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Information Theoretic Measures for Power Analysis 
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Abstract-This paper considers the problem of estimating the 
power consumption at logic and register-transfer levels of design 
from an information theoretical point of view. In particular, 
it is demonstrated that the average switching activity in the 
circuit can be calculated using either entropy or informational 
energy averages. For control circuits and random logic, the 
output entropy (informational energy) per bit is calculated as 
a function of the input entropy (informational energy) per bit 
and an implementation dependent information scaling factor. For 
data-path circuits, the output entropy (informational energy) is 
calculated from the input entropy (informational energy) using 
a compositional technique which has linear complexity in terms 
of the circuit size. Finally, from these input and output values, 
the entropy (informational energy) per circuit line is calculated 
and used as an estimate for the average switching activity. The 
proposed switching activity estimation technique does not require 
simulation and is thus extremely fast, yet produces sufficiently 
accurate estimates. 

I. INTRODUCTION 

ODERN design tools have changed the entire design M process of digital systems. As a result, most of the 
systems are conceived and designed today at the behav- 
ioral/logic level, with little or no knowledge of the final 
gate level implementation and the layout style. In particular, 
designers are becoming more and more interested in register- 
transfer level (RTL) modules (adders, multipliers, registers, 
and multiplexers) and strategies to put them together in order 
to build complex digital systems. Power minimization in 
digital systems is not an exception to this trend. Having an 
estimate of power consumption as soon as possible in the 
design cycle can save significant redesign efforts or even 
completely change the entire design architecture. 

A. Basic Issues and Prior Work 

Gate-level power estimation techniques can be divided into 
two general categories: simulative and nonsimulative [ 11, [2]. 
Simulative techniques have their roots in direct simulation 
and sampling techniques [3]-[5]. The main advantages of 
these techniques are that existing simulators can be used 
for estimation purposes and issues such as hazard generation 
and propagation, reconvergent fanout induced correlations 
are automatically taken into consideration. The disadvantage 
is their strong input pattern dependence and long running 
times (in sampling techniques this is needed for achieving 
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high levels of accuracy). Nonsimulative techniques are based 
on probabilistic or stochastic techniques [6]-[9]. Their main 
advantages are higher speed and lower dependence on the 
input patterns. Generally speaking, however, they tend to 
be less accurate due to the simplified models used and the 
approximations made in order to achieve higher efficiency. 

Higher levels of abstraction have also been considered, but 
here many problem:, are still pending a satisfactory solution. At 
this level, consistency is more important than accuracy, that is, 
relative (as opposed to absolute) evaluation of different designs 
is often sufficient Most of the high level prediction tools 
combine deterministic analysis with profiling and simulation 
in order to address data dependencies. Important statistics 
include the number of instructions of a given type, the number 
of bus, register, and memory accesses, and the number of 
U 0  operations executed within a given period [lo], [ I l l .  
Analytic modeling efforts have been described in [12] where 
a parametric power model was developed for macromodules. 
However, the trade-off between flexibility and accuracy is still 
a challenging task as major difficulties persist due to the lack 
of precise information and the conceptual complexity which 
characterizes this Kevel of design abstraction. 

Power dissipation in CMOS circuits comes from three 
sources: leakage currents which include the reverse-biased 
p-n junction and subthreshold currents, short-circuit currents 
which flow due to tlhe DC path between the supply rails during 
output transitions, and capacitive switching currents which are 
responsible for charging and discharging of capacitive loads 
during logic transitions. In well-designed circuits with rela- 
tively high threshold voltages, the first two sources are small 
compared to the last one. Therefore, to estimate the total power 
consumption of a module (in a gate level implementation), we 
may only account for the capacitive switching currents, yet 
achieve sufficient levels of accuracy [ 131 

where f c l k  is the clock frequency, V ~ L I  is the supply voltage, 
C, and sw, are the capacitive load and the average switching 
activity of gate n, respectively (the summation is performed 
over all gates in the circuit). As we can see, in this formulation 
the average switching activity per node is a key factor and, 
therefore, its correct calculation is essential for accurate power 
estimation. Note that for the same implementation of a module, 
different input sequences may give rise to different switching 
activities at the ciircuit inputs and at the outputs of internal 
gates and, consequently, completely different power values. 

The problem of power estimation at the RT-level is different 
from that at the logic level. While at gate level, it is desirable 
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Fig. I .  (a) Power estimation issues at the logic level. (b) Power estimation issues at the RT-level 

to determine the switching activity at each node (gate) in the 
circuit [Fig. l(a)], for RT-level designs an average estimate 
per module is satisfactory [Fig. l(b)]. In other words, some 
accuracy may be sacrificed in order to obtain an acceptable 
power estimate early in the design cycle at a significantly 
lower computational cost. 

In the data-flow graph considered in Fig. l(b), the total 
power consumption may be estimated as Ptotal = P,,,,, + 
PnLodules. Usually, the interconnect power consumption is 
either estimated separately or included in the power con- 
sumption of the modules, therefore we can write Ptota, = 

Pm, oc (Cm,.SWm3) wherethe summation 
is performed over the set of modules M used in the data-flow 
graph, and Cm, , SWm, stand for the capacitance loading and 
the average switching activity of module m3, respectively. 
Basically, what we propose is to characterize the average 
switching activity of a module (SWm3) through the average 
switching activity for a typical signal line in that module 
( . swavg) .  More formally, for a generic module m3 having 
n internal lines (each characterized by its capacitance and 
switching activity values e, and swz, respectively), we have 

of view [15]. Traditionally, entropy has been considered a 
useful measure for solving problems of area estimation, timing 
analysis [17], [18], and testing 1191, [20]. We propose two 
new measures for estimating the power consumption of each 
module based on entropy and informational energy. Our en- 
tropyhnformational energy-based measures simply provide an 
approximation for the functional activity in the circuit without 
having to necessarily simulate the circuit. With some further 
simplifications, simple closed form expressions are derived and 
their value in practical applications is explored. 

