
1

Formal Hardware Verification:
Theory Meets Practice

Carl Seger

Feb. 3, 2017

Short Bio

 Civilingenjör Teknisk Fysik, Chalmers, 1985

 M.Math. University of Waterloo (Canada), 1986

 Ph.D. University of Waterloo, 1988

 Post-doc Carnegie Mellon University (USA), 1988-1990

 Assistant & Tenured Associate professor, University of British
Columbia (Canada), 1990-1995

 Prinicipal & Sr. Principal Engineer, Intel (USA). 1996-2016

 Visiting Fellow at Balliol College Oxford (UK), 2006-2007

 Now visiting Chalmers until end of June…

2

Quiz – Large Numbers

3

Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all

possible inputs to

one AVX instruction

(two 256-bit inputs)

Number of

transistors

in a 2014

cell phone

Quiz – Large Numbers

4

Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all

possible inputs to

one AVX instruction

(two 256-bit inputs)

Number of

transistors

in a 2014

cell phone

4 1

~1010

3

~1011

2

~1031 ~10154

Outline

 Background

 Formal Verification in Theory

 Formal Verification in Practice

 The Return-On-Investment (ROI) of FV

 Open Problems

5

6

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

The Design Process at 10,000 m

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

This is the theory…

Ideas

Validation

MAS: Micro-Architecture Specification

RTL: Register-Transfer Language

7

In Practice…

Original

Product

Target

Test

EngineerMask

Designer

Design

Engineer

Micro-

Architect

Architect

Target

Repainted

to fit

Reality
Validation

8

What Needs to be Validated?

 Functionality

 Performance

 Power & Thermal

 Physical form

 Documentation

 Reliability

 Testing procedure

 …

+ ? ?

Goal

Actual

Types of Functional Verification

 Equivalence Verification

 Property Verification

9

Original
Product
Target

Architect Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

=? =?

Original
Product
Target

Architect Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

RTL

Properties

Schematics

Properties

=?

10

 Use of symbolic/algebraic methods to completely
verify that a circuit implements a specification

Today: 100% of a

design is run through

FEV before tape-out

Extremely successful

application of formal

verification in practical

engineering!

Usability high enough

that every design

engineer is able to run

the verification.

Formal Equivalence Verification

RTL

Schematics

FEV

Layout

Extraction

11

Property Verification Approaches

Low %

Covered

100 %

Covered

Requires almost ∞
cycles / time

Difficult / impossible to
avoid broken features

After generator created,
easy to write

Requires little uArch
knowledge

Can create things no one
would ever think of

Generic
Random Tests

Requires strong uArch
knowledge

Targets areas most likely
to be of concern

Greatly reduces cycle
requirements

Develops strong uArch
knowledge

Directed
Random Tests

Requires almost ∞
number of tests

Difficult to hit uArch
conditions

Easy to write

Easy to understand

Easy to reuse

Directed Tests

Requires special skills

Constrained by
complexity

100% coverage

Proves absence of bugs

Formal
Verification

ConPro

Formal Verification Approaches

 Symbolic Trajectory Evaluation (STE), a form of symbolic
simulation, are today used to formally verify very large
computation units/blocks

 Complete formal property verification of all (>3,000) uops in the
execution cluster of Intel processors is now routinely done

 Symbolic model checking is seeing more wide spread use

 Early architecture exploration/validation

 Control intensive designs

 Theorem Proving

 Combining STE with theorem proving increases the quality of
specification

 Floating point spec is mathematical statement of IEEE standard

12

STE from 10,000 m

 Reference model
verification:

 Create an abstract state
representation

 Define an abstract next-state
function

 Define a mapping from
abstract state to circuit state

 Verify commutativity:
For every instance in time and
for every possible value in the
machine, if the signal values
match the mapped “before”
state, then they will also
match the “after” state.

