
D. Brooks
P. Bose

V. Srinivasan
M. K. Gschwind

P. G. Emma
M. G. Rosenfield

New methodology
for early-stage,
microarchitecture-level
power–performance
analysis of
microprocessors
The PowerTimer toolset has been developed for use in early-
stage, microarchitecture-level power–performance analysis
of microprocessors. The key component of the toolset is a
parameterized set of energy functions that can be used in
conjunction with any given cycle-accurate microarchitectural
simulator. The energy functions model the power consumption
of primitive and hierarchically composed building blocks which
are used in microarchitecture-level performance models.
Examples of structures modeled are pipeline stage latches,
queues, buffers and component read/write multiplexers, local
clock buffers, register files, and cache array macros. The energy
functions can be derived using purely analytical equations
that are driven by organizational, circuit, and technology
parameters or behavioral equations that are derived from
empirical, circuit-level simulation experiments. After describing
the modeling methodology, we present analysis results in the
context of a current-generation superscalar processor simulator
to illustrate the use and effectiveness of such early-stage
models. In addition to average power and performance
tradeoff analysis, PowerTimer is useful in assessing the typical
and worst-case power (or current) swings that occur between
successive cycle windows in a given workload execution.
Such a characterization of workloads at the early stage of
microarchitecture definition helps pinpoint potential inductive
noise problems on the voltage rail that can be addressed by
designing an appropriate package or by suitably tuning the
dynamic power management controls within the processor.

1. Introduction
Power dissipation limits have emerged as a first-order
design constraint for microprocessors. In fact, at the low
end of the performance spectrum, that is, in the world
of handheld and portable devices or systems, it is not
unusual for power to dominate performance as the primary
design constraint. Battery life and system cost constraints
therefore force a microprocessor design team to consider
power over performance. Increasingly, however, power is a

key design aspect in the workstation and server market
as well [1]. For high-end applications, increasing
microarchitectural complexities, clock frequencies, and die
sizes are pushing the chip-level (and hence, system-level)
power consumption, literally to the edge. If designs
continue to pursue a performance-centric, power-unaware
approach, traditional air cooling for multiprocessor servers
may soon have to be replaced by refrigeration or liquid
cooling. This would cause a break point (with a step

�Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

653

upward) in the ever-decreasing price–performance ratio
curve. Hence, a modern microprocessor system design
approach that takes into account power consumption and
dissipation limits early in the design cycle and maintains a
power-centric focus across all levels of design abstraction
should have an edge over competing approaches.

Figure 1 shows a typical modeling and analysis tool flow
in microprocessor design. There are variations in the flow
and the exact levels of design description, depending on
the product [e.g., high-end microprocessor, application-
specific integrated circuit (ASIC) or embedded processor
system, digital signal processor (DSP)]; however, the
essential elements of the overall methodology are the
same.

At the very early stages of design definition,
microarchitects start with analytical CPI (cycles-per-
instruction) performance models that lead into trace
or execution-driven, cycle-by-cycle simulators. Full or
sampled benchmark traces are processed through such
simulators, driven by a microarchitecture parameter file.
The goal of this design space exploration phase is to
optimize the choice of microarchitectural parameters for
CPI performance under design constraints known at that
stage. The performance model is typically written in a
standard systems programming language such as C/C��,
and is designed to project execution times (in cycles) for
input application traces; it typically does not model the

actual execution of the instructions, but only the execution
timing. At the end of the high-level design phase, the
register transfer level (RTL) model is developed using a
hardware description language such as VHDL [VHSIC
(very-high-speed integrated circuit) Hardware Description
Language]. This model, when ready and validated,
incorporates the full register-transfer-level functionality
with accurate cycle-by-cycle timing flow behavior of the
modeled machine. The main objective of developing this
RTL model is to verify the functional integrity of the full
logic-level description of the machine. For designs that
are synthesized, the VHDL description is also used for
generating a gate-level model as a precursor to the circuit-
level refinement. For custom designs, the circuit-level
netlist description is developed independently, in parallel
with or after RTL coding, starting with schematic entry.
Beyond the circuit netlist model, which is subject to timing
verification and tuning, the design description is further
refined into the physical design level, with layout,
placement, and routing information included.

As the design model is refined from the highest level
of abstraction to the lowest, the accuracy and detail of
functional and timing information increase. Validation
of the model at each level and between successive levels
becomes more time-consuming and complex in proceeding
down the design hierarchy. In current processor design,
energy models are defined and used at virtually all levels
of this hierarchy in order to include power as a constraint
in the design optimization process.

In this paper, we describe PowerTimer, initially
introduced in [2], a toolset that is used for
microarchitecture-level power–performance modeling.
Although currently targeted for high-end microprocessors,
its methodology should also be applicable to other
domains (e.g., embedded or special-purpose
microprocessor systems). PowerTimer uses a variety of
sources for power models, such as output from a circuit-
level power analysis and extraction tool or analytical
models derived in a bottom-up modeling methodology.
Microarchitecture-level energy models can be based on
either A) technologically scaled projections from low-
level (e.g., circuit-simulation-based, RTL-simulation-
based, or actual hardware-measurement-based) energy
characterization data available from previous designs;
or B) analytical models that attempt to characterize the
power on the basis of the implementation structure (at the
gate level or circuit level with or without interconnect
effects) of each microarchitectural entity or event (e.g., an
issue queue entry or a cache access event). The models
are in the form of equations driven by parameters
available from a given CMOS technology.

In Section 2, we describe the overall structure and
operation of PowerTimer, with simple examples to
illustrate how it is used in practice.

Figure 1

Typical modeling and analysis tool flow in microprocessor design.

Set of

workloads

Early analytical performance models

Trace/exec-driven, cycle-accurate

simulation models

Microarch

parameters/specs

RTL model (VHDL)
RTL

sim

Circuit-level

(hierarchical) netlist

model

Gate-level model (if synthesized)

Layout-level physical

design model

Microarch

level

RTL

level

Gate

level

Circuit

level

Layout

level

Energy

models

Circuit

sim,

extract

Cap

extract,

sim

(Architectural)

sim test cases

Edit/

debug

Edit/tune/

debug

Design rules

Design

rule

check,

validate

Performance

test cases

Edit/

debug

Refine,

update

Bit-vector

test cases

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

654

Section 3 describes the generation of energy models
that are used by PowerTimer. We include a brief
description of Common Power Analysis Methodology
(CPAM) [3], a circuit-level power analysis tool developed
at IBM. We use this tool for deriving type-A energy
models. We also describe the analytical modeling
techniques for type-B energy models.

In Section 4, we report specific examples of applications
of PowerTimer, with experimental results and analysis.

Section 5 covers related prior work in some detail. In
Section 6 we provide a summary of the main content of
this paper and a brief discussion of future work. In
particular, we point to the need for developing robust pre-
chip-fabrication silicon model validation methodologies
that are appropriate for current early-stage tools such as
PowerTimer. We refer briefly to prior approaches and
explain how we plan to adapt and extend those techniques
for PowerTimer.

