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Abstract

With the prevalence of server blades and systems-on-
a-chip (SoCs), interconnection networks are becoming an
important part of the microprocessor landscape. How-
ever, there is limited tool support available for their de-
sign. While performance simulators have been built that
enable performance estimation while varying network pa-
rameters, these cover only one metric of interest in modern
designs. System power consumption is increasingly becom-
ing equally, if not more important than performance. It is
now critical to get detailed power-performance tradeoff in-
formation early in the microarchitectural design cycle. This
is especially so as interconnection networks consume a sig-
nificant fraction of total system power. It is exactly this gap
that the work presented in this paper aims to fill.

We present Orion1, a power-performance interconnec-
tion network simulator that is capable of providing de-
tailed power characteristics, in addition to performance
characteristics, to enable rapid power-performance trade-
offs at the architectural-level. This capability is provided
within a general framework that builds a simulator start-
ing from a microarchitectural specification of the intercon-
nection network. A key component of this construction is
the architectural-level parameterized power models that we
have derived as part of this effort. Using component power
models and a synthesized efficient power (and performance)
simulator, a microarchitect can rapidly explore the design
space. As case studies, we demonstrate the use of Orion in
determining optimal system parameters, in examining the
effect of diverse traffic conditions, as well as evaluating new
network microarchitectures. In each of the above, the abil-
ity to simultaneously monitor power and performance is key
in determining suitable microarchitectures.

1Orion is one of the most powerful (brightest) network of stars (con-
stellation) in the sky. It also stands for Open Research Infrastructure for
Optimizing Networks.

1 Introduction

Microprocessors are becoming increasingly intercon-
nected. Clusters of computers and server blades connected
by interconnection networks are widely deployed in server
farms today. Single-chip multiprocessor systems are see-
ing the use of interconnection networks as the only scalable
solution to inter-processor communication [16]. Emerging
microprocessor systems will have to interface with an in-
terconnection network fabric. In the future, routers and
links will be critical components of a microprocessor sys-
tem, alongside processors and memories.

Researchers and designers have recognized the impor-
tance of low-power computing, especially in emerging mi-
croprocessor systems such as blades and SoCs. However,
prior work has largely focused on the processing and mem-
ory elements of microprocessors, neglecting the communi-
cation components. These needs have become more criti-
cal, as interconnection networks consume a significant frac-
tion of power in many microprocessor systems. In an Alpha
21364 microprocessor [13], the integrated router and links
consume 25W of the total 125W.2 In a Mellanox server
blade, the InfiniBand switch is estimated to dissipate almost
37.5% of the blade’s power budget, taking 15W out of the
total power budget of 40W, with the processor allocated the
same power budget of 15W [12]. With ever-increasing de-
mand for network bandwidth, power efficiency of intercon-
nection networks will be even more important.

Power models and simulators for processors and mem-
ories have been proposed [3, 4, 25], enabling a rich body
of research into power-efficient mechanisms [2, 18]. There
needs to be a similar drive towards better understanding
of the power consumed by routers and links, the basic
components of an interconnection network. In this paper,
we present Orion, a network power-performance simulator
where users can plug-and-play router and link components
to form myriad network fabrics, run different communica-

2This is an estimate obtained from Alpha designers, derived using av-
erage power density from the earlier generation Alpha EV6. It includes
power consumed by the router core and links.



tion workloads on the fabric and investigate their impact
on overall network power and performance 3. To ease fu-
ture integration with application simulators, our simulator
is constructed within the Liberty Simulation Environment
(LSE) [21] which is developed with the goal of enabling
systematic architectural design space exploration. LSE al-
ready has a user base in microarchitects who use it to model
and simulate processors and memories. By extending it
to incorporate routers and links, we attest to its flexibility.
Our goal is to provide a complete platform for exploring in-
terconnected microprocessors, whether single-chip or span-
ning multiple chips, at the architectural-level.

The potential impact of Orion is twofold. On one hand,
we see it providing designers with a framework for rapid
exploration of interconnected microprocessor systems. On
the other, by providing fast architectural-level power esti-
mation, we see Orion enabling research in power-efficient
hardware and compiler techniques for emerging intercon-
nected processors.

In Section 2, we first describe LSE, the simulation in-
frastructure on which Orion is built upon, and the building
blocks we identify for interconnection networks, aided by a
hierarchical modeling methodology of on-chip communica-
tion architectures [27]. This is followed with a detailed dis-
cussion of Orion’s power models for these building blocks
in Section 3. In Section 4, we present three case studies ex-
ploring different ways of using our simulator: to pinpoint
the optimal power-performance design point for a specific
microarchitecture; to see the impact application traffic has
on network power and performance; and to evaluate a new
microarchitectural mechanism. Section 5 then delves into
prior related work and Section 6 concludes the paper with a
brief discussion of future directions. The Appendix presents
the detailed power models, and explains how the power con-
sumed by network operations are derived from these com-
ponent power models.

