SpecCheck: Monadic specification and property based

testing of typed communication protocols

Maximilian Algehed

Chalmers University of Technology

algehed@chalmers.se

January 19, 2017

The problem

Building correct distributed applications

ALICE SENDS A MESSAGE To Bog
SAYING TO MEET HER SOMEWHERE.
UH HUH.

BUT EVE SEES 1T T00,

AND G0ES To THE PLACE.
WITH YOU SO FRR.

BOB 15 DELAYED AND (

ALICE AND EVE MEET.

\ YEAH?
TVE D'SCOVERED A WAY T GET COMPUTER
SCENTISTS To LISTEN T ANY BORING STORY.

The problem, simplified

Bulding correct client-server applications

The problem, simplified

Bulding correct client-server applications

Client
Specification
Test-suite
Update the specification
Update the test-suite

The problem, simplified

Bulding correct client-server applications

Client
Specification
Test-suite
Update the specification
Update the test-suite

Server
@ Specification
@ Test-suite
@ Update the specification
o Update the test-suite

The solution

SpecCheck, the "elevator pitch”
@ Write one specification
@ Property based testing
CAN YOU TRKE A 15 THIS A NORMAL BUG OR IT's ANORMAL | | THE. SERVER CRASHES

LOOK. AT THE BUG | | ONE OF THOSE HORRIFYING ONETHIS TIME, | | IF A USER'S PRSSLIORD
T JUSTOPENED? | | ONES THAT PROVE YOUR T PROMISE. 1S A RESOLVABLE URL.

UH OH, | | WHOLE PROJECT 15 BROKEN ko&,m T GETTHE

BEYOND REFAIR AND SHOULD
31 | BE. BURNED To THE GROUND? HE BUG? LIGHTER FLUID.

Demo!

send :: (a :<: t) => Predicate a -> Spec t a
get :: (a :<: t) => Predicate a -> Spec t a
choose :: (Eq a, a :<: t) => [a] -> Spec t a

branch :: (Eq a, a :<: t) => [a] -> Spec t a

dual :: Spec t a -> Spec t a

How does it work?

data Sop m ¢ where

Send :: a :<: c (...) =>

Predicate a -> (a -> m I0 (Sop m c)) -> Sop m ¢C
Get tra <rc (L) =

Predicate a -> (a -> m I0 (Sop m ¢c)) -> Sop m ¢
End :: Sopmc

type Predicate a (Gen a, a -> Bool)

type SpecT m t a = ContT (Sop m t) (m I0) a
type Spec t a = forall m. SpecT m t a

type SpecS st t a = SpecT (StateT st) t a

dual (get p) send p

dual (send p) get p

dual stop = stop

dual (m >>= f) = dual m >>= (dual . f)
dual (return a)

return a

Duality in action!

game = do
move <- send validMove
gameOver <- updateGameState move
if gameOver then
stop
else
dual game

Shrinking

Shrinking

Shrinking

@ Number of messages

@ Size of the messages

Sent:
Sent:
Sent:
Sent:
Got:

Sent:
Sent:

Got:

-14
"another"
-2
"request"

(]

shrinks to

0
"request"

[]

Counterexamples in QuickCheck

Main*> let prop_reverse xs ys =
reverse (xs ++ ys) == reverse xs ++ reverse ys
Main*> quickCheck prop_reverse
**%* Failed! Falsifiable (...):
(o]
(1]

Counterexamples in SpecCheck

Sent: -14

data Interaction ¢ = Got ¢ Sent: "another"
| Sent c Sent: _2

type Log c¢ = [Interaction c] Sent: "request"

Got: []

How does it work?

e Cant’ do anything about Got
@ Can shrink Sent values!
@ What to do about choose?

How does it work?

The naive algorithm
@ Try to follow the Log

e Cant’ do anything about Got @ Default to random

@ If the resulting trace is longer
than the current trace, discard
it.

@ Can shrink Sent values!
@ What to do about choose?

@ Repeat lots of times...

Revisiting predicates

type Predicate a = (a -> Bool, Gen a, a —> Gen a)

Demo!

Inconsistent specifications

Inconsistent specifications

Inconsistent specifications

Failed with inability

inconsistent = do to generate: inRange (11,-12)
nl <- send posNum In:
n2 <- send negNum T
get (inRange (nl, n2)) Sent: 11

Sent: -12

How does it work?

In theory:

@ Run specification against itself
(duality!)
@ Detect when a predicate is unsat

How does it work?

In th In practise:
n theory: o
Y o Can't detect partiality in Gen...

@ Run specification against itself (Maybe Idris?)

(duality!)
@ Detect when a predicate is unsat

How does it work?

In th In practise:
n theory:
Y o Can't detect partiality in Gen...

(Maybe Idris?)

@ Timeout!

@ Run specification against itself
(duality!)

@ Detect when a predicate is unsat o
@ Shrinking is a problem

Generator predicate pairs

@ Laziness works well for some things, less well for other things...
@ Current solution: ad-hoc...

@ Better solution (?): Logic programming

Some other things

@ Automatically create examples of communication

@ Specifications parameterized by bugs in the implementation

@ Shrinking is a hard problem
@ Duality — we only need one specification

@ Duality — find inconsistencies

@ Asynchronous protocols
@ Multiparty communication
@ Protocol stacks

@ A language for writing generator predicate pairs in Haskell

Questions?