We should point out that although this paper targets RT- 
level and behavioral design, it also presents, as a by-product, 
a technique applicable to logic level designs. This is a first 
step in building a unified framework for power analysis from 
gate level to behavioral level. 

The paper is organized as follows. Sections I1 and I11 intro- 
duce the main concepts and the motivation behind our model. 
In Section IV, we present some practical considerations, and in 
Section V, we give the results obtained by analyzing a common 
data-path and benchmark circuits. Finally, we conclude by 
summarizing our main ideas. 

n n 

Pm, oc C(CL . sw,) = swavg ’ e, = SWavg ’ cn,J. (2)  11. THEORETICAL FRAMEWORK 
L = l  z = 1  

We assume that module capacitances Cm, are either esti- 
mated or taken from a library, therefore we concentrate on 
estimating the average switching activity per module. This 
is a quite different strategy compared to the previous work. 
The only other proposed method for power estimation at RT- 
level is simulative in nature, requires precharacterization of 
the modules and may be summarized as follows: first, RT- 
level simulation is performed to obtain the average switching 
activity at the inputs of the modules and then, this switching 
activity is used to “modulate” a switched capacitance value 
(product of the switching activity and the physical capacitance) 
which is precomputed and stored for each module in the library 
to obtain the power dissipation estimate [14]. Compared to this 
methodology, the distinctive feature of the present approach 
is that it does not require simulation; its predictions are based 
only on the characteristics of the input sequence and some 
knowledge about the function andor structure of the circuit 
(see Section IV for details). 

A. An Entropy-Based Approach 

occur with the probabilities p l  , p 2 ,  . . . , p ,  that is 
Let Al. A2 , . . i A, be a complete set of events which may 

n 

k=l 

Let us consider an experiment where the outcome is un- 
known in the beginning; such an experiment exposes a proba- 
bility finite field A,, completely characterized by the discrete 
probability distribution p l ,  p z ,  . . . , p, .  In order to quantify 
the content of information revealed by the outcome of such an 
experiment, Shannon introduced the concept of entropy [21]. 

Definition 1 (Entropy}: Entropy of a finite field A, [de- 
noted by H(A,)]  is given by 

n 

H ( A )  H(PI,P~,...,P~) = - C ~ h l o g ~ f i .  (4) 
k=l 

Entropy satisfies some basic properties detailed in [21]. We 
plot in Fig. 2 the entropy of a Boolean variable as a function 
of its signal probability, that is H ( A 2 )  = -p  . log p - (I - 
p )  . log (1 - p ) .  

B. Overview and Organization of the Paper 

In this paper, we address the problem of power estima- 
tion at the RT-level from an information theoretical point 
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Entropy H ( A 2 )  versus probability. Fig. 2. 

Fig. 3 .  A set-theoretic representation of different entropies. 

First, we should note that log(pk) 5 0 since 0 < P k  5 
1 and so H(A,) 2 0. Thus, the entropy can never be 
negative. Second, let p1 = 1, p2 = . . .  = p ,  = 0. By 
convention, p r ~  log(pk) = 0 when p k  = 0 and hence, in 
this case, H(A,)  = 0. Conversely, H(A,) = 0 implies that 
p k  log ( p k )  = 0 for all k ,  so that p k  is either zero or one. But 
only one ph  can be unity since their sum must be one. Hence, 
entropy is zero if and only if there is complete certainty. 

Definition 2 (Conditional Entropy): Conditional entropy of 
some finite field A, with probabilities {pz}ls,s, with respect 
to B, (with probabilities {qz}ls,sm) is defined as 

n m  .. 

H(AnIBm) = - q k  . P k j  . log ( P k j )  ( 5 )  
j=1 k l  

where p k j  is the conditional probability of events Aj and B k  

[ p k j  = prob (AjlBk)].  In other words, conditional entropy 
refers to the uncertainty left about A, when Om is known. 

Definition 3 (Joint Entropy): Given two finite fields A, 
and Bm, their joint entropy is defined as 

n m  

Based on these two concepts, one can find the information 
shared by two complete sets of events 

I (&; am) = H(An) + H(&)  - H ( A ,  x B,) 
which is called mutual information (or transinformation). 
Moreover, by using the above definitions, one can show that 

The Venn diagram for these relations is shown in Fig. 3 .  
The concept of entropy is equally applicable to partitioned 

sets of events. More precisely, given a partitioning n = 
{AI, A2, . . . , A,) on the set of events, the entropy of this 
partitioning is 

where p ( A , )  is the probability of class A, in partition n. 
Example 1: The truth table for a randomly excited 1-b full 

adder is given in Fig. 4 where zz, y, are the inputs, cL is carry- 
in, sz is the sum bit and c,+1 is carry-out. The output space 
is partitioned in four classes as n = { A1 , Az, A3, A4} = 
(10, 01, 11, OO}, where p(A1) = p ( A 2 )  = 318, p ( A 3 )  = 
p(A4) = 1/8. Applying (8) we obtain H ( n )  = 1.8113. We 
observe that within a class there is no activity on the outputs; 
this means that output transitions may occur only when one 
has to cross class lboundaries in different time steps. If the 
output sequence is purely random, then exactly H bits are 
needed to represent the output sequence; therefore the average 
number of transitions per word (or average switching activity 
per word) will be H / 2 .  In any other nonrandom arrangement, 
for a minimum length encoding scheme, the average number 
of transitions per word will be L H / 2 ,  so in practice, H / 2  
can serve as a conservative upper bound on the number of 
transitions per word. In our example, we find an average 
switching value approximately equal to 0.905 which matches 
fairly well the exact value one deduced from the above table. 
Such a measure was suggested initially by Hellerman to 
quantify the compu,fationaZ work of simple processes [ 161. 