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

=

Op

13

Global

Assume

s

STE from 1,000 m

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

Op
Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

Induction

Hypothesis

14

STE at Ground Level

 Model build

 Wiggling

 Specification writing

 Simple verification

 Debugging failures

 Complete verification

 Debugging failures

 Assumption checking

 Debugging failures

15

In Summary:

 A lot of rather tedious work.

 Significant amount of reverse engineering.

 Both FV and micro-architectural knowledge needed

 You get it wrong way more than you get it right.

 If the proof succeeds on first attempt, it’s probably wrong!

 Debugging and exploration critical!

 Fast turn-around more important than FV capacity!

 The FV activity is the real value!

16

RTL Changes Constantly

17

Lines Changed Total # Lines of RTL # Files Checked In

3000 files, 3.5M lines total

(including comments, white space)

First Full-Chip

RTL Model

250K lines changed

in one week

RTL Coding “complete”

A0 tapeout

In Summary: FV in Practice

 A lot of rather tedious work.

 Significant amount of reverse engineering.

 You get it wrong way more than you get it right.

 If the proof succeeds on first attempt, it’s probably wrong!

 Debugging and exploration critical!

 Fast turn-around more important than FV capacity!

 The FV activity is the real value!

 Regression is critical (and time consuming!)

18

The Return On All This Work

19

Example STE FV of a Unit

 ~60 tickets filed:

 34 bugs in spec. (C++)

 37 bugs in RTL

 8 bugs in EAS (English document)

 At least one ticket caused a change in all three models!

 2-3 bugs were already present in existing (and shipping) HW!

 Most bugs related to setting of flags and other “corner cases”.

 Most complex bug required a program with 71 instruction and
carefully selected program layout to split cache lines + suitable
cache misses. Also known as a “Friday the 13th bug”

 All bugs were fixed, even though many required several spins.

 Total effort: ~1 man year.

0

10

20

30

40

50

60

70

20

FV Over Time

 STE FV deployed for more than 15 years for the
execution cluster.

 Initially only data path verified

 Eventually all data path and control were verified.

 Today FV has replaced simulation entirely.

 Headcount today lower with FV than what DV would
require.

 For at least one project, we achieved zero post-Si
bugs, for others, much cleaner Si.

21

22

Good News / Bad News

 Good news:

 Formal verification can guarantee the correctness of extremely large and
complex hardware

 The verification programs allow continuous regression runs, thus
preventing bugs from re-appearing

 The verification specifications and verification scripts can often be re-
used for new designs

 Bad news:

 Difficult to capture control aspect accurately & robustly

 Knowledge intensive activity to create initial specs and verification scripts

 FV capacity not growing as fast as design size/complexity.

 Structural verification decompositions are fragile

Future Directions and
Research Problems

23

24

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

Solid Formal Link with Good
Return of the Investment

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

Ideas

FPV+FEV + Extraction+DRC

25

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

Mind the Gap(s)...

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

Ideas

? ?

Integrate Verification and Design

 All validation work is reactive; the
design gets created somehow
and now we need to figure out if it
is correct

 Rather than trying to do post-
design verification, verify each
step along the way.

 Can mix “correct-by-construction”
and “trust-but-verify” parts.

 Can use different verification
engines at different levels of
abstraction

 Imposes a relatively modest
overhead on the design process for
a big payoff.

 A system can be built to track the
“quality” of a design from
correctness point of view.

26

IDV prototype system for abstract RTL

to layout with complete verification

HLM

Validation

M1

Transformation step

M2

M4

M2

Verification step

M5

Layout

Tool guarantees that

only valid transformations

and/or verification steps are

performed

50k

Finding a Needle in a Haystack vs
Finding a HW bug

vs.
Finding a single pair of values for

a double precision floating point

(add/sub/mult/div) op that fails.

For probability to be the same,

how big should the haystack be?

(Assume half-sphere haystack)

Answer: Radius ~550 light years!

27

Thank you!

Questions?

