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Abstract
To find the best designs, architects must rapidly simu-

late many design alternatives and have confidence in the
results. Unfortunately, the most prevalent simulator con-
struction methodology, hand-writing monolithic simulators
in sequential programming languages, yields simulators
that are hard to retarget, limiting the number of designs ex-
plored, and hard to understand, instilling little confidence
in the model. Simulator construction tools have been devel-
oped to address these problems, but analysis reveals that
they do not address the root cause, the error-prone map-
ping between the concurrent, structural hardware domain
and the sequential, functional software domain. This paper
presents an analysis of these problems and their solution,
the Liberty Simulation Environment (LSE). LSE automat-
ically constructs a simulator from a machine description
that closely resembles the hardware, ensuring fidelity in
the model. Furthermore, through a strict but general com-
ponent communication contract, LSE enables the creation
of highly reusable component libraries, easing the task of
rapidly exploring ever more exotic designs.

1. Introduction
Design-space exploration is an important technique used

by microarchitects for both product design and research.
Microarchitects designing a product must carefully evalu-
ate the design-space surrounding a proposed design in or-
der to realize a well-performing microarchitecture [1, 2].
Microarchitects researching novel techniques must evaluate
them in multiple design contexts to understand their prop-
erties. In each case, architects must rapidly consider a wide
range of options while maintaining confidence in their con-
clusions.

Most commonly, architects use simulators to evaluate a
design’s effectiveness. Unfortunately, the typical simulator
construction methodology, hand-writing a simulator in a se-
quential language such as C or C++, is a poor choice for this
design-space exploration. While writing a simulator the ar-
chitect must map the microarchitecture, which is inherently
structural and concurrent, to a sequential programming lan-
guage with functional composition. This mapping process
is laborious and error-prone and can often lead to simu-
lators with problems: they can beopaque(obscuring the

hardware being modeled), hard to reuse, difficult to mod-
ify, and inaccurate.

The community has created a variety of tools, from ar-
chitecture description languages (ADLs) to simulation con-
struction frameworks, aimed at making simulators easier to
develop and reuse. Unfortunately, none of these tools solve
the problem. Most fail because they do not address the
root cause, the mapping between the concurrent, structural
hardware domain and the sequential, functional software
domain.

In this paper, we present the Liberty Simulation Envi-
ronment (LSE), a simulator construction system designed
from the ground up to shift the onus of microarchitecture
mapping from architects, who can err, to a flexible auto-
matic system. LSE descriptions aretransparent(resemble
the hardware being modeled), easy to reuse, easy to mod-
ify, and less likely to contain errors. LSE also establishes
a contract between components to permit component level
reuse, enabling the creation of highly reusable component
libraries. Since LSE allows rapid construction of accurate
simulators, it is an ideal tool for design-space exploration
in both product development and research.

The rest of this paper is organized as follows. Sec-
tion 2 explores in more detail why the manual mapping
of microarchitectures to sequential programming languages
causes errors in simulation. Section 3 explores the short-
comings of existing simulation tools that have made some
progress alleviating the problems with sequential simula-
tors. Section 4 presents the Liberty Simulation Environ-
ment (LSE). Section 5 describes our experience using Lib-
erty and presents evidence that LSE achieves its goals. Sec-
tion 6 addresses previous work in peripherally related areas.

2. The Sequential Mapping Problem

Writing and maintaining a microarchitectural simulator
requires architects to simultaneously manage the design of
complex hardware and manage the creation of a complex
software system. In hardware design, architects usemodu-
larity andencapsulationto develop and test the system iter-
atively and systematically. To keep the simulator consistent
throughout the design process with the hardware architects
intend to build, the simulator and microarchitecture need to
share a modularization strategy. This allows the simulator



to easily track design changes in the hardware. Unfortu-
nately, the sequential execution and functional composition
semantics of common sequential programming languages
make this impossible.

When designing hardware, architects modularize the
system’s functionality into separate communicating hard-
ware components. The architects agree on the inputs and
outputs of each component and formalize them into acom-
munication interface. This interface encapsulates the func-
tionality of each component and exposes only the commu-
nication interface itself to the rest of the system. This en-
capsulation process can continue hierarchically since each
component can internally divide the functionality into sub-
components. Changes can be made to parts of the system
without affecting other parts of the system as long as the
interfaces remain intact. This type of encapsulation and in-
terconnection is calledstructural composition.

When hand coding a sequential simulator, architects
mustmap this hardware design on to a programming lan-
guage which modularizes functionality into functions. Ar-
chitects compose or connect two components by invoking
one function from within the body of the other. In this style
of composition, calledfunctional composition, the func-
tion’s prototype, its argument list and return value, forms a
piece of the component’s communication interface with the
rest of the system. Unfortunately, the remainder of the com-
munication interface is determinedimplicitly by the func-
tions it invokes. Arguments passed to a called function are
implicit outputs of the calling component, and return values
areimplicit inputs to the calling component. Additionally,
each function invocation not only augments the communi-
cation interface with additional inputs and outputs, but it
also defines the recipients of the information. Since it is
impossible to compose two components without function
invocation, a component may not specify its communica-
tion interface independent of its functionality. Even worse,
since function invocation may be guarded by control flow
statements, a component’s communication interface may
even depend onrun-timevalues.

To separate the interface definition from the specifica-
tion of connectivity, simulator authors often use global state
rather than function invocation to define communication
paths. A function uses certain global variables as inputs and
others as outputs. While this technique allows a compo-
nent to anonymously communicate with other components,
connectivity is still implicitly defined by functionality. Two
components are connected if one writes to a piece of global
state and the other reads that state before it is overwrit-
ten. Updates to this global state must be carefully timed
to ensure consumers read the correct data. The exact order
in which components are invoked determines which val-
ues consumers actually see. Component granularity also
becomes important when using this communication style,
since coarse grained components can cause loops in invo-

cation dependences. For example, component A may need
to be invoked before component B, but component B may
need to be invoked before component A. In order to break
such loops, it is often necessary to repartition the computa-
tion.