More formally, if a signal z is modeled as a lag-one Markov 
chain with conditional probabilities p00, POI, PIO, p11, and 
signal probabilities p o  and p1 as in Fig. 5 ,  then we have the 
following result. 

Theorem 1: h(z'Iz-) 2 2 . sw(z)  . (POO + p11), where 
h(z+lz-) is the conditional entropy between two successive 
time steps and SW(.G) is the switching activity of line z. 

Proof: Accordling to Definition 2, h(z+lz-) = -PI. 

The signal probabilities can be expressed in terms of condi- 
tional probabilities as 

(Pl0 1% PlO + Pll  1% P11) - Po(Po0 1% Po0 + Po1 1% Pol). 

Po 1 

Po1 + PlO 
Pl = 

and 
PlO 

Po1 + PlO 
Po = 

respectively [9]. Using the well-known identity - In (1 - a )  = 
$ for 0 < a < 1, we obtain 

h(z+lz-) = 

2 . In ( 2 )  
1 2 'PO1 .Pl0 

Po1 + PlO 
~. --___ 

00 

( P k l  +P;ll)  .PO0 + ( P k l  +P;F1) . P I 1  

k 
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Fig. 4. 1-b full adder. 

Fig. 5. A two-state Markov-chain modeling a signal line 1. 

We note that ( 2 . ~ 0 1  . p l ~ ) / ( p ~ l  + p l o )  is exactly the switching 
activity of line LC. The above identity is general, but it is 
hard to use in practice in this form; therefore, we try to 
bound the summation. To begin with, we note that ic . f ( i c )  2 
5 .  min [ f ( 5 ) ]  for ic 2 0 and that ak-’ + b“’ (for a + b = 1) 
is minimized when a = b = 0.5. Thus 

or, using again the above identity, we get 

h(z+1.7:-) 2 2 .  sw(.7:) . (Po0 + Pl l ) .  

We have thus obtained an upper bound for the switching 
activity of signal ic when it is modeled as a lag-one Markov 
chain. To obtain an upper bound useful in practice, we use the 
following result. 

Corollary 1: Under the temporal independence assumption, 
we have that sw(z) 5 h ( 2 ) / 2 .  

Pro08 If we assume temporal independence, that is, 
P I  = P O I  = P H ,  PO = P I O  = POO,  and h(z+lz-) = h(z ) ,  
then we have: p00 + p l l  = 1, and hence, the relationship 
between sw(5) and h(z )  is exactly the one based on intuition 
sw(5)  5 h(5)/2. 

To evaluate H ,  one can use basic results from information 
theory concerning transmission of information through a mod- 
ule. More precisely, for a module with input X and output Y ,  
we have I ( X ;  Y )  = H ( X )  - H ( X I Y )  and by symmetry 
I ( X ;  Y )  = H ( Y )  - H ( Y 1 X )  due to the commutativity 
property of mutual information. When input X is known, no 
uncertainty is left about the output Y ,  and thus, H ( Y ( X )  
is zero. Therefore, the information transmitted through a 
module can be expressed as H ( Y )  = H ( X )  - H ( X 1 Y )  
which represents the amount of information provided about 
X by Y .  For instance, in Fig. 4, I ( X ;  Y )  = H ( Y )  = 
3 - 1.1887 = 1.8113; thus informally at least, the observation 
of the output of the module provides 1.81 13 b of information 

about the input, on average. However, in real examples, this 
type of characterization becomes very expensive when the 
input/output relation is not a one-to-one mapping. This usually 
requires a large number of computations; for instance, the 
exact calculation of the output entropy of an n-b adder, 
would require the knowledge of joint input/output probabilities 
and a double summation with 22n terms [as in (5 ) ] .  As a 
consequence, in order to analyze large designs, we target a 
compositional approach where the basic modules are already 
characterized in terms of transinformation and what is left to 
find, is only a propagation mechanism among them (details 
are given in Section IV). 

As we have seen, an appropriate measure for the average 
switching activity of each net in the circuit is its entropy value. 
Basically, what we need is a mapping E i E’ from the actual 
set E of the nets in the target circuit (each having a possibly 
distinct switching activity value) to a virtual set E’, which 
contains the same collection of wires, but this time each net has 
the same value of switching activity. More formally, [ 4 [’ 
is a mapping such that the following conditions are satisfied 

Bearing in mind this, one can express the total number of 
transitions per step as 

(10) h(E’) S W ( 0  = SW(<’) <_ r i .  - 

where n stands for the presumed cardinality of E’ and h(E’) 
represents the average entropy per bit of any net in E’. To 
clarify these ideas, let us consider the simple circuit in Fig. 6. 

In this example, we feed the circuit with a 3-b random 
sequence and tabulate in the right side, the logic values 
obtained in the entire circuit by logic simulation. We have that 
[ = {x, e ,  y, a, b,  z }  with the switching profile (in number 
of transitions) (4, 4, 4, 2, 2, a}, respectively. Doing a quick 
calculation, we get SW(E) = 2.25 transitions per step. On the 
other hand, E‘ = ( 5 ,  e,  y, a ,  b ,  z }  with the average entropy 
h(<’) = (3 * 1 + 2 * 0.811 + 0.954)/6 = 0.9295 characterizing 
each signal in the set; using relation (IO) we get an expected 
value SW([’ )  = 2.73 which is greater than S W ( [ ) ,  but 
sufficiently close to it. 