2 The dynamic network simulator

2.1 Simulation infrastructure

We adopt LSE [21] as our basic simulation infrastruc-
ture. LSE is a fast execution-driven compiled-code model-
ing and simulation framework. LSE constructs concurrent
structural models and retargetable simulators from a unified
structural machine description and specification database. It
targets fast design space exploration for modern micropro-
cessors, and has been used for processors and memories.
In building Orion, we demonstrate its applicability to an-
other domain. Its flexibility ties in with our end-goal of

3Network performance refers to network latency – how quickly data
gets shipped through the network, and network throughput – the amount
of data per unit time that the network can handle before it saturates.
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Figure 1. Design, modeling and simulation
process under LSE.

providing a complete platform for exploring emerging mi-
croprocessor microarchitectures, where processors, memo-
ries, routers and links all play critical roles.

In LSE, physical hardware blocks are modeled as logical
functional modules that communicate through ports. Data is
sent between module ports via message passing. Each mod-
ule has its own pre-defined parameters and control functions
that generates operational and timing behavior for a wide
range of application scenarios until pre-compilation stages.
For example, a typical buffer module has ports correspond-
ing to read/write ports, and parameters such as buffer size
and width.

The integration of power models is based on the event
subsystem of LSE that facilitates the collection of execution
statistics. Users define events associated with each module.
Power models in the power simulation library are hooked
to these events so when an event occurs during the execu-
tion, it triggers the specific power model, which calculates
and accumulates the energy consumed. Figure 1 shows the
process of building a performance and power simulator in
LSE.

2.2 Building blocks of an interconnection network

Just as a processor can be viewed as an assembly of indi-
vidual components such as register files, ALUs, caches, etc,
an interconnection network can be abstracted as composing
of message generating, transporting and consuming agents,
such as sources, router and link components and sinks re-
spectively. A similar analogy can be drawn between instruc-
tions that flow through processor components and messages
that stream through network components.

A key aspect of our simulation environment is a careful
selection of the building blocks (modules) of an intercon-
nection network. This process is guided by a hierarchical
modeling methodology of on-chip communication architec-
ture [27]. We identify the basic components such as mes-
sage sources and sinks, router buffers, crossbars, arbiters
and links. Conceptually, we classify these modules into two
classes. The message transporting class of modules do not



store or modify messages when delivering them. Links and
crossbars fall within this class. Another class of modules,
the message processing class, generates, stores or modifies
message content. Message sources and sinks, buffers and
arbiters fall within this second category.

All the modules mentioned above support different types
of operational and timing behavior depending on the dy-
namic configuration specified at the design stage. This gen-
eralizes the modules so they can be utilized across different
application scenarios. For instance, our modeling enables a
buffer module to represent buffers ranging from a simple
FIFO queue to complex dynamic prioritized multi-queue
buffers.

Through careful parameterization, we have been able to
construct a fairly wide range of interconnection networks.
Our experience shows that our relatively small library of
modules is able to represent an extensive range of archi-
tecture choices, from statically-scheduled on-chip networks
to complex commercial InfiniBand switches. A small pa-
rameterized set of reusable modules is also critical for easy
model maintenance. For instance, in Orion, wormhole [6]
and virtual-channel [5] networks share exactly the same
modules but with differently configured functional and tim-
ing behavior.

3 Power modeling

We derive architectural-level parameterized power mod-
els for several of the major building blocks identified in Sec-
tion 2, namely FIFO buffers, crossbars and arbiters. These
components occupy about 90% of the area of the Alpha
21364 router [1], and are sufficient for building a diverse
range of router microarchitectures.

Dynamic power, the primary source of power consumed
in CMOS circuits, is formulated as P = Efclk, where en-
ergy E = 1

2
�CV 2

dd, with fclk the clock frequency, � the
switching activity, C the switch capacitance, and Vdd the
supply voltage. We derive detailed parameterized equations
for estimating switch capacitance C of each component of
an interconnection network, and track the switching activity
� of these components through network simulation.

3.1 Component power modeling

Table 1 gives the terminology we use throughout the pa-
per. We use Cacti [23] to compute the actual Cg , Cd and
Cw values. Transistor sizes can be user-input parameters,
or automatically determined by Orion with a set of default
values from Cacti [23] and applied with scaling factors from
Wattch [3]. Sizes of driver transistors, e.g. crossbar input
drivers, are computed according to their load capacitance.
Ex denotes the energy dissipation per switch of component

Table 1. Terminology
Cg(T ) gate capacitance of transistor/gate T
Cd(T ) diffusion capacitance of transistor/gate T
Ca(T ) Cg(T ) + Cd(T )

Cw(L) capacitance of metal wire of length L

Ex
1

2
CxV

2

dd orCxV
2

dd depending on how to count
switches, provided Cx is defined

x, and is implicitly defined when component capacitance
Cx is defined.