In general, as the number of components increases and
the global state grows, manually managing the simulator’s
invocation order becomes prohibitively difficult. Thus, in
order to regain control of the system, it is common to use a
combination of global state as well as function invocation
to communicate information through the system. Unfortu-
nately, simulators written in this style inherit the shortcom-
ings ofbothsystems.

To see how the problems discussed above occur in
practice, consider a simulator written in a sequential lan-
guage that models a typical five stage superscalar proces-
sor pipeline. Figure 1a shows a typical main simulation
loop for such a machine. The hardware is modeled us-
ing a function per pipeline stage. The functions commu-
nicate through global variables which effectively model the
pipeline registers between the stages. Since later pipeline
stages wish to use data produced from previous cycles they
must run before the global variables get overwritten by ear-
lier stages. Therefore, the main simulator loop will begin
computation at the back of the pipe and move toward the
front so that later pipeline stages use state from previous
cycles and earlier stages are aware of the availability of re-
sources in later stages.

We now focus on the fetch and issue stages of the
pipeline. Figure 1b and 1c show the computation per-
formed in the fetch and issue stages respectively. From
the pseudo-code, we see that as an instruction is sent to its
functional unit, it is simultaneously removed from the in-
struction window (lines 8 and 13 in Figure 1c). Thus, when
the code for the fetch stage is executed, it will see the newly
created space in the instruction window.

Now, assume that the architects would like to change
the behavior of the pipeline so freed slots in the instruction
window are not available until the cycle after the instruc-
tion was issued. The hardware change corresponding to
this architectural change may simply amount to removing
any logic dealing with dequeuing from the computation of
the slots-available signal. Such a change may be
necessary, if, for example, the dequeue signals arrive too
late in the cycle. Figures 1d, 1e, and 1f show the necessary
changes to the simulator main loop, fetch logic, and issue
logic, respectively.

Notice that a very small hardware change required a sig-
nificant change to the sequential simulation code. These
differences are indicated by the bars to the right of the line
numbers in Figure 1. Specifically, the change to the mi-
croarchitecture required the architects to partition the issue
logic, intermingling the code to remove the instruction from
the instruction window with the code that scheduled the ex-
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1 instr[1..n] = first n instructions in queue
for each instr[i] that was fetched
   if instr[i] is a branch
      fetch source registers

         compute the target PC
      if branch unit is available

         issue instruction to the branch unit

   if instr[i] is an ALU op
      fetch source registers
      If ALU is available
         issue instruction to the ALU
         dequeue instr[i]

         dequeue instr[i]

foreach simulation cycle          

   do issue stage                  
   do fetch stage        

1
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   do writeback stage             3
   do ex stage                     4

5
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(a) original main simulator loop

(b) original fetch

(c) original issue
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   if instr[i] is a branch
      fetch source registers
      if branch unit is available
         compute the target PC
         issue instruction to the branch unit
         instr[i].issued=TRUE
   if instr[i] is an ALU op
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         instr[i].issued=TRUE

(f) modified issue

(d) modified main simulator loop

(e) modified fetch

Figure 1: Sequential simulator code.

ecution of the pipeline stages (lines 7-9 in Figure 1d). This
partitioning is necessary to ensure execution occurs in the
proper order. Notice also that additional simulator state is
needed to manage the issued status for each issue window
slot. Just as changes to the way the instruction window
was used required repartitioning of the issue logic, this new
state, if used by other components, may also force repar-
titioning. While this small example may not seem over-
whelming, this kind of partitioning is present throughout
the code for a sequential simulator. Introducing parameters
to control this type of behavior can quickly cause the code
to become even more confusing and unmanageable.

The above argument and example illustrate the diffi-
culties faced when mapping designs of concurrent, struc-
turally composed hardware to sequential, functionally com-
posed software. Since the component’s communication in-
terface is implicitly augmented by its functionality, systems
built with functional composition fail to achieve the de-
sired hardware-style encapsulation and separation of con-
cerns. Thus, two similar microarchitectures may have rad-
ically different software implementations. Fixing misinter-
pretations of or modeling changes in the hardware descrip-
tion requires the architects to repartition components, thus
remapping the hardware design to a software implemen-
tation. Thismapping problemnot only limits component
reusability, but, as the next example will illustrate, it is also
responsible for inaccuracies in architecture modeling.

Consider a machine which uses Tomasulo’s dynamic
scheduling algorithm and a simulator which is written in
the same style as in the previous example. Figure 2 presents
a block diagram of such a machine and shows the code for
the writeback stage of the pipeline. The code iterates over
all instructions that have completed execution and updates
the dependency information of instructions pending execu-
tion. While the code seems to model the hardware reason-
ably well, closer examination reveals that this machine has
unrestricted writeback bandwidth; any instruction that has
completed execution will be written back.

Limiting the writeback bandwidth seems simple. One
need only modify the loop termination condition to cause
the loop to exit if the writeback bandwidth has been ex-
ceeded. Figure 2d shows this modified code. Careful in-
spection, however, reveals that this one line code modifi-
cation has had unexpected results. The communication of
functional units to writeback buses is determined by the ex-
ecution of the while loop (line 1 in Figure 2d). Thus, as
shown in Figure 2c, run-time state has introduced a new
hardware block, a bus arbiter, that is notexplicitlymodeled
by the code. This one line code change misuses the ex-
ecution semantics of sequential simulators to imply a bus
arbiter.