Unfortunately, in large circuits, it is expensive to compute 
h(E’) as the complete set of events characterizing a circuit is 
exponential in the number of nodes. To avoid the brute force 

2 
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Fig. 6. An example to illustrate the mapping E + E ‘ .  

The value of the informational energy is always upper- 
bounded by one. Tlhis is because E;”=, p: < (E,”=, p 3 ) 2  = 1 
with equality if and only if one of the events has probability 
one and the rest of them have the probability zero. Thus, 
E(A,) = 1 if and only if the experiment provides the same 
determinate and uinique result. The basic properties satisfied 
by the informational energy can be found in [23], [24]. We 
also give the following definition. 
DeJnition 5 (Conditional Informational Energy): Conditional 
informational energy of some finite field A, with probabilities 
{pz}lszsn with respect to U ,  (with probabilities { q z } l ~ z s m )  
is defined as 

n m  

Pmbabilii 

Fig. 7. Informational energy E(  A2) versus probability 

approach, that is exhaustive logic simulation, we make some 
simplifying assumptions which will be detailed in Section 
111-A. 

B. An Informational Energy-Based Approach 

Assuming that we have a complete set of events A, [as 
in (3)], we may regard the probability p k  as the information 
associated with the individual event Ak. Hence, as in the case 
of entropy, we may define an average measure for the set A,. 

Definition 4 (Informational Energy): The global informa- 
tion of the finite field A, [denoted by E(A,)] may be 
expressed by its informational energy as (also called the Gini 
Function’) 

n 

j=1 

We plot in Fig. 7 the informational energy of a Boolean 
variable as a function of its signal probability, that is E(A2) = 

Due to its simplicity, the informational energy was used 
mainly in statistics (not necessarily in conjunction with Shan- 
non’s entropy) as a characteristic of a distribution (discrete, as 
is the case here, or continuous, in general). However, without a 
precise theory, its use was rare until its usefulness was proved 
in [22]. 

p 2  + (1 - P ) 2 .  

’ This was first used bv Corrado Gini in a studv from “Atti del R. 1st. Veneta 

J=1 k = l  

where p k J  is the conditional probability of events A, and Bk. 
Based on this measure, one can find a relationship between 

the switching actikity and the informational energy. Let e ( x )  
denote the informational energy of a single bit x. Considering 
x modeled as a lag-one Markov chain with conditional prob- 
abilities poo, pol, 1110, p l l ,  and signal probabilities po and p l  
as in Fig. 5, we can give the following result. 

Theorem 2: e(L+lx-) = 1 - sw(5) . (poo + p11)  where 
e(z+ l x - )  is the conditional informational energy between two 
successive time steps. 

Prooj5 From Definition 5, e(z+lx-) = pl(p& +pI1)  + 
po(p& + &). Since the switching activity of line 5 is 

p l o / ( p o l  + p l o )  one can write the following relationship be- 
tween conditional 1 nformational energy and switching activity 

(2 . Po1 . PlO)/(POl + PlO) and Pl = POl/(POl + PlO), Po = 

e(x+lx-) 

Po1 + PlO 
- Po1 ~- . (1 2 . PlO . Pll)  + PlO * (1 - 2 . Po0 . Pol) 

= 1 - sw(x)  . (PO0 + Pll) .  

- 

Po1 + PlO 

In the most general case, poo and pl l  can take any values, 
and thus, even if we have an exact relation between energy and 
switching activity .(i.e., sw(x)  = [I - e(x+Ix-)]/(poo + p l l ) }  

we cannot bound the sum from the denominator. However, 
under the temporal independence assumption, we have an 
exact relation since poo + pll  = 1, and thus 

Corollary 2: 

sw(x )  = 2p(x)[1- p(x)] = 1 - e(.). (13) 
di Scien~e,” Lettere d i r t i ,  vol. LXXVII, IYl?, 1918. 
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For instance, returning to the 1-b full-adder example in Fig. 
4, we find Einpuf = 0.125 and Eoutput = 0.875. Thus, on 
average, the output exposes an informational energy of 0.437 
and, based on (13), a switching activity of 0.563 (compared 
to the exact value of 0.5). Thus, informational energy (along 
with entropy) seems to be a reliable candidate for estimation 
of energy consumption. 

Once again we consider the virtual mapping E 4 <’, 
where each net in E’ is characterized by the same amount of 
average informational energy e( E’ ) .  Based on (9), the expected 
switching activity per step in the whole circuit SW(E’), can 
be expressed as 

S W ( 0  = SW([’)  = n [I - e([/)] (14) 

where the cardinality of E’ is assumed to be n. 
Considering the simple case in Fig. 6, we get e(<’) = 

(3+0.5+2*0.625+0.531)/6 = 0.546 and therefore, SW([’) = 
2.71 which matches well the actual value (2.25). However, 
in real circuits, direct computation of e(<’) is very costly; to 
develop a practical approach, we need further simplifications 
as will be shown subsequently. 

G. Quantitative Evaluations 
In order to derive a consistent model for energy consumption 

at the RT-level, we first have to abstract somehow the infor- 
mation which is present at the gate level. Thus, a simplified 
model is adopted as a starting point. 

