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Memory Modeling for System Synthesis
Sari L. Coumeri and Donald E. Thomas, Jr., Fellow, IEEE

Abstract—We present our methodology for developing models
of on-chip SRAM memory organizations. The models were cre-
ated to enable the quick evaluation of energy, area, and perfor-
mance of different memory configurations considered during syn-
thesis. The models are defined in terms of parameters, such as
size and mode of operation, which are known at synthesis time.
Our methodology does not require knowledge of the underlying
memory circuitry and provides models with average percentage
errors within 8%. We examine the importance of the different pa-
rameters in the models to reduce the time required to develop the
models. We found that only ten different memories from a large
span of possible memory sizes are needed to obtain reasonably ac-
curate models, with average errors within 15%. In this paper, we
present our modeling methodology, discuss the important aspects
in developing the models, and examine the parameters necessary
in creating accurate models quickly and easily.

Index Terms—Memory, power-consumption model, special low-
power99, system-level.

I. INTRODUCTION

POWER consumption of digital systems has become a crit-
ical design parameter. Extending battery life in portable

applications and reducing cooling requirements in higher tran-
sistor density applications make power reduction a crucial con-
sideration during digital system design.

An important class of digital systems include applications,
such as video image processing and speech recognition, which
are extremely memory-intensive. In such systems, a significant
amount of power is consumed during memory accesses. Thus,
utilizing low-power memory organizations can greatly reduce
the overall power consumption of the system.

This work targets on-chip memories created by memory
module generators in which there are many possible memory
organizations in terms of size, architecture, technology, etc.
To utilize low-power memory configurations during synthesis,
we need models to quickly evaluate memory energy, area, and
performance. These models need to be in terms of parameters,
such as size, organization, and mode of operation, which are
known during synthesis time as opposed to lower level param-
eters such as extracted capacitance and resistance values. This
type of model allows us to make predictions during behavioral
synthesis and explore a large portion of the design space.

In the past few years, various memory models have been
presented. Itoh [1] and Kamble [2] have presented analytical
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models of memory power. Ko [3] did a measurement-based
characterization in which the power of a few different memories
were measured. Evans [4] compared five different approaches
for modeling the energy of SRAM’s and used the models to
analyze different internal architectures. Ogawa [5] used circuit
reduction techniques for faster characterization of power and
delay of SRAM’s. Chinosi [6] developed a technique for the
automatic characterization of memory power for different
modes of operations for a certain-sized memory. Landman [7]
used a simulation and model-fitting approach to develop power
models in terms of the number of words and the bit width.

Our models were developed to predict energy, delay, and area
across the different possible sizes and organizations produced
by memory module generators and for different modes of
memory operations. Our modeling uses a simulation-based
approach which enables the development of black box models.
Unlike analytical models, simulation-based approaches do not
require detailed knowledge of the underlying circuits, just basic
input/output timing information which can be provided by the
memory generator. The models are in terms of high-level pa-
rameters and can be easily used during synthesis. Our approach
is similar to [7], but is generalized enough to handle more
complex memory organizations and more modes of memory
operation with higher accuracy.

The focus of this paper is on our modeling methodology as
well as defining the parameters and simulations necessary in
building accurate models which can be used during synthesis
quickly and easily. This paper begins by describing our exper-
imental methodology and showing the statistical results of the
developed models. Next, we examine the important components
of the models. Finally, we discuss additional models developed
using the methodology.

II. EXPERIMENTAL METHODOLOGY

Our modeling methodology begins with memories which are
generated using Duet’s Epoch memory module generator (for-
merly Cascade) [8]. Next, test vectors are automatically gener-
ated and SPICE files are modified to prepare them for simula-
tions. Then, Avant!’s Star-Sim, a fast circuit simulator, is used
to simulate for energy and delay [9]. From the simulation data,
models of memory energy, delay, and area are developed using
linear regression with the S-Plus statistical package [10]. Fi-
nally, the models are validated to ensure they are statistically
sound.

A. Generated Memories

Duet’s basic asynchronous SRAM’s with chip and output en-
ables were used. To generate a memory in Duet, the number
of address lines, the number of words, and the bit width are
specified. Additionally, the number of bits per column (BPC),
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which gives you control over the aspect ratio of the memory,
can be specified. The legal BPC values in Duet are 1, 2, 4, 8,
and 16. Therefore, a unique memory size is not defined just by
the number of words and bit width. It is defined by the number
of rows, number of columns, and bit width, where

Rows Words/BPC (1)

Columns Bitwidth BPC (2)

RowAddressLines Rows (3)

ColumnAddressLines BPC (4)

The number of rows can range from 4 to 256, the number of
columns from 1 to 256, and the bit width from 1 to 256. By
varying the number of rows, columns, and bit width there are
62 992 different possible legal memory sizes. It is obviously im-
possible to simulate all possibilities, so a subset must be chosen.
Twenty-five different basic Duet SRAM’s were generated in
.6 technology with a 3.3-V supply. The largest and smallest
memories were included and the rest were chosen randomly.
The subset of chosen memories was examined to ensure a good
variation in the number of rows, number of columns, bit width,
number of row and column address lines, BPC, and total number
of storage bits in the memory.