Worse still, the arbiter’s exact functionality depends on
simulator statethat does not correspond to anymicroar-
chitectural state. The order in which the simulator iterates
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Figure 2: The structure and pseudo-code for two Tomasulo-style machines.

over the instructions in the while loop determines which
instructions are written back. Prior to this modification,
the iteration order was irrelevant. Now, the iteration or-
der determines the behavior of the microarchitecture and
this order is not necessarily determined in any one place
in the simulator’s code. For example, the iteration order
can be affected by the order in which functional units are
processed (which is often arbitrary) or the specific imple-
mentation of the data structure used to store the instructions
waiting to write back. Thus, this small change breaks the
encapsulation of the writeback stage allowing seemingly ir-
relevant implementation details to introduce simulation er-
rors.

This example demonstrates that manually mapping a
concurrent, structural microarchitecture to a sequential pro-
gram is extremely error prone. The resulting simulator is
opaque with respect to the hardware it models, thus making
it difficult to modify correctly. These modification errors
may lead to inaccurate simulation. Others have noted there
is a problem with the accuracy of simulators, but disagree
on the source of the problems [2, 3, 4]. We contend that the
mapping problem is the fundamental cause of inaccuracies
in sequential simulators.

Solving the mapping problem clearly requires simula-
tors to be designed using a methodology which, like hard-
ware, is concurrent and structural. While highly disciplined
object-oriented programming can allow full structural com-
position, this approach is still insufficient for the reasons
described in the next section.

3. Concurrent and Structural Approaches

Several promising simulator specification systems have
emerged that use structural composition to ease develop-
ment and improve accuracy of simulators. However, de-
spite this transition to structural modeling, most existing
simulator construction techniques inherit some portion of
the mapping problem, thus limiting their component reuse.
This section demonstrates shortcomings in several of these
replacements for hand-coded sequential simulators.

The Asim [1] performance modeling framework is a sys-
tem targeted at solving the problems associated with mis-
modeled and approximated timing. To address these prob-
lems, Asim uses both concurrency and structural composi-
tion to model all intercycle communication. This structural
composition of intercycle communication makes cycle-to-
cycle communication explicit and reduces the system’s de-
pendence on global variables to communicate state.

Asim still models intracycle communication using se-
quential code that is composed functionally and thus suf-
fers from the mapping problem. Communication changes
which affect intracycle timing will require the same man-
ual timing and repartitioning that plagued sequential sim-
ulators. Furthermore, a change that takes intercycle com-
munication and turns it into intracycle communication (e.g.
removing the only register on a communication path) may
require rewriting some Asim modules since the two com-
position methodologies, structural and functional, are in-
congruent.

The EXPRESSION [5] architecture description lan-



guage (ADL) and its associated tools also attempt to al-
leviate the problems associated with hand-coded sequen-
tial simulators. Much like Asim, the EXPRESSION ADL
employs both functional and structural composition. How-
ever, EXPRESSION allows both intercycle and intracycle
communication to be modeled structurally. The functional
composition is used to hierarchically build coarse grained
components from finer grained ones, while the structural
composition is used for communication between the coarse
grained components.

From the available documentation, it appears that EX-
PRESSION limits the way in which components can be
composed structurally. Components that are composed
structurally cannot be invoked more than once per cycle.
This means thatall of a component’s inputs must be avail-
able before it can be invoked. This restriction causes par-
titioning. If a single EXPRESSION component generates
multiple outputs and one of these outputs is used to gener-
ate, in the same cycle, one of the component’s inputs, then
all the component’s inputs willneverbe available simulta-
neously, thus forcing the component to be partitioned. This
partitioning will make the simulator harder to understand
and modify, just as it did for sequential simulators; EX-
PRESSION suffers from the mapping problem.

Other systems which enforce similar types of com-
position restrictions on their components will suffer the
same limitations that Asim and EXPRESSION suffer. Fur-
thermore, any system possessing multiple composition
methodologies will, in general, have components which
cannot be fully reusable. If the component is designed
for one particular composition methodology, its use will
be limited to situations where that particular composition
methodology is appropriate.

SystemC [6] does not suffer from any of the problems
mentioned above. It provides architects with a concurrent
environment that supports structural composition for both
intercycle and intracycle communication, and thus greatly
simplifies the simulator construction process. An archi-
tect describes a microarchitecture by writing a collection of
C++ classes that model the various components of the ar-
chitecture, using SystemC data types and libraries to spec-
ify the communication interface. When using SystemC, ar-
chitects need not worry about specifying the specific invo-
cation order of components; instead they must only specify
the timing of the system’s communication. Since all com-
position can be specified structurally, a SystemC compo-
nent’s reusability is not limited by the composition method-
ology of the language. As a result, SystemC represents
a significant advance over hand-coding sequential simula-
tors.

Unfortunately, the system’s generality is also its most
serious limitation. SystemC uses a unified syntax for spec-
ifying module functionality and module connectivity. Thus
it is possible to mix functionality description with structure

description. This intermingling often obscures what the
simulator is modeling. Additionally, SystemC makes no
deliberate effort to define a universal mechanism to spec-
ify control flow between a pair of communicating compo-
nents. Modules explicitly specify ports for control signals
that they will use to determine whether or not to send data
on the actual communication ports. Since these control
interfaces may be designed in an ad-hoc fashion, compo-
nents in SystemC are often unable to communicate with
each other unless they were explicitly designed to commu-
nicate in the first place. However, due to its generality and
concurrent semantics, SystemC is well positioned to be a
simulation kernel for other higher-level architectural simu-
lation systems.