Let us consider some combinational block realized on n 
levels as a leaf-DAG2 of 2-input NAND gates (a similar analysis 
can be carried out for 2-input NOR gates and the final result 
is the same). We assume that inverters may appear only at 
primary inputsloutputs of the circuit; we do not include these 
inverters in the level assignment step. One can express the 
signal probability of any net at level j + 1 as a function of the 
signal probability at level j by 

pj+1 = 1 -p2 3 v j  = 0  > >  ” ’  12- 1. (15) 

Similarly, the signal probability of any net at level j + 2 
is given by 

pj+2 = 1 - (1 Y j  = 0, . . .  , n - 2. (16) 

The average entropy per net at level j is given by 

hj = - p j . l ~ g p j - ( I - p j ) . l ~ g ( l - p j ) .  (17) 

Using the corresponding average entropy per net at level 
j + 2, the parameterized relationship between hj and hj+2 
can be approximated by hj+2 M hj/2 when j is sufficiently 
large (values greater than six). Hence, we get expressions for 
entropy per bit at evedodd levels of the circuit h2, M ho/2j 
and h2j+l % h1/2j, where ho, hl are entropies per bit at the 
primary inputs and first level, respectively. To get a closed 
form expression, we may further assume that h l  may be 
estimated in terms of ho as hl z h o / f i  (in fact, the exact 
entropy decrease for a NAND gate excited by pseudorandom 
inputs is 0.8113, but for uniformity, we use 1/& = 0.707). 

21n a leaf-DAG, only the leaf nodes have multiple fanouts. 

Thus, for a 2-input NAND gate leaf-DAG, the entropy per bit 
at level j may be approximated as 

This may be further generalized for the case of f-input 
NAND gate leaf-DAG’S, observing that increasing the fanin 
from two to f ,  produces a decrease in the number of levels 
by log ( f ) .  Hence, for a fanin of f ,  (18) becomes 

Dejinition 6: We call 1 1 8  the information scaling factor 
(ZSF); it characterizes each logic component (gate, module, or 
circuit). 

We will see how relation (19) is affected by the circuit 
structure and functionality in general. In any case, this provides 
a starting point for estimating the total entropy at each level 
in the circuit. In general, the total entropy over all levels N 
in the circuit is given as 

N N 

j = O  j = O  

where Hj is the total entropy at level j, and nj is the number 
of nodes on level j .  

All these considerations can be easily extended for the case 
of informational energy. Considering the same assumptions as 
in previous section and using relation (15), the informational 
energy per net at level, j may be expressed as 

(21) 2 2 e j  = p j  + (1 - p j )  . 

Applying (15) for level j + 2 and substituting in (21), 
we get the following parameterized dependency between the 
informational energies at levels j + 2 and j 

ej+2 = [1 - (1 - p y ] ] ”  + (1 - $4 

(22) e j  = p ,  2 + (1 - p j l 2 .  

Using a similar approach as in the case of entropy, we get 
the following expression for the average informational energy 
per bit at level j in a circuit with fanin f 

From here, an estimate can be drawn for the total energy 
at level j ,  and thus for the total energy over all the levels of 
the circuit 

N N 

j = O  j = O  

where Ej is the total energy at level j ,  and again nj is the 
number of nodes on level j .  
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111. INFORMATION MODELING 

A. Theoretical Results 

As we have seen, an estimate of the average switching 
activity for a module can be obtained from the total entropy 
(informational energy) over all levels of the circuit. An exact 
technique would be too expensive to use in practice; at the 
same time, since we are dealing with RT-level designs, the 
internal structure may be unknown. Therefore, to manage the 
complexity, we will use the following simplifying assump- 
tions. 

Al. Uniform Network Structure: Nodes are uniformly dis- 
tributed over the levels of the circuit. 

In other words, we assume the same number of nodes on 
each level of the circuit. In addition, all the gates on each 
level are assumed to get their inputs from the previous level. 
This will significantly simplify our task in obtaining closed- 
form formulae for average switching activity per module 
(see Section IV-A for the effect of other common network 
structures when assumption AI  is relaxed). 

As we have seen, for a leaf-DAG containing 2-input 
NAND/NOR gates, there is a simple relationship between the 
values of entropy (informational energy) on adjacent levels in 
the circuit. Unfortunately, in practice this circuit structure is 
too restrictive since typical logic circuits exhibit a large fanout, 
not only at the primary inputs, but also at internal nodes. In 
addition, logic circuits contain a mixture of gates; while NAND 
(AND), NOR (OR) gates are entropy decreasing, XOR gates 
and inverters are entropy preserving gates. More precisely, 
the output entropy of XOR’s and inverters is one when they 
are randomly excited and therefore their information scaling 
factor is one. This behavior is still described by (19) for 
f = 1 (similar considerations apply to informational energy). 
In general, any generic “gate” having equal-sized ON and OFF 
sets, exposes the same entropy preserving characteristic. For 
instance, given two Boolean functions f(a, b ,  e )  and g(a, b.  e )  
with ON-sets of cardinality four and two, respectively, then 
under random inputs H f  = 1 (with an I S F  of one), and 
Hg : 0.8113 (with an I S F  of 0.8113). 

Az. Uniform Information Variation: The entropy and in- 
formational energy per bit at level ,j are estimated as 

h0 h, = ~ 

f$ 
and 

Differently stated, we assume that each “generic gate” in 
a given circuit is characterized by an effective information 
scaling factor ( I S F , f f )  whose value depends on both structure 
and functionality of gate 

- n  
1 

ISF, f f  = - . ISF, 
n 

i=l 

where n is the total number of gates in the circuit. Under 
assumptions AI and A2, we may state the following. 

Proposition 1: l’lhe average entropy (informational energy) 
per bit in an N-level circuit, may be estimated as 

L J 

where hLn(ezn) ,  holLt(eout) are the average input and output 
entropies (energies) per bit3 

Proposition 1 gives us an estimate of the average en- 
tropy/informational energy in a circuit with N levels. The 
factor f e f f  is “hidden” in the relationship between N ,  h,,, (P,,?) 

and hout(eout) since the outputs are assumed to be on level N 

J e f f  

The above equations show that the loss of information per 
bit from one level 1.0 the next decreases with the number of 
levels. For circuits .with a large logical depth, one can obtain 
from (26) simpler equations by letting N approach infinity. 
This is also useful in cases where information about the logic 
depth of the circuit is not readily available. We therefore make 
the following assumption. 