2. PowerTimer: Overall structure and operation
Figure 2 is a block diagram of the PowerTimer toolset—
currently in use during the early-stage definition of future
high-end PowerPC* processors. The base cycle-accurate
performance simulator that is used depends on the target
processor. For general research studies, we use the code
base of an available parameterized simulation toolset
designated as Turandot/MET [4]. (MET denotes a
microarchitecture evaluation toolset, and Turandot
denotes the cycle-accurate performance simulator within
the MET.) A cycle-accurate simulator such as Turandot
is capable of reading instructions from a program’s
executable code (or a trace of the same) and simulating
the timing flow within the target processor. Pipeline
latencies, instruction flow bandwidths, and stall/flush
occurrences (for example, in the case of cache misses and
branch mispredictions) are all modeled as accurately as
possible, with the goal of projecting the execution time
(in processor cycles) of an input application program.
The key new capability added to early-stage performance
simulators in such a toolset is provided in the form of
processor-specific energy models that can be used during
the simulation run. The research microarchitecture power
models (RMAP) function suite is designed to meet this
need. An input file that defines the microarchitectural
parameters for the base performance simulator also helps
configure the associated unit-level energy functions. For
example, the size, type, and configuration parameters
defining an issue queue unit within the simulation model
also determine the energy function to be called to
compute power usage for that unit during the simulation
run.

The other input to the RMAP suite is the set of circuit
style and technology parameters that are specific to a

particular target processor. Examples are latch types and
the CMOS technology generation with associated voltage
and scaling parameters.

The RMAP suite can be used in two different modes:
a) integrated and compiled into the simulator code for the
functions to be called on a cycle-by-cycle basis, depending
on the macros and units that are activated in a given
simulation cycle; b) called once, using average unit usage
statistics at the end of the simulation run. The integrated
mode (a) allows cycle-by-cycle characterization of power,
power–performance, and power swing (di/dt) metrics in
a straightforward manner. The postprocessing mode
(b) allows the computation of average power and
power–performance data very efficiently, without
significant slowing of the simulation.

Our goal of supporting multiple processor development
projects naturally steered us to the requirement of
designing the RMAP function suite in a manner that
allows maximum flexibility and portability. At this time,
we are working with customized, processor-specific energy
functions for several target processors in development
within IBM. However, on the basis of the experience
that we gather from these design points, which differ
significantly in functionality and performance, we
are developing a parameterized, portable RMAP suite
for use by other processor development groups within
the company. In association with our research MET
simulation toolset [4, 5], we also plan to release a generic,
nonconfidential version of RMAP for use by our external,
university research partners.

The high-level pipeline structure of the parameterized
Turandot/MET microprocessor model [5] is shown in
Figure 3. The modeled microarchitecture is similar in
complexity to that of a current-generation PowerPC
processor [6, 7]. The model assumes an in-order front
end in which, on a given cycle, the instruction fetch unit

Figure 2

Block diagram of PowerTimer toolset.

Cycle-by-

cycle

performance

simulator

Microarch

parameters

Circuit/tech

parameters

Energy

models

(C functions)
Program

executable

or trace

Performance estimate

Power

estimate

PowerTimer

Latch

counts
CPAM LegoSim ARPA

Machine

utilization

stats

RMAP

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

655

(IFETCH) accesses the level-1 instruction cache (L1
I-cache) to bring the next sequential group of instructions
into the instruction buffer (I-buffer). The maximum
number of instructions that can be fetched per cycle is a
parameter that can be adjusted (like most of the other
bandwidth parameters in the model). The decode/expand
unit is a parameterized multicycle pipeline unit that
decodes up to five instructions per cycle to form a basic
dispatchable group (DG). Some complex instructions (e.g.,
a floating-point “store with update”) are “cracked” into
two or more micro-operations in forming such a DG,
which contains a maximum of five (micro)-operations.
Since a branch instruction always causes a DG to
terminate, a DG may contain from one to five (micro)-
operations. After the register renaming and dispatch
cycle(s), instructions from a DG are distributed into
one of four different issue queues, depending on their
operation types (e.g., integer, load/store, floating-point, or
branch). Each instruction issue logic is implemented to
support “out-of-order” issue of instructions into respective
execution pipelines. Up to two instructions can be issued
per cycle from each issue queue, after a “register read”
pipeline cycle. The model supports out-of-order execution,

with in-order retirement logic using a standard retirement
queue (reorder buffer) mechanism. Other structures
modeled are the various queues and buffers that are part
of such out-of-order, superscalar processors. Separate
next-fetch-address (NFA) predictor and two-level branch
predictor mechanisms are supported. Turandot models an
L1–L2 cache hierarchy, with split instruction and data L1
caches and a unified L2 cache. Instruction and data
translation lookaside buffers (TLBs) are also modeled,
along with the cast-out queue required to support a
store-in caching mechanism for the L1 data cache. Main
memory (L3) is modeled as an infinite, perfect storage
with a constant (albeit parameterized) access latency.

As described in [4], this research simulator was
calibrated against a pre-RTL, detailed, latch-accurate
processor model (referred to as the R-model in [4]). The
R-model is a custom simulator, written in C�� (with
mixed VHDL “interconnect code”). There is a one-to-one
correspondence of signal names between the R-model and
the actual VHDL (RTL) model; however, the R-model is
about two orders of magnitude faster than the RTL model
and is considerably more flexible. Many microarchitecture
parameters can be varied, albeit within restricted ranges.
Turandot, on the other hand, is a classical trace/execution-
driven simulator, written in C, which is one to two orders
of magnitude faster than the R-model. It supports a much
greater number and range of parameter values.

In this paper, we report power–performance results
using the same version of the R-model which was used
in [5]. We first used our developed energy models in
conjunction with the R-model: This ensured accurate
measurement of the resource utilization statistics within
the machine. To circumvent the simulator speed
limitations, we used a parallel workstation cluster; also, we
postprocessed the performance simulation output and fed
the average resource utilization statistics to the energy
models to obtain the average power numbers. Looking
up the energy models on every cycle during the actual
simulation run would have slowed the R-model execution
even further. While it would have been possible to obtain
instantaneous, cycle-by-cycle energy consumption profiles
through such a method, it would not have changed the
average power numbers for entire program runs.

Having used the detailed, latch-accurate reference
model for our initial energy characterization, we were able
to examine the unit- and queue-level power numbers in
detail in order to understand, test, and refine the various
energy models. Currently, we have reverted to using an
energy-model-enabled Turandot model for rapid CPI
vs. power tradeoff studies with full benchmark traces.
Turandot makes it possible to experiment with a wider
range and combination of machine parameters.

Figure 3

High-level pipeline structure of the parameterized Turandot/MET

microprocessor model.

Issue-

queue

integer

Issue-

queue

load/store

Issue-

queue

floating-point

Issue-

queue

branch

Issue logic Issue logic Issue logic Issue logic

Register

read

Load/store

units

Floating-point

units

Branch

units

Integer

units

I-buffer

Decode/expand

Rename/dispatch
IF

E
T

C
H

L2

cache

Main

memory

(L3)

L1

D-cache

D-TLB1

D-TLB2

Cast-out

queue

L1

I-cache

I-TLB1

I-TLB2

NFA/Branch

predictor

Retirement

queue

Retirement logic

Load/store

reorder

buffer

Store queue

Miss queue

Register

read

Register

read

Register

read

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

656

3. Derivation of the energy models
In this section, we describe the methods used for deriving
the RMAP energy function suite in PowerTimer. Several
methodological paths are currently used to derive energy
functions for use within the RMAP suite (see Figure 2).

The first path, used in very early-stage (concept-phase)
modeling, derives energy models on the basis of unit- and
pipeline stage-level latch counts estimated by the design
team. These latch counts are estimated from a) logic-level
bit specifications of individual functions, where available;
or b) area and latch-density based projections from prior
designs, suitably scaled by technology upgrade parameters.
Per-latch-bit power dissipation numbers are easily
estimated or measured for the target technology, and
clocked latches are known to account for 70 – 80% of
unconstrained logic power in current processors. Hence,
a latch-based energy model formulation for the non-
array portions is often adequate during concept-phase
microarchitecture definition.