From the above discussion, it is clear that a simulation
system that avoids the mapping problem must be concur-
rent and support structural composition. Furthermore, the
structural composition must not place any restrictions on
when the composed modules will be invoked. In order
to allow easy development of reusable modules, the com-
munication interfaces must be carefully designed to allow
two components, developed independently, to communi-
cate even if such communication is unforeseen. Such com-
munication must inherently support flow control so that ar-
chitects may specify not only what data is to be sent, but
when it is to be sent. These features will allow for the con-
struction of widely applicable architectural component li-
braries since the system’s communication semantics do not
stand in the way of reuse. The Liberty Simulation Envi-
ronment is a deliberate effort tosimultaneouslyaddress all
these issues, and it is thefirst simulation system to success-
fully achieve these goals.

4. The Liberty Simulation Environment
The Liberty Simulation Environment (LSE) is a simu-

lator constructor that transforms a transparent machine de-
scription into an executable simulator. LSE’s specification
language and semantics are designed so that users of the
system can design components that are interoperable even
if they weren’t designed to interoperate with each other.
LSE leverages this capability to provide a user-extensible
component library for microarchitecture simulation.

4.1. LSE Machine Description
LSE descriptions are built by instantiating predefined or

user defined parameterizable components calledmodules.
Each instance roughly corresponds to a hardware block in
the complete microarchitecture. Some instances are used
to model communication and dataflow between other in-
stances, and others are used to model larger blocks such as
caches and branch predictors.

Module instances communicate by sending values along
connections made between the modules’ports. For exam-
ple, LSE’s branch predictor module has a port namedpre-
dicted dir on which the branch predictor outputs the



1 module Pipeline {
2 /* Other pipeline stages */
3 ...
4 /* Writeback stage */
5 instance bus_arbiter:arbiter;
6 instance cdb_fanout:tee;
7 instance ALU_fanout:tee;
8
9 bus_arbiter.comparison_func =
10 <<< if(instr_priority(data1) >=
11 instr_priority(data2))
12 return 0;
13 return 1;
14 >>>;
15
16 /* ALU to LSU bypass */
17 ALU.out -> ALU_fanout.in;
18 ALU_fanout.out[0] -> LSU.store_operand;
19
20 ALU_fanout.out[1] -> bus_arbiter.in[0];
21 FPU.out -> bus_arbiter.in[1];
22 LSU.out -> bus_arbiter.in[2];
23
24 bus_arbiter.out -> cdb_fanout.in;
25 /* Fan out to the reorder buffer */
26 cdb_fanout.out[0] -> rob.instr_wb;
27 /* Fan out to reservation stations */
28 for(i=0;i<n;i++) {
29 cdb_fanout.out[i+1] -> res_station[i].instr_wb;
30 }
31 ...
32 }

Figure 3: An LSE specification of the writeback stage
of the machine shown in Figure 2, with an additional
connection from the ALU to the LSU.

direction that it predicts a branch will take. It also has a
port calledpredict to which other modules may send in-
struction addresses to request predictions. In general, each
module specifies what inputs it requires and what outputs it
generates by defining its port signature.

A user builds a machine description by instantiating
modules, customizing their behavior by specifying parame-
ters, and finally connecting them together by specifying the
interconnection among the ports. Figure 3 shows a sam-
ple LSE description of the writeback stage of the machine
shown in Figure 2c with an additional connection directly
from the ALU to the load-store unit (LSU). The primary
module in the writeback stage is the common data bus ar-
biter, instantiated on line 5 in the figure. Since connections
in LSE are always point-to-point, we need twotee mod-
ules to handle the common data bus net and the ALU output
net because these nets have fan-out. These tees are instanti-
ated on line 6 and 7. Lines 17-30 connect the various ports
on the modules to the appropriate other modules.

In addition to supporting conventional parameter types
like integers and strings, LSE also supportsalgorithmic pa-
rameters. This feature is used in the above example to set
the arbitration strategy that thebus arbiter will use to
arbitrate the common data bus. The standard arbiter module
in the library does pairwise arbitration, and thus we need
only provide a function to arbitrate between a pair of in-
puts. This is shown on Lines 9-14.

The above example uses one additional feature related

output input

data

enable

ack

Module BModule A

Computation

Internal State

Figure 4: Connection with standard control flow se-
mantics.

to ports and connections in LSE that allows modules to be
more reusable. Notice that the description makes three con-
nections to the arbiter module’sin port. Each connection
creates a separate instance of the port called aport instance.
Within an architecture description, each instance of port
can be treated independently by indexing the port like an
array. Since the number of port instances is determined
by the number of connections made to a port, modules are
not restricted to having fixed numbers of inputs and out-
puts. Multiple port instances can be used, for example, by
an arbiter module to automatically vary the number of in-
puts competing for a bus. Port instances can also be used
to create fan-in/out. On thetee module, for example, port
instances are used to fan-out an input to any number of mul-
tiple destinations. Without port instances, architects would
be force to build a customized module each time an input
or output width changed.

Notice that the LSE description directly corresponds to
the structure of the hardware in terms of hardware blocks
and interconnections. Since this description clearly exposes
the structure of the machine, the LSE description can be
visualized and manipulated in a graphical tool. This ex-
plicit structure also allows configurations to be analyzed so
that the generated simulators may be optimized [7]. Fur-
thermore, this description is easily constructed using only
components from the LSE module library.

4.2. The LSE Module Contract

LSE is designed so that modules are interoperable, even
when used in unanticipated ways. However, as we saw in
Section 3, achieving this requires the definition of general
flow control interfaces. LSE formalizes these interfaces
into a contract that all components must obey. The LSE
component communication contract draws inspiration from
handshaking protocols commonly found on buses. Just as
bus handshakes allow two components developed in isola-
tion to interoperate, so too does the LSE handshake.