AS. Asymptotic Network Depth: The number of levels N 
is large enough to be considered infinity ( N  + m). Using 
this assumption, we get the following. 

Corollary 3: For sufficiently large N ,  the average entropy 
and informational energy per bit in the circuit are given by 

hout 

Note: In the above derivations, trivial cases such as a value 
of zero for the input or output entropy and a value of one for 
the input or outpui energy are excluded. 

What we have obtained so far are simple formulae for 
estimating the averaige entropy (informational energy) per bit, 
and from these, the average switching activity over all the nets 
in the module. The main difficulty in practice is to estimate the 
actual output entropy hout (or informational energy eOl l t )  since 
the information usually available at this level of abstraction is 
not detailed. 

3Proofs that are omitted here can be found in [24]. 
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level 0 level 1 level 2 level 3 actual distribution of nodes in the circuit. In practice, some 
common distributions are 

1) Uniform distribution (this case was treated in detail in 
Section 111). 

2) Linear distribution (e.g. circuit C17 in Fig. 8). 
In this case, using a similar approach as the one in 

Section 111, we found the following result (valid for 
N + CO) for a generic n input, m output module 

Fig. 8. An example of levelization-circuit C17. 2 . n . h , ,  

( n  + m) . In (k) havg E 

B. The Influence of Structure and Functionality 

All logic gates belonging to a given module can be charac- 
terized by an effective factor f e f f  which captures information 
about the circuit structure and functionality. How can we 
model a general circuit for entropy/energy based evaluations? 

tion scaling factor reflects not only the structure, but also the 
fraction of information preserving gates. 

Example 2: Let us consider for instance, circuit C17 given 
in Fig. 8. 

To levelize it properly (every wire that connects the output 
of a gate at level i to the input of a gate at level i + 2 must 
go through some buffer gate at level i + l), we added three 

(1 - F) . (I - 31 
. (29) 

m bout . I - - . - -  1 n hin In (&) 
One can consider (26) and (27), where the informa- 3) Exponential distribution (e.g., a balanced tree circuit 

with 8 inputs). 
In this case, we have for N + 00 

m . hxLt 1 - -__ 
n . hin 

In (*) 
hin . In (f) 

havg = m 
1 - __ n 

. (30) 

“dummy” components z, y, x. Logically, z, y, z function as 
buffers, but informationally, they are entropy preserving ele- 
ments. Considering the nodes uniformly distributed throughout 
the circuit (according to assumption AI) ,  the average number 
of nets per level is 4.25. Applying random vectors at the circuit 
inputs, the exact value of the entropy per bit at the output is 
obtained as bout = 0.44. The effective scaling factor can be 
calculated as a weighted sum over all the gates in the circuit; 
thus the corresponding f e f f  is 1.55 (there are three entropy 
preserving and six entropy decreasing gates). From (25) we get 
an estimate for the output bit entropy (j = 3 )  as bout = 0.51 
which is reasonably close to the exact value. Based on the 
input and output entropy, we may get an estimate for the 
average entropy per bit and thus for the switching activity. 
The average switching activity for a generic net in the circuit 
is S W , , ~ ( ~ ~ ~ )  = 0.437 (from simulation) and based on (26), 
we get S W ~ , ~ ( ~ ~ ~ )  = 0.382 which is very good compared 
to simulation. A similar analysis can be performed for the 
informational energy. 

IV. PRACTICAL CONSIDERATIONS 

A. Using Structural Information 

These considerations are equally applicable to data-path 
operators with known internal structure as well as to control 
circuits represented either at gate or RT-level. 

If some structural information is available (such as the 
number of internal nodes, the number of logic levels), the 
average entropy (informational energy) may be evaluated using 
the actual values of f.ff, N, and the distribution of nodes 
on each level. In all cases, the output entropy (informational 
energy) is the same, computed as in (27). The average entropy 
(or informational energy) for the whole module depends on the 

Note: The main advantage of (29), (30)4 is that they allow 
an estimate of average entropy (and therefore. of average 
switching activity) of modules or gate-level circuits, without 
resorting to logic simulation or probabilistic techniques like 
those presented in [3]-[9]. 

Similar derivations apply for informational energy. We can 
see that when n = m, we get the same results as in Section 
I11 [see (28)]. 

B. Using Functional Information 

For common data-path operators, the entropy can be ef- 
ficiently estimated based on the “compositional technique” 
introduced in [20]. There, the Information Transmission Coef- 
ficient ( ITC)  is defined as the fraction of information that is 
transmitted through a function; it may be computed by taking 
the ratio of the entropy on the outputs of a function and the 
entropy on the inputs of that function. For convenience, we 
call ITCs “Entropy Transmission Coefficients” (HTCs)  and 
we characterize them as follows: 

(31) 

where Wi72(Wout) is the number of bits on the input (output) 
and hin(hout) is the input (output) average bit entropy. 

Therefore, the output entropy bout is estimated based solely 
on the RT-level description of the circuit through a postorder 
traversal of the circuit. The main advantage of such an 
approach, is that it needs only a high-level view of the design 
in order to derive useful information. 

A similar technique can be introduced to compute the output 
informational energy as follows. 

