
SpecCheck: Monadic specification and property based
testing of typed communication protocols

Maximilian Algehed

Chalmers University of Technology

algehed@chalmers.se

January 19, 2017

The problem

Building correct distributed applications

The problem, simplified

Bulding correct client-server applications

Client

Specification

Test-suite

Update the specification

Update the test-suite

Server

Specification

Test-suite

Update the specification

Update the test-suite

The problem, simplified

Bulding correct client-server applications

Client

Specification

Test-suite

Update the specification

Update the test-suite

Server

Specification

Test-suite

Update the specification

Update the test-suite

The problem, simplified

Bulding correct client-server applications

Client

Specification

Test-suite

Update the specification

Update the test-suite

Server

Specification

Test-suite

Update the specification

Update the test-suite

The solution

SpecCheck, the ”elevator pitch”

Write one specification

Property based testing

Demo!

Demo!

The interface

send :: (a :<: t) => Predicate a -> Spec t a

get :: (a :<: t) => Predicate a -> Spec t a

choose :: (Eq a, a :<: t) => [a] -> Spec t a

branch :: (Eq a, a :<: t) => [a] -> Spec t a

dual :: Spec t a -> Spec t a

How does it work?

data Sop m c where

Send :: a :<: c (...) =>

Predicate a -> (a -> m IO (Sop m c)) -> Sop m c

Get :: a :<: c (...) =>

Predicate a -> (a -> m IO (Sop m c)) -> Sop m c

End :: Sop m c

type Predicate a = (Gen a, a -> Bool)

type SpecT m t a = ContT (Sop m t) (m IO) a

type Spec t a = forall m. SpecT m t a

type SpecS st t a = SpecT (StateT st) t a

Duality

dual (get p) = send p

dual (send p) = get p

dual stop = stop

dual (m >>= f) = dual m >>= (dual . f)

dual (return a) = return a

Duality in action!

game = do

move <- send validMove

gameOver <- updateGameState move

if gameOver then

stop

else

dual game

Shrinking

Shrinking

Shrinking

Number of messages

Size of the messages

Sent: -14

Sent: "another"

Sent: -2

Sent: "request"

Got: []

shrinks to

Sent: 0

Sent: "request"

Got: []

Counterexamples in QuickCheck

Main*> let prop_reverse xs ys =

reverse (xs ++ ys) == reverse xs ++ reverse ys

Main*> quickCheck prop_reverse

*** Failed! Falsifiable (...):

[0]

[1]

Counterexamples in SpecCheck

data Interaction c = Got c

| Sent c

type Log c = [Interaction c]

Sent: -14

Sent: "another"

Sent: -2

Sent: "request"

Got: []

How does it work?

Cant’ do anything about Got

Can shrink Sent values!

What to do about choose?

The näıve algorithm

Try to follow the Log

Default to random

If the resulting trace is longer
than the current trace, discard
it.

Repeat lots of times...

How does it work?

Cant’ do anything about Got

Can shrink Sent values!

What to do about choose?

The näıve algorithm

Try to follow the Log

Default to random

If the resulting trace is longer
than the current trace, discard
it.

Repeat lots of times...

Revisiting predicates

type Predicate a = (a -> Bool, Gen a, a -> Gen a)

Demo!

Demo!

Inconsistent specifications

Inconsistent specifications

Inconsistent specifications

inconsistent = do

n1 <- send posNum

n2 <- send negNum

get (inRange (n1, n2))

Failed with inability

to generate: inRange (11,-12)

In:

Sent: 11

Sent: -12

How does it work?

In theory:

Run specification against itself
(duality!)

Detect when a predicate is unsat

In practise:

Can’t detect partiality in Gen...
(Maybe Idris?)

Timeout!

Shrinking is a problem

How does it work?

In theory:

Run specification against itself
(duality!)

Detect when a predicate is unsat

In practise:

Can’t detect partiality in Gen...
(Maybe Idris?)

Timeout!

Shrinking is a problem

How does it work?

In theory:

Run specification against itself
(duality!)

Detect when a predicate is unsat

In practise:

Can’t detect partiality in Gen...
(Maybe Idris?)

Timeout!

Shrinking is a problem

Generator predicate pairs

Laziness works well for some things, less well for other things...

Current solution: ad-hoc...

Better solution (?): Logic programming

Some other things

Automatically create examples of communication

Specifications parameterized by bugs in the implementation

Summary

Shrinking is a hard problem

Duality → we only need one specification

Duality → find inconsistencies

Future work

Asynchronous protocols

Multiparty communication

Protocol stacks

A language for writing generator predicate pairs in Haskell

Questions?