Each connection in an LSE description actually speci-
fies three connections: aDATAand anENABLEsignal in
the forward direction and anACKsignal in the reverse di-
rection. Figure 4 shows these three wires. The receiving
module should read its data from theDATAsignal, use the
data to update internal state if theENABLEsignal is high,
and send an acknowledgment with anACKsignal if it is
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able to accept the sent data.

In a typical communication, as is shown in Figure 4, the
sending module (Module A in the figure) will send data on
its output port. The receiving module (Module B in the fig-
ure) will determine whether or not it can accept the data and
generate the correspondingACKmessage. If the receiving
module indicated that the data was accepted, then the send-
ing module will enable the data for use by the receiver by
raising theENABLEsignal. Otherwise the sending module
will indicate that the data should not be used by lowering
the ENABLEsignal. Other styles of control (e.g. sending
ACKbefore receivingDATA) can be used, and modules us-
ing different styles of controlcaninteroperate as long as no
intracyclecomputationalloops are produced.

The 3-way handshake described above can also be used
to coordinate communication between more than just a pair
of modules. Thetee module, for example, uses the hand-
shake to coordinate the acknowledge signal of all the down-
stream recipients. Thetee module forwards its incoming
DATAandENABLEsignal to all its output ports, as shown
in Figure 5a. By default, it takes the incomingACKsignal
from all of its outputs, computes the logical AND of these
values, and passes that result out through theACKwire on
the input port. With these semantics, a module connected
to the input of atee will only see an affirmativeACKsig-
nal if all modules down stream of thetee can accept the
data. By modifying a parameter, we can also specify alter-
nate behavior for thetee module. This behavior is shown
in Figure 5b. In this case, thetee still fans outDATAand
ENABLEsignals to all connected modules, but it computes
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Function
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istatus ostatus

LSU.store_operand =
<<< return SIM_port_status_data(istatus) |

SIM_port_status_ack2enable(ostatus) |
SIM_port_status_ack(ostatus);

>>>;

Figure 6: Control function overrides standard control.

the logical OR of the incomingACK signals to generate
the outgoingACKsignal. With these new semantics, the
sending module will see an affirmativeACK if any mod-
ule downstream can accept the data. Thus, using the 3-way
handshake, we are able to implement useful control seman-
tics for fan-out without difficulty.

The default semantics for the three signals associated
with a port may not always meet the needs of a particu-
lar configuration. While it would be possible to remedy
the situation by authoring a new module to change the con-
trol semantics, this would be tedious and dramatically limit
reuse. To allow modification of control in the configura-
tion, each port in LSE defines acontrol point. In the con-
figuration, these control points can optionally be filled with
a control functionthat modifies the behavior of the signals
on the corresponding ports. While this behavior could be
replicated by inserting an additional module, control points
and control functions are provided for convenience.

To understand how control functions can be used in
practice, recall the example from Figure 3. Assume the
architects wish to use the ALU-to-LSU connection to for-
ward store operands to the LSU before the ALU wins ar-
bitration for the common data bus. By default, if the ALU
fails to obtain the common data bus, the arbiter will send
a negativeACKto theALU fanout tee causing the LSU’s
store operand port to receive a lowENABLEsignal.
This low ENABLEwill inform the LSU to ignore any data
sent to itsstore operand port. We will use a control
function to change the behavior so that the LSU receives
a highENABLEsignal on thestore operand port any
time the LSU asserts the correspondingACKsignal.

The code shown in Figure 6 fills the control point on
the LSU’s store operand port. One may think of
the control function as a filter situated between a mod-
ule instance and the instance’s port. The control func-
tion receives the status of all signals on the input side of
the control function (to the left in the figure) in theis-
tatus variable and the status of all signals on the out-
put side in theostatus variable. The function’s return
value will be used to set theDATA, ACK, and ENABLE
status on all the outgoing wires (DATAand ENABLEon
the right andACKon left side of the control function in



the figure). This particular control function passes the
incoming DATA and ACK signals straight through with-
out modification by using theSIM port status data
and theSIM port status ack API calls, thus preserv-
ing the signals’ original behavior. It moves the incoming
ACK signal to the outgoingENABLEwire by using the
SIM port status ack2enable API call, thus attain-
ing the desired behavior. From this example, we see that the
control function is able to alter machine control semantics
without requiring modules to be rewritten.

The second obstacle to component reuse in existing sys-
tems was the limitation that modules be invoked only once
per cycle. To avoid this problem, an LSE module must be
invokable multiple times per cycle. This ensures that un-
necessary composition constraints on module I/O will not
prevent reuse by forcing users to partition modules.

When modules obey this module contract, they can in-
teroperate with other LSE modules. Through good use of
parameters, both algorithmic and non-algorithmic, a useful
component library can be built.

4.3. LSE Component Library

In addition to providing users with a powerful tool with
which to build microarchitectural simulators, LSE also pro-
vides a rich library offlexiblepredefined modules. These
modules can be hierarchically combined to build more
complex components or used directly in a microarchitec-
ture description. This section will briefly introduce several
of the modules in the library, explain their functionality, and
highlight their configurability and reusability.

Many of the modules in the standard LSE library rep-
resent basic communication elements like tees and routers
or basic memory elements like flops or queues. These mod-
ules form a core set of modules useful for controlling where
signals go and controlling how long it takes for them to
propagate.

The most primitive storage element in the default mod-
ule library is theflop module. Theflop module behaves
like a register; it has a single input port and a single output
port. Any data that is received on its input port is stored
in the flop, provided the flop is not already storing another
piece of data. The flop empties its contents when another
module accepts the value by asserting theACKsignal on the
output port.