Wout hout 

win hin 
HTCcomP = ~. ~ 

4More general expressions for (29), (30) (i.e., when X is not approaching 
infinity) can be found in [24]. 
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ETC Operator ETC 
0.500 Negation 1.OOO 

0.500 And, Or 0.625 

TABLE I 
ETC VALUES FOR COMMON DATA-PATH OPERATORS 

Multiplication 
Divide by 2 

0.516 <, > I 0.063 
1.125 Multiplexer I 0.471 

Dejinition 7 (Energy Transmission CoefJicient): The frac- 
tion of informational energy transmitted through a function 
called "Energy Transmission Coefficient" (ETC) is defined 
as the ratio of the output and input informational energy. 

In Table I, we give the values of the ETC coefficients for 
the same data-path operators considered in [20]. 

Similar to (31), we may evaluate ETCOut as a function of 
ETC for the component of interest and the ETC values for 
all inputs 

where e;,(eOut) is the input (output) average bit informational 
energy. 

Common data-path circuits (e.g., arithmetic operators) have 
the scalability property, that is, their HTC f ETC values do 
not depend significantly on the data-path width. Unfortunately, 
there are many other circuits (e.g., control circuits) which 
cannot be treated in this manner. In those cases, relations 
(28)-(30) have to be used in conjunction with some informa- 
tion about the circuit structure in order to get reliable estimates 
for average switching activity. 

C. HTC and ETC Variations with the Input Statistics 

As presented in 1201, Thearling and Abraham's composi- 
tional technique is only an approximations because it does 
not consider any dependency which may arise in practical 
examples. In reality, every module may be embedded in a 
larger design and, therefore, its inputs may become dependent 
due to the structural dependencies (namely, the reconvergent 
fan-out) in the preceding stages of the logic. As a consequence, 
the values given in 1201 or here in Table I (which correspond 
to the case of pseudorandom inputs) result in large errors as 
we process a circuit with internal reconvergent fan-out. To be 
accurate, we need a more detailed analysis as will be described 
in the following. 

Without loss of generality, we restrict ourselves to the case 
of 8- and 16-b adders and multipliers (denoted below by add 
and mul, respectively) and for each of them, we consider two 
scenarios. 

Each module is fed by biased input generators, that 
is input entropy (informational energy) per bit varies 
between 0 and 1 (respectively, 0.5 and 1); each such 
module is separately analyzed. 
Modules are included in a large design with reconvergent 
fanout branches, so that inputs of the modules cannot 
be considered independent. Details of this experiment 
are reported in [24]. As shown there, the dependence of 

d 

, (*,f Evaluate hou/eo,,, 

with eq. (IO) or (14) 
es 

Fig. 9. Flowchart of the power estimation procedure. 

HTCs and ETCs on the input statistics can be described 
empirically by the following simple relations 

HTCadd =HTCgdd . ( 2  - h%n) 
HTCmUi M HTC,""l ,2hzn -1 

E T C ~ ~ ~  M E T C , " ~ ~  
E T C ~ ~ I  M ETC,""~ (33) 

where the 0-subscripted values correspond to the pseudo- 
random case (reported in [20] and here in Table I). These 
equations can be easily used to adjust the HTCfETC 
coefficients in order to analyze large designs more accu- 
rately. Differently stated, using (33) we lose less infor- 
mation when traversing the circuit from one level to next 
because we account for structural dependencies. 

In any case, our proposed framework is also open to 
simulation (the zero-knowledge scenario); this may provide 
accurate values for output entropy (informational energy) 
values, but with a much higher computational cost. In practice, 
we thus have the following options to analyze a logic- or 
RT-level design (see Fig. 9). 

In general, using structural information can provide more ac- 
curate results either based on entropy or informational energy 
measures; supporting evidence for this claim is given in 1241. 
On the other hand, evaluations based on functional information 
require less information about the circuit and, therefore, may 
be more appealing in practice as they provide an estimate of 
power consumption earlier in the design cycle. The structural 
approach is thus more appropriate to be used when a gate-level 
description is available (and therefore detailed information 
can be extracted) while the functional approach (using the 
compositional technique) is more suitable for RThehavioral 
level descriptions. 

V. EXPERIMENTAL RESULTS 
In order to assess the accuracy of the proposed model, 

two experiments were performed: one involving individual 
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TABLE I1 
DATA-PATH AND ISCAS’85 CIRCUITS (ALL POWER V.4LUES ARE COMPUTED USING = 5 v AND f c l k  = 100 MHz) 

modules (ISCAS’85 benchmarks and common data-path com- 
ponents) and the other involving a collection of data-path 
modules specified by a data flow graph. 

A. Validation of the Structural Approach 
(Gate-Level Descriutions) 

(informational energy)-based approaches. These results were 
found to be consistent for different input signal probabilities. 
For comparison, in Fig. 10, we present the percentage error 
variation obtained for a pseudorandom and a biased input 
sequence. In the latter case, the average percentage error was 
11.17% (15.91%) for entropy (informational energy) power 
estimations. All results were generated in less than 2 s of CPU 
time on a SPARC 20 workstation with 64 MB of memory. The experimental setup consisted of a pseudorandom input 

generator feeding the modules under consideration. The values 
of the entropy and informational energy for the circuit inputs 
were extracted from the input sequence, while the correspond- 
ing values at the circuit outputs and the average values of 
entropy or informational energy were estimated as in Section 
I11 (using structural information). These average values were 
then used to estimate the average switching activity per node; 
the latter, when weighted by an average module capacitance, 
is a good indicator of powerlenergy consumption. 

