rate, without affecting cycle time. For this
reason, level 1 instruction caches are typically 8 to 64
Kbytes. Optimizing for energy requires minimizing the
hierarchy’s bottom level while still capturing the criti-
cal loops of the kernels that dominate media applica-
tions. The ELM has an IRF with 64 registers that can
be partitioned so that smaller loops need only cycle the
registers’ bit lines as needed to hold the loop.

The ELM processor manages the IRF as a register file,
with the compiler allocating registers and performing
transfers—not as a cache, where hardware performs
allocation and transfers reactively at runtime. Explicit
management of the IRF has two main advantages. First,
it avoids stalls by prefetching a block of instructions into
the IRF as soon as the processor identifies the block to
be executed. In contrast, a cache waits until the first
instruction is needed, then stalls the processor while
it fetches the instruction from backing memory. Some
caches use hardware prefetch engines to avoid this prob-
lem, but they burn power, often fetch unneeded instruc-
tions, and rarely anticipate branches off the straight-line
instruction sequence. In addition to being more efficient,
explicit management better manages cases where the
working set does not quite fit in the IRF.

With an explicitly managed IRF reducing the cost
of fetching each bit of instruction from 3.4 pJ to 0.1 pJ,
the 0.4-pJ cost of moving this bit down the pipeline
now appears large. The ELM processor eliminates
these pipeline instruction registers by exposing the
pipeline. With a conventional, hidden pipeline, the pro-
cessor fetches an instruction that takes many cycles all
at once, then delays it via a series of pipeline registers

Figure 4. Stanford efficient low-power microprocessor. The
processor supplies instructions from a small set of distributed
instruction registers rather than from the cache.

Instruction memory

Instruction register file

Datapath

Figure 3. Data-supply energy breakdown. The 8-Kbyte data
cache—array, tags, and control—accounts for 50 percent of the
data-supply energy. The 40-word multiported general-purpose
register file accounts for 41 percent of the energy; pipeline
registers account for the balance.

18%

6%

26%

9%

41%

Pipeline
registers

Register
file

Cache
controller

Cache
tags

Cache
array

Table 1. Storage hierarchies.

RISC instruction cache 8 Kbytes (2-way)
Read – tags 26
Read – array 81
Read – total 107 pJ

RISC data cache 8 Kbytes (2-way)
Read – tags 26
Read – array 81
Read – total 107 pJ
Write – tags 27
Write – array 94
Write – total 121 pJ

RISC register file [2R + 1W] 40 x 32-bit
Read 17 pJ
Write 22 pJ

ELM instruction memory 8 Kbytes
Read 128-bits 66 pJ

ELM instruction registers 64 x 128-bit
Read 128-bits 16 pJ
Write 128-bits 18 pJ

ELM data memory 8 Kbytes
Read 33 pJ
Write 29 pJ

ELM XRF [1R + 1W] – 2 files 16 x 32-bit
Read 14 pJ
Write 9 pJ

ELM ORF [2R + 2W] – 1 file per ALU 4 x 32-bit
Read 1.3 pJ
Write 1.8 pJ

36%

11%

53%

Cache RegFile Others

Stanford ELM processor
[DallyIEEEComputers2008]

19

Why is “Reg File Write Data”
important?

• Write Data is broadcast

• Although only one register is
“write-enabled”, switching still
occurs at all register inputs

• Write Data is globally routed

Reg0

Reg1

Reg2

Regn

WE0

WE1

WE2

WEn

Reg Write Data

20

20

Benchmarks
• Profiled power model using one benchmark

• Ran 12 different benchmarks from standard
benchmark suites

• Dhrystone, Hiperstone, etc.

• Sampled 10,000ns from VCD dump

• Simulating 10,000ns in PowerTheater takes
around 4 hours

Other
Benchmarks

VCD dump

PowerTheater

Our Model
Benchmark

21

21

Modeling Flow Start

Existing

Component?

Run RTL / Gate-level

Power Estimation

Identify key contributor

signals

Accurate

enough?

Calculate

coefficients Library

Done

New Component

Divide component into

building blocks in library

Create power model by using/

extrapolating library models

All models

done?
No

No Yes

Yes

Yes No

22