Two additional memory elements provided by the li-
brary are a FIFO pipeline and a fixed size (configurable
via a parameter) multiple input, multiple output (MIMO)
queue. In addition to supporting multiple inputs and out-
puts, the MIMO queue supports an algorithmic parameter
to prioritize the elements of the queue. This priority, which
may be updated each cycle, is used to select which elements
the queue will present as its output next cycle.

The library also containstee , arbiter , demux, and
filter modules. These modules can be used to route

signals. Other than thetee , each of these modules pos-
sesses an algorithmic parameter to define its behavior. This
parameter controls the arbitration logic in thearbiter
module, the demultiplexing logic in thedemux module,
and the filtration logic in thefilter module.

These modules, while simple, prove to be extremely ver-
satile. When composed in various ways, the modules are
actually able to build more complicated parts of a microar-
chitecture. Using queues and filters, we were able to model
hardware blocks as complicated as a machine’s wakeup
logic. Thus, by using LSE’s ability to create new mod-
ules by hierarchically composing existing modules, archi-
tects may easily extend the existing library.

In addition to these simple modules, the LSE module
library contains more complex modules like branch predic-
tors, caches, and instruction fetch units. The LSE branch
predictor is actually a general two level predictor module.
It can be used for branch prediction, but also for things like
way prediction, predicate prediction, and cache line pre-
diction. The number of predictors and the finite state ma-
chine controlling predictions are configurable via parame-
ters. The hardware structure the module models is deter-
mined by instantiation parameters and its connectivity in
the machine.

Thedecider module models the fetch logic of a ma-
chine, by combining incoming predictions and resolutions
with the stored program counter to generate the next set of
fetch addresses. It is common to connect the output of this
module to the input of a cache controller in order to fully
simulate the fetch stage of a pipelined machine.

In place of a cache module, the LSE library contains
a collection of three modules: thecache controller ,
the tag comparator , and thecache array . The
cache controller coordinates thecache array
andtag comparator modules to handle external mem-
ory requests. It also connects this layer in the memory hi-
erarchy to the adjacent levels. These modules can be com-
posed hierarchically to build all combinations of physically
tagged, virtually tagged, physically indexed, and virtually
indexed caches. In fact, the modules are generic enough to
be composed into a cache supporting way prediction by re-
placing thetag comparator with the predictor module.

The Liberty system supports two methods of extending
its module library. The first, as was already seen, is to hi-
erarchically compose modules from existing ones. If the
desired functionality cannot be achieved in this way, users
can write new modules without much difficulty. LSE is
even flexible enough to model systems not directly related
to microprocessor cores. For example, LSE forms the basis
of the Orion interconnection network simulator [8].

4.4. Iterative Refinement

With the LSE module contract, it is possible to create
modules that are interoperable, and thus reusable. How-



ever, if library components were to require that every port
be connected, users would be forced to specify an entire
machine in LSE before any simulation was possible.

This iterative refinement is achieved in LSE by assign-
ing default semantics to unconnected ports. In general, a
module must behave in a reasonable fashion if some of its
ports are left unconnected. For example, if the tag bits port
on thecache controller module is unconnected, the
cache can assume that the tag bits come from the same
address used for row lookup thus simulating a physically
indexed, physically tagged or virtually indexed, virtually
tagged cache. Alternatively, if the tag bits port is con-
nected (e.g. to the output of the TLB), then the cache
module will simulate a virtually indexed, physically tagged
cache. Thus, during design of a system, if the details of
the memory hierarchy are unimportant, default reasonable
behavior can be obtained with minimal specification. As
more detail and accuracy are necessary, additional connec-
tions can be made. In this way, complete architecture de-
scriptions can be developed incrementally. Section 5 shows
how this feature of LSE was used to build up a specifica-
tion of an out-of-order machine model equivalent tosim-
outorder from SimpleScalar [9].

4.5. Data Collection

Code for data collection is often intertwined with simu-
lator code, obscuring the hardware being modeled. In order
to facilitate data collection that is orthogonal to the simula-
tor specification, LSE introduces two concepts: events and
data collectors. Each time something “interesting” occurs
in a module, the module will emit an event. The event noti-
fication will be tagged with the module that produced it, the
time it was produced, and any associated data that the mod-
ule wishes to emit. Data collectors, which are specified in-
dependently of the described architecture, get notified when
events occur and aggregate the data contained in the event.
Since certain collectors may be interested in only certain
events, a mechanism is provided for collectors to filter the
events they receive. These events and data collectors are
similar toaspectsin aspect-oriented programming [10].

5. Evaluation of LSE

The motivation to develop the Liberty Simulation Envi-
ronment came from our own experience using sequential
hand-coded simulators. Our experiences while trying to
modify microarchitecture behavior and verify simulation
results provided the impetus to search for a more appro-
priate technique to easily allow microarchitectural design-
space exploration. Unfortunately, it is difficult to carry out
objective experiments that demonstrate the quality of LSE
as a simulation system since there exist no good metrics
which can truly capture the differences in flexibility or ease
of specification between two systems. While the previous
sections of the paper have provided arguments explaining

why the features of LSE promote clarity of specification,
flexibility, and potential for reuse, this section will provide
anecdotal evidence that illustrates these points. When pos-
sible, we introduce metrics to gauge the feature under test.
Due to its popularity, availability, and position as one of the
best freely available sequential simulators, we will periodi-
cally use SimpleScalar [9] as a baseline for comparison.

5.1. Building a Complete Model

One of the most important features of LSE is the ability
to incrementally specify a microarchitecture starting from
a simple model and refining the design until the full system
is specified. In order to evaluate LSE’s ability to support it-
erative refinement as described in Section4.4, we iteratively
described an out-of-order machine model which, once fin-
ished, was a cycle accurate match of SimpleScalar’ssim-
outorder .