The second path begins with detailed, macro-level
power simulation data that is available from prior
processor projects. This path is useful in formulating
models for design macros that tend to be reused in newer
designs with relatively small changes. This method of
energy function generation is also appropriate during the
early stages of the actual implementation phase when
schematic-level descriptions of the circuit netlists are
available for use in circuit-level characterization and
tuning. The low-level power characterization data is
generated using a research tool designated as CPAM [3].
A utility script converts the macro-level power data into
higher-level, unit-specific energy functions appropriate for
use by a microarchitectural simulator. Processor-specific
scaling parameters (for size, configuration, circuit style,
and technology) are used to configure the derived RMAP
functions in an appropriate manner. Figure 4 depicts the
derivation of the energy models in more detail.

The energy models are based on circuit-level power
analysis that has been performed on structures used in
a recent high-performance IBM PowerPC processor,
the IBM POWER4* [7]. The power analysis has been
performed at the macro level; generally, multiple macros
combine to form one microarchitectural-level structure
which we designate as a subunit. For example, the fixed-
point issue queue (one subunit) might contain separate
macros for storage memory, comparison logic, and control.
Power analysis has been performed on each macro to
determine its power as a function of the input (i.e., macro
input data/control pins) switching factor (SF). The
HoldPower, or power when no switching is occurring,
is also generated. These two pieces of data allow the
formation of simple (albeit idealized) linear equations for
the power of each macro. In general, for the ith of N
macros that make up the microarchitectural unit being

modeled, the power equation is modeled (from available
CPAM data) as the linear equation

Power�i� � �Ci � SF� � HoldPower�i�,

where Ci is a macro-dependent constant that defines the
slope of a straight line, assuming the x and y axes to be
SF and Power(i), respectively. The energy model for a
subunit is determined by essentially “summing” the linear
equations for each macro within that subunit. This results
in an overall linear power equation for the whole
microarchitectural unit, with unit-level HoldPower equal
to the HoldPower(i) summed over all macros that make
up that unit. The slope of the resulting straight line is
currently computed as a simple arithmetic mean of the
individual Cis. This is clearly an approximation; such
averaging of the slopes should ideally be done by using
appropriate weights for each component macro. The
weight is (relatively) larger if the sensitivity to the input
switching factor of that macro is (relatively) greater than
the sensitivity to the input switching factor of the overall
unit. Determination of the correct weights using empirical
circuit-level experiments for large microarchitectural units
is very time-consuming; hence, in the initial version of
PowerTimer, the CPAM-based energy models assume
equal weights for component macros within a given
unit. Initial results in our ongoing power–performance
validation studies (see Section 6 for a brief methodological
description), indicate that this assumption does not have
any significant impact on the relative accuracy of any
useful microarchitecture-level tradeoff experiment.

We have generated these power models for all
microarchitecture-level structures (subunits) modeled in
our research simulator [5]. In addition to the models that
specify the power characteristics for particular subunits
(such as the fixed-point issue queue), we can derive power
models for more generalized structures: for example, a
generalized issue queue model. These parameterized
models are useful for estimating the power cost of
additions to the baseline microarchitecture. The

Figure 4

PowerTimer energy models.

Macro1

Macro2

MacroN

Subunits (Arch-level structures)

SF data

Power

estimate

Power � (C
1
 � SF) � HoldPower

Power � (C
2
 � SF) � HoldPower

Power � (Cn � SF) � HoldPower

�

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

657

generalized model is derived by analyzing the power
characteristics of similar structures within the baseline
microarchitecture. For example, the fixed-point, floating-
point, logical-op, and branch-op issue queues have very
similar functionality and power characteristics and have
been used to derive a generalized issue-queue power
model based on parameters such as the number of
entries, storage bits, and comparison operations. CMOS-
technology-related power scaling is done using a simple
CV 2f formulation. Voltage and frequency targets of the
new processor design point are known from design
specifications, and capacitance scaling is carried out using
known dimension-scaling factors (for example, the factor
of 0.7 that is usually selected to scale linear dimensions in
going from one generation to the next [8]). These scaling
factors can change somewhat, depending on the prior and
target technology generation and perhaps even the target
operating voltage or frequency; we act in consultation with
the relevant design team and technology experts in using
the best known technological scaling factors for use in
PowerTimer.

Since we are interested in determining the power–
performance tradeoff for future microarchitectures
within a given product family, we must devise a method of
scaling the power of microarchitectural structures as the
size of these subunits increases. The scaling factor that is
used is dependent on the particular structure; for example,
the power of a cache array scales differently from that of
an issue queue. In addition, as resources increase in size,
they necessarily cause other structures to become larger.
For example, as the number of rename registers increases,
the number of tag bits within each entry of the issue
queue increases. Generally, as we increase the number of
entries in a structure, there is a proportional increase in
the power. For this reason, we use linear scaling as a basis
for many of the structures that we consider. In addition,
we have performed detailed analysis on the scaling of
queue and mapper structures. For these structures, we
have determined the average power per storage bit and
per comparison operation. As the queues and mappers
increase in size, we compute the number of storage bits
and comparisons that occur for the larger structures. We
also use previously published work on power scaling
within cache arrays, which we discuss in Section 4.

The third methodological path of energy model
generation in PowerTimer (referring again to Figure 2)
begins with newer circuit-simulation experiments to
characterize latch types, clock buffers, and macros that are
new and therefore not available from prior project data
sets. With the anticipated use of clock-gating modes in
future processors, the need to characterize the primitive
energy characteristics (with and without clock gating) for
the various latch types and associated local clock buffers
is of paramount importance. This style of clocking and

associated control logic is relatively new in IBM high-end
processor development projects and therefore requires
careful characterization at the circuit level. We have
developed a methodology that uses PowerSpice-based
detailed circuit-simulation experiments to obtain
empirical energy data for primitive building blocks
such as latches, clock-buffers, multiplexors, and
interconnect (wiring) logic; analytical equations
that have high-level organizational and technology
parameters as arguments are formulated to model
various combinations and sizes of the primitive blocks
as they are used to design structures such as queues
and buffers.

The fourth path to derive RMAP energy functions
(Figure 2) is an independent, analytical formulation
methodology. We are currently experimenting with
analytical energy equations for regular structures such as
SRAM array macros. The Array Power Analysis (ARPA)
tool has been developed with the goal of modeling the
energy and delay characteristics of IBM-specific SRAM
array designs that implement cache macros. This tool is
currently under validation, with reference data for specific
SRAM designs obtained from prior designers.1 Prior to
the availability of a tuned, calibrated, and validated ARPA
model for predictive use in our modeling work, we are
relying on designer-provided energy models for customized
SRAM array macros.

Scaling and fine-tuning the energy models
An aspect of modeling that is dealt with in scaling macro-
level energy data obtained from the analysis of previous
designs to form energy models for use in future processors
is repipelining [2]. This is necessary to reflect the impact
of changes in pipeline depth of execution unit pipes (e.g.,
the floating-point unit or load-store unit pipe), and the
corresponding increase in latch counts. For example, in
going from an m-stage pipeline to an n-stage pipeline
(m � n), we require the use of a suitable “repipelining”
transformation to account for the larger latch counts in
the latter design. Such a repipelining function must take
into account the logic “shape function” that profiles the
bit width variation with levels of logic in a given hardware
function.

Another aspect pertains to modeling the variation of
power usage of a given resource as a function of its size
parameters. For example, we need to know how the power
consumption of an array structure (such as a branch
history table) or a queue structure (such as an out-of-
order issue queue) would vary with the number of entries.