We report in Table I1 our results on benchmark circuits 
and common data-path operators. Power,i, and sw,;, are 
the exact values of power and average switching activity 
obtained through logic simulation under SIS (Power,;, = 
1/2 . VzD . f C l k  sw$, . Ciate and sw,,, = l / k  . 
Ci=l sw;;,, where k is the number of primary inputs and 
gates in the circuit). In the third column, Cmodllle stands for the 
module capacitance Cmodule = E,”=, Cjate. We also report 
for comparison under the Powerapproz column, the value 
of power obtained using the approximation in (2). The error 
introduced by this approximation (under pseudorandom input 
data) is on average 4.56%.5 In the next four columns, we report 
our results for average switching activity and power calculated 
as in (2) for both entropy- and informational energy-based 
approaches. 

As we can easily see, the average percentage error (over 
all the circuits) is 11.38% (7.71%) for entropy (informational 
energy)-based evaluations of average switching activity, whilst 
for total power estimation, it is 7.03% (4.42%) for entropy 

k 

k 

B. Validation of the Functional Approach 
(Data-Flow Graph Descriptions} 

In Fig. 11, we consider a complete data-path represented 
by the data-flow graph of the differential equation solver 
given in [25]. All the primary inputs were considered as 
having 8 b and the output entropy of the entire module was 
estimated with the compositional technique based on HTC’s 
or ETC’s. The HTCIETC values for the multipliers and 
adders were calculated according to (33). Using the entropy 
based approach, the average switching activity was estimated 
as 0.1805, whilst when using the informational energy, the 
average switching activity was 0.1683. These estimations 
should be compared with the exact value of 0.1734 obtained 
by behavioral simulation. 

Our technique can also be applied to analyze different 
implementations of the same design in order to trade-off power 
for area, speed, or testability. Suppose we select from the 
data-path in Fig. 11 only the part which computes u1. In 
Fig. 12, WG give two possible implementations of the selected 
part of the data-path. One is the same as above and the 
other is obtained using common algebraic techniques such 
as factorization and common subexpression elimination. All 
the primary inputs were assumed to be random (except inputs 
“3” and “dx” which are constants). Each adder or multiplier 
is labeled with its average switching activity value SW. In 
the first case, applying the compositional technique based on 

5The percentage eror  was calculated as ~ ( p ~ a z u p s z l , l  - entropy, we obtain an average switching activity of 0.186, 
while using informational energy, this value is 0.197. For the )/value,,,  1 ,100 
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Fig. 10. Percentage error for power estimations under PR and biased inputs. 

Fig. I I .  A data-path example. 

U d x x  dx 

Implementation I Implementation 2 

Fig. 12. Comparison between two possible implementations. 

second implementation, the corresponding values are 0.242 
from entropy and 0.282 from informational energy which show 
an average increase in switching activity of 30%. However, 
considering the module capacitance of adders and multipliers 
(as given in Table 11), we actually get a total switched 
capacitance of 331.15 for the first design and 268.88 for the 
second one (using entropy-based estimations). This means a 
decrease of 19%, and thus, the second design seems to be a 
better choice as far as power consumption is concerned. 

C. Limitations of the Present Approach 

The simplifying assumptions considered in Sections I1 and 
I11 were aimed at making this approach predictive in na- 
ture. However, they introduce as a side effect some inherent 
inaccuracies. Generally speaking, simple network structure, 
uniform information variation and asymptotic network depth 
are reasonable hypotheses which perform well on average, but 
may not be satisfied for some circuits. 

On the other side, we do not consider temporal correlations 
at the module inputs, and in some cases, this could compromise 
the accuracy of the predictions, mostly for switching activity 

estimates. Our preliminary experiments show that the temporal 
effects are not as important at RT-level as they are at ciircuit or 
gate-level, but undoubtfully, the overall quality of the approach 
would benefit from incorporating them into analysis. 

Moreover, using the functional information through 
HTGIETC's coefficients as suggested in Section IV, is 
applicable only to modules that perform a single well-defined 
function; multifunctional modules like complex ALU's would 
require a more elaborate analysis than the one presented here. 

Lastly, our model is intended only for zero-delay model; a 
general delay model cannot be supported in a straightforward 
manner by this information theoretic approach. 

VI. CONCLUSION 
In this paper, we presented an information theoretic ap- 

proach for power estimation at the RT and gate levels O F  design 
abstraction. Noting that entropy characterizes the uncertainty 
of a sequence of applied input vectors and is thus intuitively 
related to the input switching activity, we have mathematically 
shown that (under temporal independence assumption) the 
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average switching activity of a signal line is upper-bounded by 
one-half of its entropy. We then presented two techniques for 
calculating the entropy at the circuit outputs from the input 
entropies. 

The first technique, which is more applicable when some 
information about the circuit implementation is provided, 
calculates the output entropy using an effective information 
scaling factor (derived from the number and type of logic 
gates used) and the number of logic levels in the circuit. This 
technique requires parsing the circuit netlist to generate the 
appropriate parameters, but otherwise, relies on closed form 
expressions for power estimation from that point on. 

The second technique, which is more applicable when only 
functional/data-flow information about the circuit is given, cal- 
culates the output entropies using a compositional technique. It 
has linear complexity in the size of the high-level specification 
of the circuit and is based on a precharacterization of library 
modules in terms of their entropy transmission coefficients. 

Having obtained the output entropies, the average entropy 
per signal line in the circuit is calculated using closed form ex- 
pressions derived for three different types of gate distribution 
per logic level (uniform, linear, and exponential). Finally, the 
average entropies were used to estimate the average switching 
activity characterizing the module under consideration. 

Similar techniques, were developed and presented for in- 
formational energy, which is yet another information theoretic 
measure related to the switching activity in the circuit. 

Results obtained for common benchmarks show that the 
proposed power estimation techniques are extremely fast (few 
CPU seconds), yet sufficiently accurate (12% relative error on 
average) to be of use in practical cases. 
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