For each component, we first describe its canonical
structure in terms of architectural and technological param-
eters. We then proceed through detailed analysis to derive
parameterized capacitance equations, taking into account
both gate and wire capacitances. We then combine capaci-
tance equations and switching activity estimation to derive
energy consumption per component operation.

To illustrate our power modeling methodology, we dis-
cuss our modeling of FIFO buffers in routers. Buffers are
typically implemented as SRAM arrays. We thus adapt
architectural-level SRAM array power models that have
been proposed for modeling caches and register files [9, 28],
incorporating several features specific to router microarchi-
tectures. For instance, a buffer with a dedicated port to the
switch does not require tri-state output drivers.

Table 2 shows our power model for FIFO buffers – its
canonical structure, architectural and technological param-
eters, parameterized capacitance equations, and derived en-
ergy equations for its operations. Capacitance equations are
derived based on circuit structure. Take wordline capaci-
tance Cwl as an example, each wordline is connected with
F memory cells through 2 pass transistors per memory cell,
so Cwl is the sum of gate capacitance of these pass transis-
tors 2FCg(Tp), driver capacitance Ca(Twd), and wire ca-
pacitance Cw(Lwl).

Power models for crossbars and arbiters are derived in a
similar fashion, and are explained in detail in [22]. They are
also listed in the Appendix.

3.2 Discussion

Architectural-level modeling. The goal of power mod-
eling in Orion is to derive architectural-level parameterized
power models that can provide reasonably accurate power
estimates. While it would have been easier to estimate
power based on simple rules of thumb such as transistor
count and area, our power models are based on detailed es-
timation of gate and wire capacitance and switching activi-
ties. First, estimation based on transistor count and area can
only be useful for estimating average power and are thus
unable to reflect the impact of varying activity in a power



Table 2. Model for FIFO buffers
Canonical structure

A FIFO buffer with 1 read port and 1 write port

dw dw

hcell Tm

wcell

T

T Tc

wd

Tp

sense amp

bd

F columns

B rows

Architectural parameters
B buffer size in flits
F flit size in bits
Pr number of buffer read ports
Pw number of buffer write ports

Technological parameters
hcell memory cell height
wcell memory cell width
dw wire spacing

Capacitance equations
wordline length Lwl = F (wcell+2(Pr+Pw)dw)

bitline length Lbl = B(hcell+(Pr +Pw)dw)

wordline cap. Cwl = 2FCg(Tp) +Ca(Twd)+
Cw(Lwl)

?

read bitline cap. Cbr = BCd(Tp) + Cd(Tc) +
Cw(Lbl)

write bitline cap. Cbw = BCd(Tp) + Ca(Tbd) +
Cw(Lbl)

precharge cap. Cchg = Cg(Tc)

memory cell cap. Ccell = 2(Pr + Pw)Cd(Tp) +
2Ca(Tm)

sense amp energy Eamp from empirical model [28]

Operation energy equations
Æbw number of switching write bitlines
Æbc number of switching memory cells
read energy Eread= Ewl+F (Ebr+2Echg+

Eamp)

write energy Ewrt = Ewl+ÆbwEbw+ÆbcEcell

(?) Tp is the pass transistor connecting bitlines and memory cells, Twd is
the wordline driver, Tbd is the write bitline driver, Tc is the read bitline
precharge transistor, Tm is the memory cell inverter.

simulator. Second, information such as transistor count and
area is typically not available at the time of architectural
exploration.

Model hierarchy and reusability. To maximize reuse
of our power models, so users can extend them to new mi-
croarchitectures easily, we construct our models in a hier-
archical fashion, i.e. a model can have another as its com-
ponent, so complex models can be built in a divide-and-

conquer fashion. By reusing old models and hierarchically
building new models, we can save significant modeling ef-
fort.

For instance, in our modeling of central buffers, we heav-
ily leveraged existing component power models rather than
starting from scratch. Central buffers are implemented as
pipelined shared memories [10], essentially regular SRAM
banks connected by pipeline registers, with two crossbars
facilitating the pipelined data I/O. We reused our FIFO
buffer model for the SRAM banks, and the flip-flop sub-
component models from our arbiter model for the pipeline
registers. The two crossbars are modeled with our crossbar
power model. Through a well-defined interface to propa-
gate data and collect power statistics, the top-level central
buffer model interacts with these lower-level models to es-
timate the power consumption.

Validation. We are in the process of validating our
power models against measured power numbers of exist-
ing routers, and against low-level power estimation tools.
Preliminary validation with router designers’ guesstimates
found the power estimates derived by Orion for two com-
mercial routers – the Alpha 21364 router [13] and the IBM
InfiniBand 8-port 12X switch [8] to be within ballpark [22].
Due to the sensitivity of the data, we have yet to obtain rig-
orous power estimates or measurements of the two routers,
and are thus unable to provide precise error margins. This
is the focus of our current efforts, and we are actively ex-
ploring more detailed validation of both chip-to-chip and
on-chip networks through close collaboration with various
design groups.