1 Special thanks are due to Donald Plass and his team at the IBM Server Division
in Poughkeepsie, NY, and to Rajiv Joshi at the IBM Thomas J. Watson Research
Center in Yorktown Heights, NY.

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

658

Using multiple macro data points from previous designs
to characterize queues of different units in a prior
design, one solution is to extrapolate to obtain the power
characteristics of a generic queue structure in some cases.
An alternative is to use newer “per-latch,” “per-entry,” or
cross-sectional array data available from more recent
circuit simulation experiments conducted by us or by
our colleagues. A more generic approach is to resort to
analytical models based on the analysis of cross sections
and design templates for the design of a variety of queue,
register file, and other array-like regular structures.

A third aspect pertains to the use of reasonable
switching factors for individual macro logic entities
within the modeled processor. In classical trace-driven
simulation, data values in registers or data path logic are
often ignored; only the cycle-by-cycle timing behavior is
modeled. This precludes the determination of accurate
data bit vector switching factors during simulation. Thus,
although unit usage frequencies are accurately modeled,
the data switching factors on a given use of a resource are
often not accurately modeled in early-stage simulators.
The use of execution-driven mode in the base simulation
is one way of factoring the data switching factor
information accurately. This mode is also needed to model
the power overhead of speculative waste in an accurate
manner.

Of course, the use of technology-specific scaling factors
to estimate power and area shrink factors for given
macros may have the greatest impact on the accuracy of
derived RMAP functions. The device models for future
deep submicron technologies are still volatile in some
cases, and the use of approximate scaling factors in early-
stage modeling can lead to significant estimation errors.
In this context, particular mention must be made of
estimation of various forms of leakage power for future
designs. This aspect of predictive extrapolation models is
especially error-prone and therefore of concern in our
modeling research.

There are clearly several different sources of error that
make the estimation of power consumption a difficult task
during the initial design phases. However, our goal is to
provide a facility for making relatively accurate early-stage
power and performance tradeoffs. For example, we wish
to quantify the power savings potential with the use of
fine-grain, pipeline-stage-level clock gating. We are
less interested in the absolute accuracy of the power
projections (with or without clock gating). Also, we are
interested in projecting optimal issue widths and pipeline
depths in concept-phase analysis under given definitions of
power–performance efficiency metrics. For such metrics,
the PowerTimer/RMAP methodology allows us to rank
and compare different microarchitectural ideas that are
proposed in early design stages.

Validation and tuning of the energy models in the
context of their use in early-stage power–performance
tradeoff analysis is an ongoing task that we expect
will be continued for the duration of future processor
development projects. Our prior performance model
validation methodology (see, e.g., [5]) is being augmented
to cover validation of power–performance models. Also,
we are designing a set of circuit-level test designs in
support of a high-performance processor test chip2 that
should allow us to calibrate our energy models for key
structures (such as latches, issue queues, pipelined
arithmetic units, and buffers) against measurements
made at the RTL level and eventually at the hardware
level.

4. Using PowerTimer to design power-efficient
high-performance processors
In this section, we report experimental results based on
the SPEC** CPU benchmark suites [9] and the TPC-C**
trace [10]. All workload traces are PowerPC-based. The
SPEC CPU95 and SPEC CPU2000 traces were generated
using the Aria tracing facility within the MET toolset [4].
The particular SPEC trace repository used in this study
was created by using the full reference input set. However,
sampling was used to reduce the total trace length to 100
million instructions per benchmark program.3 A systematic
validation study to compare the sampled traces against
the full traces was carried out to finalize the choice of
exact sampling parameters. The TPC-C trace used is a
contiguous (i.e., unsampled) trace collected and validated
by the processor performance team at the IBM Systems
Group facility in Austin, TX; it is about 180 million
instructions long. In the next three subsections we
present examples of the use of the PowerTimer toolset.
The results show the average value of the CPI and
average value of [(CPI)3 � power] for the SPEC95
trace suite and the tpcc trace. Each SPEC data point was
obtained by averaging across the benchmark suite. The
choice of the particular power–performance efficiency
metric (CPI)3 � power, which corresponds to energy �

(delay)2 (referred to as an ED 2 product metric in [11]) is
not of great consequence in this discussion. Qualitatively,
the basic conclusions derived from the results shown
do not change if we change the weighting of CPI (i.e., the
delay component) in such metrics. The issue of efficiency
metrics is an important one that deserves detailed,
separate exposition. In other words, the issue of choosing

2 Designated as LPX, a low-power issue– execute processor test chip under joint
development by our group and a research group from the University of Rochester;
preliminary paper published at PACS’02 Workshop (at HPCA-8), February 2002.
3 The sampled apsi trace was excluded from our SPEC95 trace repository, because
of what we believe is an error in the way the samples were stitched together in this
particular case; this error resulted in simulation deadlock at the end of a trace
sample. Rather than include results based on a small number of instructions
completed, we decided to discard this trace from our study. Since our group does
not own this centralized SPEC trace repository, it has been difficult to get the
trace problem fixed.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

659

the “right” exponent x in an EDx product metric [or,
equivalently, the exponent y in a frequency-and-voltage-
independent (CPI) y � watt metric or an overall (MIPS) y

per watt (where y � x � 1) metric] is crucial in making
quantitative arguments about trends, tradeoffs, and
optimality conditions in power–performance behavior. The
interested reader is referred to other recent publications
[12, 13] for a detailed treatment of this topic. In the
PowerTimer effort, we have tended to use simple
arguments based on the cube-root rule [11, 13] of the
basic CV 2f formulation of dynamic power in adopting the
(CPI)3 � watt and (MIPS)3 per watt efficiency metrics. If
the frequency f is assumed to be roughly a linear function
of the voltage V, and if net performance is assumed to
be proportional to f, such a performance cubed-power
formulation is seen to yield a voltage-invariant way of
comparing the power–performance efficiency of two
processors.

Data cache size and the effect of scaling techniques
In this subsection we evaluate the relationship among
performance, power, and L1 data cache size. We vary the
cache size by increasing the number of cache lines while
leaving the line size and cache associativity constant.
Figure 5 shows the results of increasing the cache size
from the baseline architecture (points labeled 1x on the
x-axes). Part (a) illustrates the relation between the cache
size in the first-level data cache and the relative CPI for
the workloads that we studied. The CPI value for each
cache size is computed as a ratio, relative to the base 1x
CPI for that workload.4 Part (b) shows the relation when
we consider the metric (CPI)3 � power. From the figure,
it is clear that the small CPI benefits of increasing the
data cache are outweighed by the increases in power
dissipation due to larger caches. In part (b) we show the
results using two different scaling techniques. In the first
technique, we assume that power scales linearly with the
cache size. As the number of lines is doubled, the power
of the cache is also doubled. The second technique is
based on data from [14] which pertains to energy
optimizations within multilevel cache architectures. In
[14], data is presented for cache power dissipation for
conventional caches with sizes ranging from 1 KB to
64 KB.