B. Memory Simulations

After obtaining the SPICE files from the generated memories,
Star-Sim simulations were run to measure energy and delay.
During these runs data was collected for the various modes of
the memories. Since an entire memory was simulated at once,
as opposed to separate simulations for the different pieces of
the memories, creating the test vectors for the simulations was
easy. Knowledge of the memories’ internal circuitry was not re-
quired, only the I/O timing information supplied by Duet. These
simulations are necessary because the delay estimates provided
by Duet are overly conservative and the power estimates do not
account for different memory modes of operation.

1) Energy Simulations:The average energy per operation
was measured. Read and write energy were treated separately.
The energy was also measured while the chip and output enable
lines were toggling and for different levels of switching activity
on the address lines.

The hierarchical SPICE netlist was instrumented to sepa-
rately measure the energy of the different memory components.
The separate components in the memories are the address
transition detection (ATD) logic, memory cells, chip enable
multiplexors, row and column decoders, precharge logic, sense
amps, and extra buffers.

With a write operation, there were two additional parameters
to consider. Once the address changes at the start of a write
cycle, the write enable line must remain high for the address
setup time. Next, the write enable line is lowered during which
time the data is written. Finally, the write enable line is raised
for the address hold time before the address changes to again
start the next cycle.

TABLE I
PARAMETERS USED IN

MODELS

Due to static power dissipation, the amount of time the write
enable is held low affects the energy. Additionally, the amount
of time the write enable signal remains high before it is low-
ered can impact the energy. Since these are asynchronous mem-
ories, address transition detection (ATD) logic is used to detect
a change on the address lines and start a memory access. If the
write enable line remains high longer than the required address
setup time, a memory read will occur before a write, resulting
in additional energy.

In synchronous designs there are different ways to generate
the write enable signal from the clock, each of which results in
different address setup and write enable low times. Therefore,
including these parameters in the models of memory energy is
important.

2) Delay Simulations:The worst case delay for a memory
operation was measured. The read time (the address changing
to the data appearing on the output), the write bit time (write
enable going low to the data being written to the memory cells),
and the write out time (the write enable going low to the data
appearing on the output) were measured. Duet specified values
for hold and setup times were used.

Delays for when the chip enable is activated and with and
without a capacitive load were measured as well. The rise and
fall times of the four physical corners of the memory were mea-
sured and the worst delay for each was taken.

C. Developing Memory Models

Three categories of memory models were developed from the
simulations: area, delay, and energy. All the models are linear
equations in terms of parameters known during synthesis. For
area, there are width and height models. For delay, there are
read, write bit, write out, setup, and hold time models. For en-
ergy, there are distinct models for read and write operations.

Each energy model is composed of separate models for the
components of the memory (ATD, sense amps, etc.). The sum
of the individual component models forms the total energy
read and write models. Having separate energy models for the
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TABLE II
ACCURACY OFENERGY, AREA, AND DELAY MODELS

Fig. 1. Reduced error sum of squares.

different components of the memory enables us to develop
more accurate models and gain more insight into the energy
tradeoffs of the generated memories.

Table I summarizes the parameters used in all of the models.
The size parameters are used for all of the models. The other
parameters relating to the mode of operation are used for both
delay and energy. CE, OE, and RW are all Boolean variables
which indicate whether or not the specified action is occurring.

The models were developed using stepwise linear regression
in the S-Plus statistical package. The initial models were the
specified variables defined in Table I. The stepwise regression
improves the initial model by iteratively adding and deleting
terms. It can consider multiple interaction terms. For example,
since the number of rows and number of columns are both vari-
ables specified in the model, it can consider adding the term
Rows Cols to the model. It adds and deletes terms based upon
the AIC criteria [11], which tries to improve the coefficient
of multiple determination , without overfitting the model. It
adds terms which nontrivially contribute to the model and re-
moves useless terms which do not.