Link power modeling. A large variety of link architec-
tures has been proposed for interconnection networks, both
for chip-to-chip and on-chip signaling. Across different link
architectures, power characteristics differ greatly. For this
paper, we choose to plug in actual power numbers of spe-
cific links obtained from published datasheets. It is clearly
preferable to have parameterized link power models, just as
we have parameterized router power models, so architects
can perform architectural-level tradeoffs for links as well.
We are currently working with chip-to-chip and on-chip link
designers to develop such parameterized link power models.

Release of power models. We will be distributing our
power models (coded in C) as part of Orion’s release. This
will allow our power models to be used independently from
the simulator, either as a separate power analysis tool, or as
a plug-in to other network simulators.
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Figure 2. A simple wormhole router as mod-
eled in Orion.

3.3 Walkthrough example of a simple wormhole
router

We now show how a simple wormhole router is modeled
in Orion, and walk a head flit4 through the router, showing
how its power consumption is estimated. We assume the
router has 5 input/output ports, with 4 flit buffers per input
port and each flit 32 bits wide; a 5�5 crossbar and a 4:1
arbiter per output port5. We also assume source routing for
simplicity.

Figure 2 sketches the module representation of a worm-
hole router and its neighboring links in Orion. The source
module injects a head flit into the write port of the input
buffer module Buf I. The buffer module writes the flit into
the tail of the FIFO buffer and emits a buffer write event,
which triggers the buffer power model to compute buffer
write energy Ewrt.

When the flit emerges at the head of the FIFO buffer, it
is checked via the read port of the buffer module, its route
read, and a request sent to the reqI port of the arbiter mod-
ule for the desired output port, say the north output port.
The arbiter module performs the required arbitration and
emits an arbitration event, which signals the arbiter power
model to compute arbitration energy Earb.

Assuming the request is granted, the arbitration result is
sent to the config port of the crossbar module. A grant signal
is also sent to the grant port of the buffer module Buf I, lead-
ing to the read port of the buffer module activated. The flit
is then read, emitting a buffer read event, which causes the
buffer power model to compute buffer read energy E read.

The flit next traverses the crossbar, from input port in I ,
to the north output port outN . The crossbar module emits
a crossbar traversal event and the crossbar power model
computes traversal energy Exb.

Finally, the flit leaves the router, enters the in port of the

4A flit is the smallest unit of flow control, and is a fixed-sized unit of a
packet.

5We assume a flit does not u-turn and leave through the same head flit
through the router.

link module, traverses the link and leaves through the out
port of the link module. The link module emits a link traver-
sal event, which calls the link power model to compute link
traversal energy Elink .

The total energy this head flit has consumed at this node
and its outgoing link is thus:

Eflit = Ewrt +Earb +Eread +Exb +Elink

4 Case studies

We foresee three potential ways of using Orion for rapid
exploration of network microarchitectures, as shown in Fig-
ure 3. Subsequently, we will discuss three case studies
demonstrating instances of these three usage categories and
show how the architectural-level exploration of network
power-performance tradeoffs enabled by Orion provided
valuable insights.

First, the architect may wish to trade-off two configura-
tions of a microarchitecture, exploring their effect on net-
work power and performance. This involves selecting the
modules forming that microarchitecture, and setting differ-
ent module parameters for the two configurations. Given a
representative communication workload of the targeted ap-
plication, the user can feed the workload and configurations
into two different instances of Orion, and obtain their power
and performance numbers.

Second, an architect may wish to explore the impact of
two application traffic patterns on a specific network mi-
croarchitecture, to see if the network can handle diverse
communication patterns. This can be part of a study to de-
sign a network suitable for various communication patterns
representative of an application suite. It can also be used to
provide feedback to the compiler or application program-
mer on how to better place the program and data to avoid
communication patterns that adversely tax network power
and performance.

Third, a researcher may devise a new microarchitectural
technique and wish to explore its impact on interconnec-
tion network power and performance, evaluating it against
a base microarchitecture. This may involve defining one or
several new modules, along with new power models. Usu-
ally, a module can be reused, with novel functional and tim-
ing characteristics inserted. Component power models can
also typically be leveraged and modified for new microar-
chitectures, as we will demonstrate subsequently.

4.1 Experimental setup

We assume a 16-node network organized as a 4�4 torus,
as shown in Figure 4. Each router has five physical bidi-
rectional ports (north, south, east, west, injection/ejection)
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Figure 4. A 4-by-4 torus network.

and propagation delay across data and credit channels is as-
sumed to take a single cycle. Credit-based flow control reg-
ulates the use of buffers, i.e., a credit is sent back to the
previous router whenever a flit leaves, so a router can main-
tain a count of the number of available buffers, and no flits
are forwarded onto the next hop unless there are buffers to
hold it. Since our case studies focus on exploring the im-
pact of network microarchitectures and workloads on per-
formance and power, we choose simple source dimension-
ordered routing6 where the route is encoded in a packet be-
forehand at source.