Using the second scaling technique, labeled nonlin
in part (b), the cache power is scaled with the ratios
presented in [14]. The increase in cache power by
doubling cache size using this technique is roughly 1.46x,
as opposed to the 2x that is obtained if the simple linear
scaling method is used. Obviously, the choice of scaling
technique can greatly affect the results. It is clear,
however, that with either scaling choice, conventional
performance-focused cache organizations do not scale in
a power-efficient manner. Note that the curves shown in
part (b) assume a fixed circuit/technology generation; they
are intended to show the effect of adding more cache to
the current design. In the simulation runs, we implicitly
assume that the cache access time in cycles remains
unchanged as the cache size is varied. This is, of course,
an unrealistic assumption; and we could use a cache
timing model to estimate the increase in access latency
with the increase in cache size. However, this correction
would only result in making the CPI decrease less
sensitive to cache size increase; as a result, the (CPI)3 �

power curves would increase more rapidly with cache size
while preserving the relative ordering of the various curves
shown. Thus, in effect, the experimental results shown in
Figure 5 are intended to illustrate the point that increases
in cache size to benefit architectural performance at a

4 Note that the apparent “outlier” point for SPECint** at the 8x relative cache size
is nothing more than a very small experimental anomaly; note that the 4x, 8x, and
16x data points are all around 0.955 the relative CPI—i.e., the CPI is essentially
flat beyond the 4x cache size. See also the discussion at the end of the section on
the number of completion buffers.

Figure 5

1x 2x 4x 8x 16x

Relative cache size

(a)

0.95

0.96

0.97

0.98

0.99

1.00

1.01

R
e
la

ti
v
e
 C

P
I

SPECfp

SPECint

TPC-C

Variation of performance and power–performance with cache size.

1x 2x 4x 8x 16x

Relative cache size

(b)

0

1

2

3

4

5

R
e
la

ti
v
e
 (

C
P

I)
3
 �

 p
o
w

e
r

SPECfp-lin

SPECfp-nonlin

SPECint-lin

SPECint-nonlin

TPC-C-lin

TPC-C-nonlin

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

660

given microarchitecture technology design point are
invariably at the expense of degraded power–performance
efficiency, unless other means, such as banked cache
design with partitioned access, are used to curb the power
growth.

Number of completion buffers
In the target microarchitecture, the number of completion
buffers determines the total number of instructions that
can be active within the machine. The completion table
is very similar to a reorder buffer in that it tracks
instructions as they dispatch, issue, execute, wait for
exceptions, and complete. Figure 6 shows the effects of
varying the number of completion buffers on performance
and the power–performance metric. From part (a), it is
evident that little additional performance is gained by
increasing the number of buffers past the current
design point (1x). When considering (CPI)3 � power
in part (b), we see that power efficiency is slightly
degraded by increasing the number of entries, owing
to a roughly 3% increase in the power dissipation of
the core.

In the figure, we note an apparent anomalous behavior
(for SPECfp**), where the CPI decreases for the 1.2x
point, only to increase again at the 1.4x point. Such
behavior is not uncommon in sensitivity experiments for
aggressively speculative, superscalar processor models.
When the number of completion buffers (or, equivalently,
the reorder buffer size) is increased without commensurate
increases in other resources, such behavior is particularly
not unusual. Although increasing the number of
instructions in flight generally tends to increase
performance (or decrease the CPI), at some point,
overaggressive issue of instructions without a
commensurate increase in other resources (e.g., branch-
predictor tables) can increase the executions of mis-
speculated instructions, causing a slight performance
decrease (i.e., increase in the CPI). Since our processor
model contains numerous other speculative actions besides
branch-prediction-based instruction processing, such
anomalies in single-parameter sensitivity experiments
are quite common in our microarchitectural studies. In
sensitivity experiments, therefore, it often makes sense to
vary several related parameters in synchrony, as illustrated
in the following subsection.

Ganged sizing
Out-of-order superscalar processors of the class
considered rely on queues and buffers to efficiently
decouple instruction execution in order to increase
performance. The depth of the pipeline and the sizes of
the resources required to support decoupled execution
(queues, rename registers, completion table) combine to

determine the performance of the machine. Because of
this decoupled execution style, increasing the size of one
resource without regard to the other resources may
quickly create a performance bottleneck. Thus, in this
section we consider the effects of varying multiple
parameters rather than just a single one. Figure 7 shows
the effects of varying all of the major queue, buffer, and
table sizes within the processor core. This includes issue
queues, rename registers, branch-predictor tables, memory
disambiguation hardware, and the completion table. For the
buffers and queues, the number of entries in each resource is
scaled by the values specified in the charts (0.6x, 0.8x, 1.2x,
and 1.4x). For the instruction cache, data cache, and branch-
prediction tables, the size of the structures is doubled or
halved at each data point. From part (a), it can be seen
that performance is increased by 5.5% for SPECfp, 9.6%
for SPECint, and 11.2% for TPC-C as the size of the
resources within the core is increased by 40% (except for

Figure 6

0.6x 0.8x 1.0x 1.2x 1.4x

Number of completion buffers

(a)

0.98

1.00

1.02

1.04

1.06

1.08

1.10

SPECfp

SPECint

TPC-C

0.6x 0.8x 1.0x 1.2x 1.4x

Number of completion buffers

(b)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Variation of performance and power–performance with number

of completion buffers.

R
e
la

ti
v
e
 C

P
I

R
e
la

ti
v
e
 (

C
P

I)
3
 �

 p
o
w

e
r

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

661

the caches, which are 4x larger). The configuration had a
power dissipation of 52–55% higher than the baseline
core. Part (b) shows that the most power-efficient core
microarchitecture is somewhere between the 1x and 1.2x
core points.

Analysis of pipeline optimization for power and
performance
In this section we demonstrate the usefulness of PowerTimer
to explore the issues involved in simultaneously optimizing
superscalar pipelines for power and performance. The
analyses presented represent an excerpt from [15]. The
choice of pipeline depth is one of the fundamental issues
confronting the architect/designer during the very-early-
stage microarchitecture definition phase of future high-
performance, power-efficient processors. Recent studies
[16 –18] seem to suggest that the possibility remains for
further increases in pipeline depth, with performance

optima in the range of eight to eleven FO45 inverter
delays per stage (consisting of six to eight FO4 logic
delays and two to three FO4 latch delays) for current out-
of-order superscalar design paradigms. However, even in
these performance-centric analysis studies, the authors do
point out the practical difficulties of design complexity,
verification, and power that must be solved in attaining
these idealized limits. We now examine the practical,
achievable limits when power dissipation constraints are
also factored in. It is important that power dissipation be
carefully minimized to avoid design points which promise
ever-higher performance, yet under normal operating
conditions, with commodity packaging and air cooling,
deliver only a fraction of the theoretical peak performance.

For this study we have generated power models for all
microarchitecture-level structures (subunits) modeled in
Turandot, our research simulator [4]. PowerTimer uses
microarchitectural activity information from the Turandot
model to scale down the unconstrained hold and switching
power on a per-cycle basis under a variety of clock-gating
assumptions. In the study, we focus on a realistic form of
clock gating which considers the applicability of such
gating on a per-macro basis to scale down either the
hold power or the combined hold and switching power,
depending on the microarchitectural event counts. In
order to quantify the power–performance efficiency of
pipelines of a given FO4 depth, we have extended the
PowerTimer methodology for scaling the power dissipation
from the power models of our base FO4 design point
across a range of FO4 depths.

The power data measured by PowerTimer (for a
particular design point) can be expressed as Pbase �

C V dd
2 f (� � �) CGF, where � is the average “true”

switching factor in circuits that represent transitions
required for the functionality of the circuit, and is thus
the switching factor measured by a register-transfer-level
(RTL) simulator run in zero-delay mode. In contrast, �

is the average glitching factor that accounts for spurious
transition in circuits due to race conditions. Thus, � � �

is the total number of transitions actually seen inside
circuits. Both � and � are averaged over the whole
processor over non-gated cycles with appropriate energy
weights (the higher the capacitance at a particular node,
the higher the corresponding energy weight). CGF is the
clock-gating factor, defined as the fraction of cycles in
which the microarchitectural structures are not clock-
gated. The CGF is measured from our PowerTimer
runs at each FO4 design point, as described above.