The starting point of the description and the first com-
pletely working simulator consisted of a single instance of
thedecider module. When this module is used by itself,
the machine simulates an entire program in a single cycle
since there are no connections or control to limit the fetch
bandwidth.

The next step in the refinement process was to hook up
a rudimentary pipeline to the fetch stage of our machine.
This modification involved the instantiation of several more
modules, primarily queues and tees. This new configura-
tion allowed us to simulate a machine with coarse-grained
pipeline timing. However, this configuration did not spec-
ify the logic to avoid data hazards. Thus, to make our ma-
chine more realistic, we further refined it by adding a mod-
ule to handle register renaming and connecting the write-
back ports of the pipeline to the machine’s reorder buffer. It
is worth noting that the machine’s reorder buffer was mod-
eled with a queue and a filter. Thus by only instantiating
and connecting modules from the standard library, we were
able to specify a complete out-of-order machine.

By connecting a branch predictor, an LSU, caches, and
resolution logic to our existing model, we were able to
transform the machine into a speculative out-of-order ma-
chine comparable to SimpleScalar’ssim-outorder .

In order to verify the design, LSE’s event and data gath-
ering mechanism was used to produce a pipeline trace that
could be visualized using tools provided by SimpleScalar.
Once the model was completed, the LSE generated pipeline
traces matched those produced by the default configura-
tion of SimpleScalar exactly. Thus, using iterative refine-
ment, we were able to construct a simulator which per-
fectly matchedsim-outorder ’s functionality and tim-
ing in only four weeks. It is important to note that during
this four week period, much of the time was spent read-
ing and analyzing SimpleScalar’s sequential code to under-
stand the structure of the machine it modeled.



5.2. Design Space Exploration

To evaluate the Liberty Simulation Environment’s abil-
ity to perform design space exploration, we conducted sev-
eral experiments to gauge how easy it was to modify an ex-
isting machine model. Several microarchitecture variants
were configured in both the sequential and structural do-
main using SimpleScalar 3.0 and the architecture described
in Section 5.1 as starting points. Modifications were made
to both systems by an individual new to both Libertyand
SimpleScalar. Table 1 summarizes the various configured
architectural variants.

In order to evaluate LSE’s flexibility, three metrics were
used. The first metric, the diff/wc metric, measured how
much a specification changed by counting the number of
lines in adiff between theoriginal and modified con-
figuration. The second metric captured the locality of the
changes necessary to move from an initial architectural
model to a modified one. Since the specifications of the
two simulators being compared are different, a hand count
of the number of modules affected in LSE-configuration
changes was compared to a hand count of the number of C
functions modified for SimpleScalar. The final metric used
was a timing of how long the particular modification took.
The results of the experiment are summarized in Table 2.
Note that thesplitda modification could not be com-
pleted in SimpleScalar in under five hours and was aban-
doned.

Across the board, it took less time and fewer modifi-
cations to make these changes to the LSE specification as
compared to the hand-coded sequential C simulator. Fur-
thermore, the changes were more local in the LSE spec-
ification than they were in SimpleScalar. Despite the in-
creased flexibility over SimpleScalar, the first three config-
urations shown in the chart require fairly significant dis-
tributed changes.

These three configurations correspond to different de-
sign choices in handling branch resolution. SimpleScalar
recovers from a mispredicted branch when in the write-
back stage. However, branches are marked as mispredicted
in the dispatch stage, before this mispredict could have
been detected in hardware. If there are two mispredicted
branches in flight simultaneously and the second branch re-
solves before the first, SimpleScalar uses the fact that the
first branch is marked mispredicted to suppress any mispre-
dict recovery for the second branch. Thus SimpleScalar and
our base configuration make an approximation rather than
making a design decision. While modeling this approxima-
tion in Liberty was manageable, it added complexity that
would not have been present had real hardware been mod-
eled. Thus if we reevaluate the flexibility metrics, using
the mispred imm design as the baseline, we can obtain
a more practical measurement of the changes required to
explore different branch resolution designs. Table 3 shows

the flexibility metrics usingmispred imm as the refer-
ence. As the table clearly indicates, modifying a configu-
ration that isactually implementable in hardware leads to
smaller, more local changes in specification.

The results from this experiment clearly demonstrate
that using structural composition is advantageous when
modeling microarchitectures. The sequential composition
used in SimpleScalar proved to be a significant obsta-
cle while trying to implement the described modifications.
Since global variables were frequently used to communi-
cate information, many changes which affected the connec-
tivity of the machine required careful inspectionthrough-
out the code to find what variable references needed to
be changed to new variable references. Furthermore, any
change to the way state was updated required a thorough
examination of the rest of the code to find all consumers of
the data and ensure that each one was appropriately affected
by the change.

The LSE configuration, however, proved to have a nat-
ural correspondence to the changes in the architecture.
Simple reconfigurations of communication corresponded
to small quick modifications to the description. Large
changes took more time to model, but much of the time was
spent actually thinking about how one would implement the
change in hardware.

After changes were made to both systems, the result-
ing simulation pipetraces often differed. After careful ex-
amination of the changes the errors were found to be in
the modifications to SimpleScalar in all cases. Any is-
sues with the LSE configuration were obvious during con-
figuration and promptly resolved since the configuration
directly resembled the desired hardware. In fact, since
changes were made to the LSE configuration and then to
SimpleScalar, the insight gained during structural modifi-
cation often eased the change in SimpleScalar. However,
despite this advantage, the changes to the LSE configura-
tion were more accurate and took less time.