Using stepwise regression in our modeling methodology al-
lows us to develop accurate models quickly and easily. It au-
tomatically determines which parameters are important to the
models and finds the interactions between the independent vari-
ables. Without stepwise regression we would have to specify the
form of equation, which is difficult to do with a large number
of parameters and would require detailed knowledge of the un-
derlying memory circuitry to determine the interaction between
the variables.

D. Model Validation

Table II shows the statistical data for the developed models.
The second and third columns have the statistics for the model-
building data set, which are the coefficient of multiple determi-
nation , and the residual standard error for each of the models.
The area models had the best fits, followed by the energy and
delay models.

Simulations for 25 additional memories were run to build a
validation data set. The statistics for this set, shown in columns
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Fig. 2. Energy models based upon entire data set.

four and five, include the square of the correlation between the
measured and predicted valuesand the square root of the
mean-squared prediction errorMSPR. These values can be
compared to the and the residual standard error of the model-
building data set to measure our models’ predictive ability. The
predictions for the energy and area models are very accurate.
The accuracy drops slightly for the delay models.

The sixth column in the table shows the average absolute per-
centage error for all of the simulated memories. This is calcu-
lated by

%err MeasuredEnergy PredictedEnergy

MeasuredEnergy. (5)

The average percentage error is fairly low, but jumps to 13%
for the write energy. The problem occurs because there is more
than a 500 difference in write energy between the largest and
smallest data points. The extremely small memories have en-
ergy values smaller than the standard error of the equations and
therefore can end up with percentage errors larger than 100%.
To account for this problem, each data pointwas given the fol-
lowing weight:

Weight Energy Energy (6)

where Energy is the maximum energy for all the data
points and Energyis the energy for data point. A weighted
stepwise regression was done for the read and write energy.
Rows 8 and 9 show the weighted regression results. This

weighting boosts the importance of the smaller energy data
points and improves the average absolute percentage error. The
improvement was less than 1% for the read energy. However,
the write energy absolute percentage error was cut in half.

The last set of columns is for models developed using the
entire set of data. Since these models were developed with more
than double the data, the error for almost all these models is
improved over the original models developed from the model-
building data set.

Rows 10 and 11 show results for simplified models. These
models were developed doing a weighted linear regression using
the equation from [7] as opposed to using stepwise regression.
This equation, shown below, does not account for different as-
pect ratios within the memory or for different modes of opera-
tion

Energy Words BW Words BW. (7)

The simple read model had fits and standard errors slightly
worse than our model. However, the simple write model was
inaccurate with residual and predicted errors approximately an
order of magnitude larger. The average percentage error was
considerably larger for both the read and write models.

The last two rows of the table are the results for models cre-
ated doing weighted stepwise regression for the total energy as
opposed to separate componentized models for each portion of
the memory (sense amps, ATD, etc.). The fits and standard er-
rors were comparable for these models. However, the average
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TABLE III
COMPONENTS OFENERGY

percentage errors were worse. The read and write energy models
developed from the entire data set are shown in Fig. 2 at the end
of the paper.

III. I MPORTANT FACTORS OFMODELS

Using our methodology, very accurate models of energy, area,
and delay were created. However, running many memory sim-
ulations can be CPU intensive. The simulations ranged from a
few minutes to a few days of CPU time, depending on the size of
the memory. Therefore, to create accurate models quickly and
easily, it is necessary to determine which factors are most im-
portant while developing the model.

A. Parameters of Models

Table III shows the independent parameters used in each of
the energy models. Type III ANOVA (analysis of variance)
tables [12] were examined to see how much each independent
variable reduces the sum of square error in the model. The
ANOVA tables were formed from the models based upon the
entire set of data. The variables in the table are listed in order
of importance (from highest to lowest variance).

The ANOVA tables for all of the components show that the
most important variables to the read model are the size parame-
ters, followed by the address switching parameters, followed by
the chip and output enable toggling. The most important vari-
ables to the write model are the size parameters, followed by the
write mode of operation parameters, followed by the switching
and toggling parameters. Fig. 1 shows a plot of how much each
parameter reduces the error sum of squares in the read and write
energy models. The plot shows how much more important the
size parameters are compared with the mode of operation pa-
rameters.

Table III also shows the average percentage of energy con-
sumed in each of the memory components. This was calculated
by using the entire data set models to make predictions on the
62 992 different Duet memories. The precharge logic and sense
amps consumed the largest average percentage of energy, 43%

and 34% of the read energy and 46% and 24% of the write en-
ergy. The standard deviations for these averages are quite high.
Therefore, the distribution of the energy and the effects of the
different parameters vary throughout the memory design space.