Next we analyze how each of these factors will scale
with FO4 pipeline depth. We start by defining FreqScale as

5 Fanout-of-four (FO4) delay is defined as the delay of one inverter driving four
copies of an equally sized inverter. The amount of logic and latch overhead per
pipeline stage is often measured in terms of FO4 delay, which implies that deeper
pipelines have fewer FO4s per stage. Hereafter, the term FO4, when used alone,
designates “FO4 inverter delays per pipeline stage.”

0.6x 0.8x 1.0x 1.2x 1.4x

Relative core size

(a)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

SPECfp

SPECint

TPC-C

0.6x 0.8x 1.0x 1.2x 1.4x

Relative core size

(b)

0.5

1.0

1.5

2.5

2.0

3.0

Figure 7

Variation of performance and power–performance with core size

(ganged parameters).

R
e
la

ti
v

e
 C

P
I

R
e
la

ti
v
e
 (

C
P

I)
3
 �

 p
o
w

e
r

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

662

the ratio FO4base/FO4, the base FO4 depth divided by the
actual FO4 depth (including latch insertion overheads).
FreqScale is the scaling factor used to account for the
clock frequency; it applies to both hold power and
switching power.

With fixed logic hardware for given logic functions, the
primary increase in chip-load capacitance is the large
increase in latch and clock node capacitance. We next
define LatchScale as

LatchScale � LatchRatio � �FO4base/FO4) LatchGrowthFactor.

The term characterizes the hold power dissipation, but
does not affect the switching power dissipation. LatchRatio
is the ratio of the hold power to the switching power.
LatchGrowthFactor (LGF) characterizes the rate at which the
number of latches grows as a function of pipeline depth.

The amount of additional power that is spent in latches
and clock in a deeply pipelined design is critically
dependent on the logic shape functions of the structures
that are being pipelined. Logic shape functions essentially
describe the number of latches that would have to be
inserted at any given point in a piece of combinatorial
logic if it were to be pipelined. The term
(FO4base/FO4)LatchGrowthFactor recognizes that the latch and
clock power increases as the pipeline depth increases.
Logic shape functions being flat (which in many cases is
not true) is one reason for the LatchGrowthFactor to be
1.0 and for the latch and clock power to change linearly
with the pipeline depth. Larger values recognize the fact
that for certain hardware structures the logic shape
functions are not flat, so the amount of latches needed
in the deeply pipelined design increases superlinearly.

The next two factors that must be considered for
dynamic power dissipation when migrating to deeper
pipelines are � and �, the chip-wide activity and glitching
factors. The “true” switching factor � does not depend
on the pipeline depth, since it is determined by the
functionality of the circuits. The glitching factor at any
net, on the other hand, is determined by the difference in
delay of paths from the output of a latch that feeds the
circuit to the gate that drives that net. Once a glitch is
generated at some net, there is a high probability that this
glitch will propagate down the circuit up to the input of
the next latch down the pipeline. Furthermore, the greater
the distance from the latch output to the inputs of a gate,
the higher the probability of the existence of non-equal
paths from the output of the latch to the inputs of the
gate. Therefore, the average number of spurious transitions
grows with the depth of the logic—the greater the
FO4 depth, the higher the average glitching factor.
Experimental data, collected by running a dynamic circuit-
level simulator, PowerMill**, on post-layout-extracted
netlists of sample functional units (built specifically for
these experiments), shows that the average glitching factor

can be modeled as being linearly dependent on the logic
depth per pipeline stage, measured in terms of the
number of FO4 delays, viz:

� � �base�FO4/FO4base�.

To factor the effect of the dependence of the glitching
factor on the pipeline depth, we introduce the following
factor, which applies only to the switching power:

GlitchScale � ��1 � LatchRatio�/�1 � �base/���

� 	1 � ���base/���FO4/FO4base��
.

In this formula, �base is the actual glitching factor averaged
over the baseline microprocessor for the base FO4 design
point. Note that �base appears in the formula only in the
ratio (�base/�), which makes a lot of sense, since the
glitching factor is found to be roughly proportional to
the “true” switching factor in the range from 0 to 0.3.

The following equation expresses the relationship
between the power for the base-FO4 case and the scaled
power for a new FO4 design point when considering the
combination of all of the above factors:

PFO4 � CGF � FreqScale

� �LatchScale � GlitchScale� � Pbase .

In general, CGF decreases with deeper pipelines because
the amount of clock gating potential increases with deeper
pipelines. The increased clock gating potential is primarily
due to the increased number of cycles in which units are
in stall conditions; this in turn leads to an increase in the
clock gating potential on a per-cycle basis.

For this study we assumed that LatchRatio � 0.8,
LatchGrowthFactor � 1.0, and (�base/�) � 0 (no glitching)
in the PowerTimer. We used Turandot to model a generic,
parameterized, out-of-order 8-issue, 5-wide superscalar
processor (see Figure 3) with 32-KB instruction and data
L1 caches and a 2-MB unified L2 cache. Table 1 details
the latency values for the 19-FO4 base design point of this
study. We assume a latch overhead of two FO4 delays and
one FO4 delay for the clock skew and jitter overhead. The
19 FO4 latency values are then scaled with the FO4 depth
(after accounting for latch and clock skew overhead).

In this study, we report experimental results based on
PowerPC traces of a set of 21 SPEC2000 benchmarks:
ammp, applu, apsi, art, bzip2, crafty, equake, facerec, gap,
gcc, gzip, lucas, mcf, mesa, mgrid, perl, sixtrack, swim, twolf,
vpr, and wupwise. We have also used a 172-million
instruction trace of a commercial application, TPC-C.

Figure 8 shows the results for five metrics: BIPS
(billions of instruction per second), IPC (instructions per
cycle), BIPS per watt, (BIPS)2 per watt, and (BIPS)3 per
watt. Optimizing the last three metrics corresponds to
optimizing for energy, energy– delay product [19, 20], and
energy � delay2 [11, 12]. We plot each metric relative to

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

663

the optimal FO4 design point for that metric. The figure
shows that the optimal FO4 depth for performance
(defined by BIPS) is 10 FO4, although pipelines of 8 FO4
to 15 FO4 are within 5% of the optimal. Because of the
superlinear increase in power dissipation and sublinear
increases in overall performance, the number of BIPS per
watt always decreases with deeper pipelines. Only (BIPS)3

per watt shows an optimum point that is not at the
shallowest pipeline; for this set of experiments the optimal
depth is 18 FO4. (BIPS)3 per watt decreases sharply after
the optimum; at the performance-optimal pipeline depth
of 10 FO4, the (BIPS)3 per watt metric is reduced by 50%
over the 18-FO4 depth.

Figure 9 presents similar results for our TPC-C trace.
The optimal number of BIPS for TPC-C is relatively flat
from 10 to 14 FO4 delays per pipeline stage. Using
(BIPS)3 per watt, the optimal pipeline depth shifts to
25–28 FO4 delays per pipeline stage, primarily because
BIPS decreases less dramatically with shallower pipelines.
Power also increases less dramatically for TPC-C with
deeper pipes, because the additional amount of clock
gating is more pronounced owing to large increases in the
number of stall cycles relative to the SPEC2000 suite.