In our experiments, the simulator generates uniformly
distributed traffic to random destinations, unless otherwise
mentioned. Each simulation is run for a warm-up phase
of 1000 cycles with 10,000 packets injected thereafter and
the simulation continued at the prescribed packet injection
rate till these packets in the sample space have all been re-
ceived, and their average latency calculated. Latency spans
from when the first flit of the packet is created, to when its
last flit is ejected at the destination node, including source
queuing time and assuming immediate ejection. The sat-
uration throughput of a network is defined as the point at
which average packet latency increases to more than twice
zero-load latency, i.e. the latency experienced by packets
when there is no contention in the network. Packets are 5-
flit long, consisting of a head flit leading 4 data flits. Routers
are pipelined in accordance to the router delay model pro-
posed in [15].

The simulator records energy consumption of each com-
ponent (input buffer, crossbar, arbiter, link) of a node over
the entire simulation excluding the first 1000 cycles. Aver-

6Dimension-ordered routing is where a packet always goes along one
dimension first, followed by another.

age power is then computed by multiplying the total energy
by frequency and then dividing by total simulation cycles.

In our experiments, a typical 4x4 torus network using
virtual channels comprises 59 modules. The constructed
Orion simulator is 5202KB in size, with a system simula-
tion speed of about 1000 simulation cycles per second on a
Pentium III 750MHz machine running Linux.

4.2 Exploring different configurations: wormhole
vs. virtual-channel routers

We assume an on-chip network similar to that in [7], i.e.
a 4�4 torus network on a 12mm�12mm chip with 256-bit
flits, clocked at 2GHz, with Vdd = 1:2V , in 0.1�m pro-
cess technology. Link capacitance is 1.08pF/3mm using the
same parameters in our router modeling. E link is computed
from link capacitance and link switching activities reported
by Orion.

We simulate and compare four different router configu-
rations :-

� wormhole router with 64-flit input buffer per port
(WH64).

� virtual-channel (VC) router with 2 VCs per port and
8-flit input buffer per VC (VC16).

� virtual-channel router with 8 VCs per port and 8-flit
input buffer per VC (VC64).

� virtual-channel router with 8 VCs per port and 16-flit
input buffer per VC (VC128).

As prescribed by [15], these virtual-channel routers fit
within a 3-stage router pipeline of virtual-channel alloca-
tion, switch allocation and crossbar traversal, and the worm-
hole router has a 2-stage router pipeline of switch arbitration
and crossbar traversal. All routers have a 5�5 crossbar.

Figure 5 graphs results obtained from simulating these
routers in Orion. Figure 5(a) shows VC16 out-performing
WH64, despite having only a quarter of the buffering per
input port, saturating at a higher packet injection rate of
0.15 packets/cycle/node. In addition, this performance im-
provement is not achieved at the expense of higher power
consumption, as indicated by Figure 5(b). In fact, VC16
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Figure 5. Power-performance of on-chip 4�4 torus networks governed by wormhole and virtual-
channel flow control at varying packet injection rates.

dissipates less power than WH64 at the same packet injec-
tion rate before the network saturates. Beyond packet in-
jection rate of 0.11 packets/cycle/node, VC16 starts to con-
sume more power than WH64, since it is still able to absorb
the higher packet injection rate, so network activity contin-
ues to increase. For all configurations, total network power
levels off after saturation, since the network cannot handle
a higher packet injection rate, so the switching activity of
the network remains constant.

It is interesting to note that VC64 dissipates approxi-
mately the same amount of power as WH64 before satu-
ration. Intuitively, since virtual-channel flow control is a
more complicated protocol, requiring more complex hard-
ware, we would expect a virtual-channel router to be more
of a power hog than a wormhole router. Figure 5(c) ex-
plains why the difference is not significant. It shows input
buffers and the crossbar switch fabric as the two dominant
power consumers of a node (consuming more than 85%
of total node power).7 While virtual-channel flow control
requires more complicated arbitration circuitry, the power
consumed by arbiters (less than 1% of node power) is min-
imal. Hence, the impact on total node power is negligible.
Clearly, our experiments show virtual-channel flow control
returning better power-performance than wormhole.

Since buffer power is significant, VC128 dissipates
higher network power as compared to VC64 or VC16.
When this translates to higher network throughput, the in-
crease in power may be acceptable. Clearly, it will not be
viable to choose VC128 over VC64 with our configuration,
since the additional power dissipation is not matched with
an improvement in performance. By providing a platform

7In [7], it is estimated that links take up considerably more power than
routers. The huge difference between our estimates and theirs is largely
because they consider all datapath power as link power, while we consider
datapath within the router (crossbar) as router power.

for simulating both power and performance, Orion provides
the architect a tool for exploring the optimal configurations
of a network microarchitecture.