Both the precharge and sense amp models are mainly depen-
dent on size parameters and the write mode of operation pa-
rameters. The switching parameters are important for the ATD
and the chip and output enable toggling parameters are impor-
tant for the buffer models which consume much lower average
percentages of energy. The switching parameters are significant
in memory configurations with a large ratio of number of ad-
dress lines to total bits of storage. Chip and output enable tog-
gling parameters are important in memories with a low number
of storage bits where the energy of the buffers is not overshad-
owed by the precharge and sense amp energy.

To further determine the importance of the different mode
of operation parameters, models were created in which certain
variables were removed. The impact of removing the switching
parameters and removing the chip enable and output enable
toggling parameters from the read models was examined. Re-
moving the write time low (WTL), the read followed by a write
(RW), the switching, and the chip and output enable toggling
parameters from the write models was also investigated.

Each model was created with a subset of the model-building
data. The rest of the model-building data plus the validation
data set data were used as new validation data. For example, in
the models created without chip and output enable toggling pa-
rameters, the subset of the model-building data where the chip
and output enable were not toggling were used to develop the
models. The toggling parameters (CE and OE) were left out of
the initial models and a weighted stepwise linear regression was
performed. The rest of the data from the model-building data
set (where the chip and output enables were toggling) and the
entire validation set were used as validation data. These newly
developed models were used to make predictions on the new
validation data set. The correlation between the measured and
predicted values , the average square root of the mean-squared
prediction error MSPR, and the average absolute percentage
error are shown in Table IV.
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TABLE IV
EFFECTS OFPARAMETERS ON THEMODELS

The WTL parameter for the write energy has the most sig-
nificant effect of all the mode of operation parameters. There
is almost an order of magnitude difference in the error when
this parameter is not included in the models. Including the RW
parameter improves the write energy model by approximately
3%. The improvements from including the switching parame-
ters in the models was approximately 6% for the read models
and 5% for the write models. Including the chip and output en-
able toggling parameters offers minimal improvements. There
was a 1% improvement in the average absolute percentage error
by including these parameters. In fact, theMSPR actually im-
proves in the read energy models when these parameters are re-
moved.

B. Number of Memories in Data Set

Since the size parameters are the most important to the
models, the next question to answer is how many different
sized memories are needed to get accurate models? An ex-
periment was conducted in which different energy models
were developed from subsets of the 25 model-building data
set memories. For a certain-sized subset, a weighted stepwise
linear regression was run, and the rest of the data from the 50
simulated memories (model-building data set plus validation
data set) were used as validation data.

Table V shows the statistical results of the subset models.
There were four different sized subsets: 5, 10, 15, and 20. The
sizes of the validation data sets for each of these were 45, 40,
35, and 30, respectively. For each of the subset sizes, 20 samples
were run. Each sample was chosen randomly. The first group of
columns shows the statistics for the read energy subset models
and the second group shows the statistics for the write energy
subset models. These statistics include the average square of
the correlation between the measured and predicted values,
the average square root of the mean-squared prediction error

MSPR, and the average of the average absolute percent error.
The average predictions of the models based upon five memo-

ries are very poor. But the predictions improve significantly with
ten memories in the data set. The predictions drop slightly for
the sample size of 15 in the read energy models. This was due to
the fact that one of the samples was really poor with an average
absolute percentage error of 150%. If the outlier is removed
from the samples, the predictions improve over the ten-memory

sample size. (This sample did not cause a problem with the write
models.) The predictions of the 20 size samples improves even
further.

With just ten memories in the data set, fairly accurate models
of read energy can be developed. Since the subsets of memories
were chosen randomly, a 15% average absolute percentage error
is an expected value. However, if some care is taken to ensure
that the parameters of the memories are well distributed, poor
samples can be avoided. Not having memories from a certain
portion of the design space or having too many memories from
one part of the design space can bias the models. In the outlier
sample for the read energy, there were no memories with a small
number of rows and large bit width. Therefore, the developed
models were unable to predict accurately in this region of the
memory space.

Subset experiments were conducted for the delay and area
models as well. The delay models had similar results in that
models based upon five memories were very poor, but models
based upon ten memories had average absolute percentage er-
rors within 15%. Accurate area models could be developed with
errors within 5% with just five memories in the data set.

By reducing the number of memories in the data set and elim-
inating some of the mode of operation parameters, such as the
chip and output enable toggling parameters, the CPU time due
to simulations can be reduced. This enables the quick develop-
ment of accurate energy, area, and delay memory models.