We have also performed a detailed sensitivity analysis
of the optimal pipeline depth against key assumptions
and design implementation choices [20]. Our analysis
shows that there is a range of pipeline depth for which
performance increases can be achieved at a modest
sacrifice in power–performance efficiency. Pipelining
beyond that range leads to a drastic reduction in
power–performance efficiency, with little or no further
performance improvement. Figure 10 shows a summary
view of the power–performance optimality characteristics
for various workload classes.

In this section we have demonstrated the importance
of considering power and performance in unison when
optimizing the pipeline structure. On the basis of the
combination of power and performance modeling
performed using PowerTimer, we have shown that a
purely performance-driven, power-unaware design
may lead to the selection of an overly deep pipelined
microprocessor design operating at an inherently power-
inefficient design point.

Figure 8

Optimal performance and power–performance points (SPEC2000).

BIPS per watt

BIPS2 per watt

BIPS3 per watt

BIPS
IPC

710131619222528313437

Total FO4 per stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
e
la

ti
v
e
 t

o
 o

p
ti

m
a
l

F
O

4

Table 1 Latencies for 19-FO4 design point.

Fetch latencies Decode latencies

Latency parameters Latency in cycles Latency parameters Latency in cycles

NFA predictor 1 Multiple decode 2
L2 I-cache 11 Millicode decode 2
L3 cache (infinite) 85 Expand string 2
I-TLB miss 10 Mispredict cycles 3
L2 I-TLB miss 50 Register read 1

Execution pipe latencies Load/store latencies

Latency parameters Latency in cycles Latency parameters Latency in cycles

Fix execute 1 L1 D-load 3
Float execute 4 L2 D-load 9
Branch execute 1 L3 (data) 77
Float divide 12 Load float 2
Integer multiply 7 D-TLB miss 7
Integer divide 35 L2 D-TLB miss 50
Retire delay 2 StoreQ forward 4

Legend: TLB � translation lookaside buffer. I and D qualifiers stand for “instruction” and “data,” respectively. L1, L2, and L3 stand for level-1, level-2, and level-3, respectively.

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

664

Other uses of PowerTimer in early-stage definition
and design
In this subsection, we illustrate a few other uses of the
PowerTimer/RMAP methodology. The following classes of
data generated by this toolset have been used by various
design teams within IBM:

● Unit-level utilization data for a given benchmark run. This
data is normally available from performance simulators.
It gives the design team an initial indicator of the
regions of the chip that are heavily utilized and are
therefore likely to be “hot” from a power or power-
density viewpoint. In addition, the data identifies
opportunities for clock gating in regions or units that
are sparsely utilized.

● Gated-mode power savings for a given run. This data
gives the design team a first-cut estimate of the
expected power savings across units and the whole
chip under various gating conditions (e.g., under
coarse- or fine-grain clock gating or supply-voltage
gating). Results based on PowerTimer have shown
that the saving in average power dissipation can
be expected to be more than 50% of the unconstrained
(maximum) power for the vast majority of workloads
executing on current-generation superscalar processors.

● Power-swing (di/dt) characteristics. Since power
consumption can be tracked on a cycle-by-cycle
and unit-by-unit basis, it is possible to measure the
maximum and average power swing with respect to
a given reference power level. This data is useful for
determining possible large di/dt problems resulting from
clock gating for both general workloads and specially
architected test kernels. Such a study is also useful for
assessing the nature and extent of the need to insert
decoupling capacitances for control of inductive (Ldi/dt)
noise on the power-supply rails.

Because of space limitations, we do not include
representative data and analysis to cover the above
aspects of the capability and applicability of PowerTimer.
However, we discuss below the various modes of clock
gating supported by PowerTimer for accurate estimation
of workload-dependent power savings under these modes.
Since a large fraction of power is dissipated in latches and
clocking, deviations in benchmark-to-benchmark power
dissipation in high-performance processors is strongly
correlated with the frequency of clock-gating events. As
comprehensive clock-gating methodologies become a
pervasive part of nearly all types of microprocessors
designed, one of the most critical parts of the PowerTimer
simulation infrastructure is making sure that realistic
and accurate clock-gating information is used with
the energy models. A common misperception with
power–performance simulators is that the accuracy is

primarily a function of the energy models used. In fact,
accurate clock-gating events play an equal role in ensuring
realistic power estimates for processors. In some cases,
providing early-stage estimates of clock-gating utilization
can be just as challenging as developing energy models,
because in early-stage modeling it is difficult to know
exactly what structures can be clock-gated and under
what conditions.

In PowerTimer, clock-gating information is provided
entirely by the accompanying microprocessor performance
simulator in terms of utilization data for all of the
microarchitectural structures. To estimate the power
dissipation in the presence of clock gating, it is important
to know a) how the power of the structure/unit will react
to the clock-gating condition and b) what microarchitectural
event or utilization condition should be used for the
clock- gating condition. Recall from Section 3 that our

Figure 10

Power–performance variation with pipeline depth.

Total FO4 per stage

101520253035
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(B
IP

S)
3

p
e
r

w
a
tt

SPECcpu

SPECfp

SPECint

TPC-C

Figure 9

Optimal performance and power–performance points (TPC-C).

710131619222528313437

Total FO4 per stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
e
la

ti
v
e
 t

o
 o

p
ti

m
a
l

F
O

4

BIPS per watt

BIPS2 per watt

BIPS3 per watt

BIPS
IPC

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

665

power models include two pieces of data for each
microarchitectural structure: the unconstrained power
due to clocking (local clock buffers and latches) and the
unconstrained power due to logic switching (combinatorial
logic) scaled to a realistic switching factor. PowerTimer
assumes that a structure can have the following four
possible power states, depending on the clock-gating
conditions.

● P_constrained0: The structure cannot be clock-gated,
either because there is no clock-gating condition that
the performance simulator can generate or because the
designers determine that the structure cannot be clock-
gated.

● P_constrained1: Both clock and logic power of the
structure can be clock-gated in proportion to the
frequency of the clock-gating event.

● P_constrained2: Only the clock power of the structure
can be gated.

● P_constrained3: Only the logic power of the structure
can be gated.

The next step is to determine the clock-gating conditions.
Since all of our microarchitectural structures can be
classified as either a buffer, queue, pipeline stage (with
accompanying logic), or array structure, the following four
classes of events are sufficient to cover all of the gating
conditions:

● AF1: The number of valid entries in a buffer, queue, or
pipeline stage.

● AF2: The number of valid entries in a buffer, queue, or
pipeline stages minus the number of stalled entries.

● AF3: The number of writes to a buffer, queue, or array
structure.

● AF4: The number of writes and reads to a buffer, queue,
or array structure.

We combine the power states (P_constrained1,
P_constrained2, P_constrained3) with the four gating
conditions above to arrive at all 12 possible clock-gating
modes (Mode1 through Mode12). For example, Mode1 is
power state P_constrained1 combined with the gating
condition AF1 . In addition, we denote P_constrained0 (with
no clock gating) as Mode0. It is important to note that not
all of the clock-gating modes are applicable to all of the
structures. Therefore, we derive Mode13 to denote
“realistic clock gating” as determined by the user by
applying one of the 12 clock-gating modes to each
individual structure. However, for illustrative purposes,
Figure 11 shows the variation in simulated power
(averaged over the SPEC2000 trace suite) as a function
of the particular mode of clock gating chosen. These
experiments were done using our baseline Turandot-based
research PowerTimer model. Although not all of the
modes are realistic, these results show a rather large
range of variation in average power, depending on the
aggressiveness of the clock-gating support assumed.