4.3 Exploring different workloads: broadcast vs.
uniform traffic

Just as an application’s execution patterns heavily im-
pact the power-performance of a processor, an application’s
communication patterns also critically affect the power-
performance of a network.

We select two different communication patterns :-

� uniform random traffic, i.e. each node injects packets
to randomly distributed destinations other than itself in
the network.

� broadcast traffic, i.e. one node injects packets to all the
other nodes in the network.

Both communication workloads inject packets at a uni-
form rate. The total packet injection rate across the entire
network is kept the same across the two workloads. For
broadcast traffic, the source node at position (1,2) injects at
the maximum rate of 0.2 packets per cycle. For uniform ran-
dom traffic, each node injects at a rate of 1

16
� 0:2 packets

per cycle, so total packet injection rate for the entire net-
work is still 0.2 packets per cycle.

Network topology is fixed across the workloads as a 4�4
torus. We also fix the router microarchitecture – virtual-
channel routers with 2 VCs per port and 8 flit buffers per
VC. Other aspects of the network microarchitecture remain
the same as configured in the previous experiment, i.e. an
on-chip network.

Figure 6 shows the average power consumed by each
node in the 4�4 network as caused by the diverse traffic pat-
terns. Uniform random traffic results in a rather flat power
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Figure 6. Power spatial distribution for a 4�4 on-chip network loaded with diverse communication
traffic. The 16 nodes in the network are labeled in a 2-dimensional Cartesian space with tuples (x; y).

spatial distribution, i.e. all nodes having almost identical
power consumption (see Figure 6(a)). This is understand-
able since uniform random traffic sends the same amount of
traffic to each node. Thus, we see the same number of buffer
reads/writes, arbitrations, crossbar and link traversals on av-
erage. Furthermore, the flat power spatial distribution is a
direct result of the uniform torus network topology which
does not bias traffic distribution at any particular node.

With broadcast traffic, the source node consumes the
most power, as shown in Figure 6(b). Node power goes
down quickly as the Manhattan distance from the source
node increases. This is because the further the node is from
the source node, the lower its workload. To roughly es-
timate the workload decreasing factor, let L be the work-
load of the source node, then each of its immediate neigh-
bors has L

4
workload on average, and each neighbor 2 hops

away has L
8

workload on average, so workload diminishes
very quickly as distance from the source node increases.
Since router and link power depends on flit arrival rate (or
workload), node power also diminishes quickly the further
a node is from the source.

Furthermore, we can see the effect of the routing policy.
In our dimension-ordered routing, we route along the y-axis
first. So with node (1,2) broadcasting, nodes (1,1) and (1,3)
have higher power consumption than nodes (0,2) and (2,2)
since they have more data traffic. Since x-axis is routed
last, all nodes with the same x coordinate have identical
power consumption as they have the same load (unless they
lie along the same x-coordinate as the source node).

This experiment demonstrates how Orion can be used to
explore spatial variance in power-performance as a result of
drastically different traffic patterns. This can be very use-
ful for the microarchitect in determining a suitable routing
policy for application-specific traffic patterns, or to balance

workload among network nodes to avoid power and perfor-
mance hot-spots. It should be noted that while our experi-
ments use synthetic workloads, as no realistic communica-
tion workloads are readily available, Orion can be interfaced
with actual communication traces for more realistic results.

4.4 Exploring a new microarchitectural tech-
nique: central buffered routers

Central buffered routers (CB), where a shared central
buffer forwards flits between input and output ports of
a router, have been deployed in IBM SP/2 and Infini-
Band routers [19, 8] and are chosen for their potential
for higher throughput over input-buffered crossbar-based
routers (XB), as they do not experience the head-of-line
blocking inherent in XB routers.

In this experiment we wish to evaluate the power-
performance of CB versus the base XB router microarchi-
tecture. For a fair comparison, we define two router con-
figurations of XB and CB routers that take up roughly the
same area. As our power models include length estimation
of buffer bitlines, wordlines and crossbar input/output lines,
router area can be easily estimated assuming a rectangular
layout. We estimate router area as the sum of input buffer
area and switch fabric area, ignoring arbiter area since ar-
biters are relatively small. The two configurations are as
follows :-

� Central-buffered router with a 4-bank central buffer,
each 1 flit wide, 2560 chunks (2560 rows, each row 4-
flit wide), 2 read ports, 2 write ports, and a 64-flit input
buffer at each port (CB).

� Input-buffered crossbar-based router with 16 virtual
channels, 268-flit input buffer per VC and a 5�5 cross-
bar (XB).
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Figure 7. Power-performance of chip-to-chip 4�4 torus networks composed of CB and XB routers at
varying packet injection rates.