5.3. Reuse

To measure the reusability of modules in LSE’s mod-
ule library, we compared the overlap of modules used in
the SimpleScalar clone configuration and another machine
configuration. This other configuration models an in-order
machine that executes the IA-64 [11] instruction set ar-
chitecture and was developed to support other research.
The SimpleScalar clone configuration created instances of
16 distinct modules. The IA-64 in-order machine con-
figuration created instances of 18 distinct modules. Be-
tween the two configurations, 11 modules were reused.
The majority of modules that were specific to each con-
figuration occurred in the memory subsystem since, for the
SimpleScalar configuration, we used wrapped versions of
SimpleScalar’s cache rather than those found in the mod-
ule library. Similarly, we wrapped SimpleScalar’s branch



Configuration Name Configuration Description
mispredimm Force all branches to resolve immediately in the writeback stage

mispredold Force all branches to resolve in order in the writeback stage
mispredcom Force all branches to resolve in order in the commit stage

delaydec Place one cycle of delay after decode
splitda Split the decode stage into decode and register rename

splitruu Split the issue window from the reorder buffer (split RUU into 2 modules)

Table 1: Descriptions of the modeled microarchitectural variants.

LSE SimpleScalar
Configuration diff/wc Modules Affected Time diff/wc Functions Affected Time
mispredimm 146 8 1.5hrs 400 16 5 hrs

mispredold 165 9 45 min 413 16 1.5 hrs
mispredcom 177 10 15 min 629 17 15 min

delaydec 16 1 15 min 94 6 2 hrs
splitda 124 5 40 min N/A N/A > 5 hrs

splitruu 13 1 36 min 50 7 3 hrs

Table 2: Time spent and code changed for modifications from the baseline configuration.

predictor, thus leading to additional configuration specific
modules.

6. Related Work
A number of previous research efforts have attempted

to simplify the architecture modeling process by creat-
ing domain-specific languages called Architecture (or Ma-
chine) Description Languages (ADLs) [12, 13, 14, 15]. The
earliest ADLs only modeled instruction set architecture,
and not microarchitecture, and are thus not important in this
discussion. Later ADLs, such as LISA [13], RADL [14]
and UPFAST [12], do model microarchitecture, and par-
tially succeed in easing the task of obtaining simulators for
simple and occasionally complex microarchitectures; the
literature reports short model development times[12, 13].
However, they do not generally mitigate the transparency
limitations of hand-coded simulators because they either re-
quire the user of the system to manage the order of the com-
putation or limit concurrency to pipeline-like structures.

UPFAST [12] provides a way to partition the computa-
tion in the microarchitecture via a mechanism called TAPs.
Each TAP is a sequence of code that is assigned a number
by the user. The TAPs are then run in the order specified by
this number. TAPs with the same number are run in an arbi-
trary order with respect to each other. TAPs give some con-
currency, but each TAP may only be executed once, mean-
ing that UPFAST suffers from the mapping problem for the
reasons discussed in Section 3.

LISA [13] can be a reasonable system for specifying
simple in-order pipelines, but, as the developers themselves
state, LISA cannot model out-of-order processors and cer-
tain complex timing behavior that some microarchitectures
contain. Furthermore, execution behavior in LISA is spec-
ified on an instruction by instruction basis and this descrip-
tion is intimately tied to the pipeline description. Thus
LISA descriptions will see little reuse if the pipeline tim-

ing changes drastically.
RADL [14], though similar to LISA, can model more

complex pipelines since RADL makes control signals ex-
plicit. Unfortunately, all timing is still tied to the main
pipeline, making hardware that is independent of the main
pipeline difficult to specify and drastically limiting reuse if
the pipeline timing changes. As a result of these shortcom-
ings, it is unclear whether RADL can model out-of-order
processors. Even if it could, reuse, modularity, and ease of
specification would then become primary concerns.

LSE does not have the shortcomings of the described
ADLs. LSE has a concurrent specification language and
thus makes it easy to specify components whose timing
is only loosely coupled to the execution pipeline. Fur-
thermore, since all modules in LSE obey a fixed contract,
these concurrent components can be reused despite drastic
changes in pipeline timing.

LSE is not the first system to realize that concurrency
is an important programming and system specification fea-
ture. Among efforts not covered in Section 3, Ptolemy
stands out as a popular tool [16]. However, Ptolemy is a
general framework for exploring concurrency and does not
eclipse any contributions made by LSE. LSE and Ptolemy
are not directly comparable since Ptolemy acts as a gen-
eral purpose concurrent programming system rather than a
system for modeling microarchitecture.

Finally, a seemingly related project, MILAN [17], is,
in fact, orthogonal to LSE. MILAN focuses on “vertical”
integration of models, leaving “horizontal” integration as
an open problem. LSE is a simulator constructor that ad-
dresses “horizontal” integration.

7. Conclusion
By solving the mapping problem, the Liberty Simula-

tion Environment provides microarchitects with a means to
radically improve their simulator design methodology. By



LSE SimpleScalar
Config diff/wc Modules Affected diff/wc Functions Affected

mispredold 19 1 53 4
mispredcom 31 2 334 5

Table 3: Code changed for modifications from the mispred imm configuration.

adopting LSE, architects can have confidence in modeling
results and explore ever more exotic designs through un-
restricted component reuse. By moving to a methodology
that makes modeling exotic designs easy and accurate, ar-
chitects can avoid simply exploring incremental improve-
ments to microarchitecture.

Additionally, by adopting a design-neutral, unrestricted
open-source simulation framework, such as LSE, the com-
munity can improve the quality of best-known techniques.
Transparency of specification and interoperability of com-
ponents allow researchers to easily collaborate, exchange
ideas, understand novel techniques, and evaluate the work
of others in a variety of contexts, facilitating independent
verification of research.
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