IV. A LTERNATE MODELS

Alternate memory models were developed using our method-
ology. In the first set of alternate models, the supply voltage was
included as a parameter. Since voltage scaling is a technique
commonly used to reduce power, the supply voltage is a useful
parameter to include in the models. The second set of models
was developed from memories with modified internal circuitry.
These models were developed to show how the methodology
is able to handle memories with a significantly different en-
ergy/delay design space.

A. Including Supply Voltage Parameter

When generating memories in Duet, the user can specify the
supply voltage. Specifying different voltages will create memo-
ries with different transistor sizings. The set of memories gener-
ated for our models was designed to work with a 3.3-V supply.
Instead of generating additional memories for different supply
voltages, simulations with different supply voltages were run on
the previously generated set. Since the memories were designed
for 3.3 V, there was a limit to how far the voltage could be scaled
before the memories stopped functioning properly.

Using the original set of 25 generated memories, additional
energy and delay simulations were run with a supply voltage
of 2.7 V. The voltage models were created with just the 3.3-
and 2.7-V supply simulation results. With the validation data
set, additional simulations were run with a supply of 3.0 and
2.7 V. All three voltage supply simulation results were used to
validate the models. This is not a large range of voltage supplies;
however, it is sufficient to see if a voltage parameter could be
easily added to the models.
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TABLE V
MODELS FROMSUBSETS OFDATA

TABLE VI
ACCURACY OFVOLTAGE MODELS

TABLE VII
ACCURACY OFMODELS WITH MODIFIED CIRCUITRY

Since dynamic power dissipation is proportional to and
static power dissipation is proportional to , the voltage en-
ergy equations were forced to take this form [13]. The parameter

was included in the initial models and the dependent vari-
able for the regression was Energy . The developed models
were multiplied by to get the energy equations. This forces
each term in the energy models to include either or .

Likewise, in first-order delay equations, the gate delay is in-
versely proportional to the supply voltage and the interconnect
delay does not depend on the supply voltage [13]. The param-
eter was included in the initial delay models. Therefore,
some terms in the delay models include and some terms
do not.

The statistical results for the delay and energy voltage models
are shown in Table VI. Using the methodology accurate energy
models in which the supply voltage was taken into account were
developed. The delay models were fairly accurate as well, al-
though the values are lower for the write bit time and read
time. All of the models had average absolute percentage errors
within 8%.

B. Circuit Modifications

The methodology was also applied to developing models of
memories with different internal circuitry. This was done to
see how well the methodology works for memories with a dif-
ferent energy and delay design space. Work done in [14] took
the Duet memories and modified the internal circuitry to im-
prove the power dissipation. The modifications were made to
the precharge logic, the sense amps, and the ATD logic. Pullup
transistors were removed from the precharge logic, the differen-
tial amplifiers were removed from the sense amps, and the asyn-
chronous ATD logic was replaced with a clock signal. These
changes improve the power dissipation but increase the delay of
the memories.

These circuit modifications were performed on the SPICE
netlist produced by Duet and were straight forward, allowing the
modification of the netlists to be automated. Fifteen memories
from the original 25 generated were modified. Energy and delay
simulations were run on these modified netlists and energy and
delay models were developed from the results. The validation



334 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

set consisted of simulations from a subset of 15 memories from
the 25 memory validation set. Subsets of size 15 were chosen for
these models to decrease the amount of simulation CPU time.

The statistics for this new set of energy and delay models are
shown in Table VII. Since only 15 memories were used in devel-
oping the models, the average absolute percentage errors were
expected to be around 10%. The energy models and the write bit
and read time delay models have errors within 10%. However,
the write out time model’s average absolute percentage error
was high at 27%. It is likely that a different set of 15 memories
could improve this model.

V. CONCLUSION

We have presented our modeling methodology for memory
energy, area, and delay. Our methodology provides an easy and
accurate way to develop memory models which can be used
for synthesis without detailed knowledge of the underlying cir-
cuitry. The models developed using our technique had average
percentage errors within 8%. Using a weighted stepwise linear
regression technique to determine the form of the models re-
duced the standard error over an order of magnitude from a
simplified model approach. We showed that the size parame-
ters were the most important to consider while developing the
models and that it is only necessary to simulate ten different
sized memories to obtain models with average errors within
15%.

Using our methodology, we were able to develop accurate al-
ternate memory models. There were additional models which
included voltage as a parameter and models of memories with
modified internal circuitry. Our methodology is generalized so
memory models can be quickly developed for different module
generators and then be easily used within a synthesis environ-
ment.

Although the models were developed for on-chip SRAM’s,
the methodology could be applied to DRAM’s and special
DRAM architectures such as synchronous, Rambus, and video
DRAM’s. This would require adding more parameters or
models to capture the additional modes of operation.
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