Unlike in previous experiments, we assume a chip-to-
chip 4x4 network here. Flits are 32-bit wide and routers
run at 1GHz. So each router port has a 32Gb/s link (assum-
ing no signaling overhead) and we assume a 32Gb/s link
that consumes 3W each. This assumption is based on the
3W power consumption of a 30Gb/s IBM InfiniBand 12X
link [8]. These chip-to-chip links use differential signaling,
and thus consume almost the same power regardless of link
activity.

Figure 7 shows the simulation results. We see CB routers
having poorer throughput than XB routers with uniform
random traffic (Figure 7(a)). This is due to the fewer num-
ber of switch fabric ports in the central buffer as compared
to the crossbar switch (2 instead of 5). With uniform ran-
dom traffic, head-of-line blocking in XB routers do not pose
problems to overall throughput, since other input ports have
sufficient traffic to keep the switch fabric busy. With a
nonuniform traffic pattern like broadcast, CB routers per-
form better, as shown in Figure 7(d), since packets from

the same input port need not line up behind one another if
they are destined for different output ports. While virtual-
channel flow control alleviates head-of-line blocking, pack-
ets of the same VC still needs to wait for packets ahead in
the queue.

This performance gain is not without cost though. Fig-
ures 7(b) and 7(e) show the higher power consumption
of CB routers, which is rather counter-intuitive since the
two configurations occupy roughly the same area. Fig-
ures 7(f) and 7(c) provide some insight. The dominant
power consumer in CB routers is the central buffer while
in XB routers, it is the input buffers. Since the switch fab-
ric switches much more frequently than the input buffers
(approximately five times more frequently in our experi-
ments), and a central buffer consumes much more energy
than a crossbar due to its higher switching capacitance, this
leads to the higher power consumption of CB routers.

It is also interesting to note the vastly different router
vs. link power distribution of chip-to-chip networks and on-



chip networks. In the on-chip network in Figure 5(c), links
take up less than 15% of node power. In this chip-to-chip
network, they take up more than 70% of node power (see
Figure 7(c)). While our chip-to-chip network configuration
exaggerates the imbalance, since realistic chip-to-chip net-
works tend to have a 60-40% link-router distribution [8, 13],
the results do highlight the distinct difference between chip-
to-chip high-speed links whose power dissipation is traffic-
insensitive, and on-chip links whose power consumption
depends heavily on traffic. Our results clearly point to a
need to address the sizable power consumed by chip-to-chip
links that is invariant to network load.

5 Related work

Circuit-level techniques applicable to interconnection
networks, such as low-power link architectures [11], have
been actively explored. However, architectural-level mech-
anisms for power-efficient interconnection networks are
sorely lacking. Shang, Peh and Jha first proposed a power
optimization mechanism for interconnection networks [17],
applying dynamic voltage scaling to links in networks.
In their study, they had to go through detailed RTL-level
power modeling to obtain power estimates. These low-
level power estimation tools such as PowerCompiler [20]
require complete RTL code to be available, and simulate
slowly, on the order of hours, while our architectural-level
power simulator takes on the order of minutes. Circuit-
level power estimation tools, though providing excellent ac-
curacy, take even longer, and require even more substan-
tive development effort. These shortcomings have moti-
vated architectural-level power simulators for processors
and memories such as Wattch [3] that have helped open
power analysis to computer architects. It is our hope that
Orion will similarly ease future architectural-level research
into power-efficient interconnection networks and intercon-
nected microprocessor systems.

Power models have been proposed for a variety of net-
work fabrics in the past. Patel et al. first noted the
need to consider power constraints in interconnection net-
work design, and proposed a power model of routers and
links [14]. There have also been models proposed for other
types of networks such as on-chip FPGA networks [26]
and IP router fabrics [24]. All these prior studies fo-
cused on exploring the power consumption of different
network topologies. As their goal was neither in build-
ing a tool for enabling fast architectural-level exploration,
nor in enabling architectural-level research into power-
efficient mechanisms, they adopted models based on tran-
sistor count [14], switch width [26] (which can only be
used to derive average power estimates), or relied on num-
bers plugged in from low-level power estimation tools [24].
These information are typically unavailable at the time of

architectural design space exploration. In our approach, we
believe that architectural-level parameterized power equa-
tions coupled with dynamic simulation of switching activity
are key, as they allow researchers and designers to explore
the impact of different microarchitectures and workloads on
network power and performance.

6 Conclusions

As we enter the era of microprocessor systems with pro-
cessors coupled together using interconnection networks,
we need to expand the tool support we provide to microar-
chitects for design space exploration. Given the need for
determining optimal power-performance design points, it is
critical that a power (and performance) simulator be avail-
able to microarchitects to evaluate not just the processing
and memory elements, but also the communication ele-
ments of such emerging microprocessor systems. This pa-
per describes our efforts to address this issue – we describe
Orion, a power-performance simulator for interconnection
networks that provides a platform for rapid exploration of
power-performance tradeoffs in network microarchitecture
design. We believe that such simulation support is critical
for the development of hardware and software techniques
for power optimization of these emerging systems.

Our power modeling is guided by our goal of provid-
ing an architectural-level platform for exploring power-
performance tradeoffs. We derive detailed architectural-
level parameterized power equations that provides reason-
able accuracy while allowing fast tradeoffs early in the de-
sign. Throughout our modeling, we show how with a care-
ful reuse of sub-component models, we can build power
models for diverse interconnection network microarchitec-
tures.

While the core simulation infrastructure is provided by
a general component-based simulation framework (LSE),
we make unique contributions in the building of the Orion
simulator in defining the microarchitectural components
needed (the building blocks). We show how a relatively
small set of components is sufficient to create a very wide
range of network microarchitectures through careful param-
eterization. Once these components are available, it is pos-
sible to “pick, plug and play” any specific network microar-
chitecture, ultimately synthesizing and building a compiled
code simulator.

We present three potential ways of using Orion – to iden-
tify the optimal configuration of a microarchitecture based
on power and performance, to explore the impact different
communication workloads have on a specific microarchitec-
ture, and to evaluate new microarchitectural mechanisms.
Three experimental case studies were carried out in these
usage categories. In all three, Orion’s ability to dynamically
monitor power and performance enabled valuable insights.



Lots of exciting work lies ahead for Orion. We are work-
ing on more extensive modules and power models, along
with detailed validation. Through releasing the source code
of Orion, we hope that the research and design community
at large will be able to help us improve Orion with more
and better modules and power models, covering a wider
range of network microarchitectures. We are currently in
the process of tying Orion with a SoC application simula-
tor. Ultimately, we see Orion as a useful cornerstone in a
complete platform for rapid architectural-level exploration
of interconnected microprocessor systems.
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Appendix

Crossbar model. We model two common crossbar im-
plementations – multiplexer tree crossbar and matrix cross-
bar. Table 3 presents the model for matrix crossbars.

We use average length for control lines and assume they
are along the same direction as input lines, thus Cw(

Lin

2
) in

Cxb ctr. Since data path is much wider than control path in

Table 3. Model for matrix crossbars
Canonical structure and notation
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input 1
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W columns

output O output 1

input I

connector either a tri-state buffer or a trans-
mission gate

Cin cnt input node cap. of a connector
Cout cnt output node cap. of a connector
Cctr cnt control node cap. of a connector

Architectural parameters
I number of crossbar input ports
O number of crossbar output ports
W port width in bits

Technological parameters
ht track height
wt track width

Capacitance equations
input line length Lin = O �W � wt

output line length Lout = I �W � ht
input line cap. Cxb in = O �Cin cnt+Ca(Tid)+

Cw(Lin)
�

output line cap. Cxb out = I �Cout cnt+Ca(Tod)+
Cw(Lout)

control line cap. Cxb ctr = W �Cctr cnt+Cw(
Lin

2
)

Operation energy equations
Æxi number of switching input bits
Æxo number of switching output bits
traversal energy Exb = ÆxiExb in+ÆxoExb out

(�) Tid is the input driver, Tod is the output driver.

Table 4. Model for matrix arbiters
Canonical structure and notation

req1

reqR

reqn

grant generation
logic

(R(R−1)/2 flip flops)
priority matrix

priorities (m )ij

m1n

mnk

T I

req1

reqn

T N1

T N2

gnt n
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gnt

gntR

1

reqk

CFF switch capacitance of a flip flop
CFC clock capacitance of a flip flop

Architectural parameters
R number of requesters

Capacitance equations
request cap. Creq = Ca(TI) + (R� 1)Cg(TN1) +

Cg(TN2)
�

grant cap. Cgnt = Cd(TN2)

priority cap. Cpri = CFF + 2Cg(TN1)
internal cap. Cint = Cd(TN1) + Cg(TN2)

clock cap. Cclk = CFC

Operation energy equations
Æar number of switching request signals
Æap number of switching priority bits
Æai number of switching internal nodes
arbitration
energy

Earb = ÆarEreq+ÆapEpri+ÆaiEint+
(Egnt +Exb ctr)

(�) TN1 is the first level NOR gate, TN2 is the second level NOR gate,
TI is the inverter.

a crossbar and most crossbars are symmetric (I = O), this
assumption does not affect model accuracy.

Arbiter model. We model three types of arbiters: ma-
trix arbiter, round-robin arbiter and queuing arbiter. Table 4
presents the detailed power model for matrix arbiters.

Earb is derived as follows:

� We treat Exb ctr as a part of Earb because arbiter
grant signals drive crossbar control signals so they
have identical switching behavior.

� Since each arbitration grants one and only one request,
there is no switching activity factor applied to Egnt

and Exb ctr.

Throughout our power models, the switching activity
factors Æx are monitored and calculated through simulation.