5. Related prior work
From the viewpoint of functional usage, PowerTimer is
similar to prior academic research tools such as Wattch
[21, 22] and SimplePower [23], or tools developed in other
companies, such as the research tool TEM2P2EST [24] or
the ALPS simulator [25] used in the Intel** Pentium** 4
design. However, each of these microarchitecture-level
power simulation tools uses a different methodology for
generating the energy models; and, of course, the base
performance simulation models that are in use with the
energy models are also different in terms of the
architecture (ISA), the family of microarchitectures,
and the level of detail.

Wattch is the most widely used research
power–performance simulator within the academic
community. The base performance simulator in Wattch is
the well-known SimpleScalar toolset [26]. The energy
models derived for use in Wattch, broadly speaking,
comprise two categories: a) analytical equations, modeling
specific circuit classes— e.g., SRAM (static random-access
memory) and CAM (content-addressable memory)
structures, clocking networks, and issue queues; b)
technologically scaled power numbers derived from
published values for irregular logic structures that are
hard to analyze— e.g., functional unit (ALU) blocks. The
analytical equations are controlled by technology-specific
per-unit-length capacitance values for metal, gate, and
diffusion layers and structural geometry parameters of the
modeled entity.

Figure 11

Average power in various clock-gating modes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

P
o
w

e
r

 (
W

)

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

666

As in the case of Wattch, the TEMPEST tool uses
SimpleScalar as the base performance model. Again, the
energy models are either analytical equations (for regular
structures) or empirically derived from available data. The
empirically derived models are based on power density
and area estimates.

SimplePower uses state-transition-based energy usage
models to capture detailed switching-dependent power
variations in given logic blocks. Thus, for a given ALU
macro, detailed circuit simulation-based energy data is
gleaned for many (and ideally all) possible cycle-to-cycle
transition patterns on the input pins. These energy values
are stored in a lookup table, which is accessed to compute
state transition-specific energy usage during execution-
driven performance simulation. In this methodology, there
is an issue concerning the very large sizes of energy
lookup tables; however, the authors of [23] have
developed methods for reducing the table sizes through
collapsing of equivalent state transition entries.

The Intel architecture-level power simulator (ALPS)
is built around a proprietary, Pentium-4-specific
microarchitectural simulator. The energy models for
microarchitectural blocks are derived from empirical
energy data available from prior processors.

PowerTimer, in contrast, uses a phased (hierarchical)
suite of energy functions (RMAP) that are refined as the
design and simulation model evolves. In the very early
stages (concept phase), simple latch-count-based models
are used for the logic; and per-port, per-access estimated
power numbers are used for array and register file macros.
As the design progresses, analytical equations derived
from empirical power data for primitive building blocks
are used for newer circuit structures within the target
structure. When detailed circuit schematics are available,
accurate circuit- simulation-based (CPAM) energy data is
collected for each macro and abstracted for use in forming
energy models for microarchitectural blocks. On occasion,
prior-generation CPAM data is also used (after scaling) to
form energy models for units that have not yet been
characterized in the new design environment.

6. Model validation and other future work
The use of early-stage, workload-driven power analysis
tools (such as PowerTimer) is relatively new in industrial
application, and a number of issues remain open for
further research and development. One of the obvious
issues is that of model validation. Since current-generation
processors are not instrumented to monitor power
consumption on a unit-by-unit basis, it is not yet possible
to directly validate model-predicted power profiles against
measured ones. Pre-silicon validation of function is a
mature field (e.g., [27, 28]); testing, calibration, and
validation of pre-silicon performance models have been
addressed in recent work (e.g., [5, 29]), but it is still an

evolving field. The Wattch project at Princeton [21, 22]
addresses the issue of validating power models by
comparing analytically modeled capacitances against post-
layout-extracted ones. Also, the issue of absolute versus
relative accuracy in models that use abstractions in
selected power or performance submodels within a
simulator has been addressed in recent work [22, 30]. We
are currently pursuing further research in establishing pre-
silicon reference models on expected power bounds for
given architectural test cases. This is an extension of
prior work that was limited to performance (CPI) bounds
[5, 31]. This research should lead us into formalizing a
systematic, parameter-driven test case generation
methodology— one that should allow a design team to
generate a suite of test cases with a priori bounds on
cycle-count (or CPI), unit utilizations, and power.

The basic idea in this approach is to statically estimate
the bounds on CPI and unit-level average utilizations for
given architectural test cases. Lower bounds on CPI for
loop-oriented test cases can be analytically estimated
by assuming infinite queue and buffer sizes and then
deducing the performance-limiting bandwidth parameter
for the given test case [31]. For example, if a loop is
provably memory-bound, a lower bound on cycles per loop
iteration is obtained by dividing the total number of load
and store instructions in the loop by the number of load-
store units, or by the number of cache ports, whichever is
smaller. Our power–performance model validation
procedure goes one step beyond this by deducing the
various queue, cache, and pipeline stage utilization bounds
using analytical models. Since unit utilizations can be
transformed to power numbers through suitable weighting
functions, we effectively have a method of deducing power
and performance bounds for given loop test cases. If
measured (simulated) power and performance, under
appropriate parametric settings of the model, violate the
analytically derived bounds, we detect a model defect. We
are currently engaged in completing this work, which will
be reported separately in a forthcoming publication.

In carrying out this validation work, our emphasis, as
stated before, is on relative accuracy. We believe that the
primary goal of microarchitecture-level models such as
PowerTimer is to guide the early-stage-design architects so
that the fundamental microarchitectural design parameters,
such as pipeline depth, instruction issue width, cache
sizes, queue sizes, and basic latency and bandwidth
parameters, are chosen correctly from the viewpoint of
power–performance balance. In our current pipeline-
level energy scaling models (as described in the section
on analysis of pipeline optimization for power and
performance), we do not consider the circuit-level
power–performance optimization choices available to the
designer on a per-stage basis. In future work, we may

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

667

incorporate such additional design space exploration
choices (e.g., see the paper by Zyuban and Strenski in
this issue [13]) within the PowerTimer framework.

In other work, we are currently extending the definition
of our power models into a hierarchical, modular library
format. When completed, this power function library will
allow us to construct and use energy models in various
stages of design (e.g., in very early stages, we can use
simple latch- or area-based energy models and analytical
formulations), while in later stages we can build more
detailed models based on parameterized, circuit-level
characterizations of primitive building blocks targeted
for use in a given design.

The base Turandot model is currently being significantly
overhauled and updated in order to make it much more
user-friendly and modular, with the addition of
microarchitectural features such as simultaneous
multithreading (SMT) and support for various types
of “in-order” issue mechanisms. Correspondingly, the
associated power models are also being augmented.
We plan to report the updated and fully validated
PowerTimer-II modeling and analysis results in future
publications.

7. Summary
We have described the PowerTimer toolset that is currently
in use to facilitate early-stage power–performance analysis
and microarchitecture definition of high-end, general-
purpose IBM PowerPC processors. PowerTimer uses
a variety of sources for power models, such as output
from a circuit-level power analysis and extraction tool
or analytical models derived in a bottom-up modeling
methodology.

Early-stage power–performance modeling is now a
critical aspect of future processor design. Future processor
cores continue to have aggressive performance goals, but
they are now facing tight power budgets and power-density
limits. In previous processor generations, such as the IBM
POWER3* [6] and POWER4* [7], early-stage definition
studies did not require a systematic analysis of power
because associated estimated increases in power
dissipation were still comfortably below the limits
dictated by the packaging/cooling solutions appropriate
for high-end PowerPC workstations and servers.

Acknowledgments
The authors are grateful to several graduate student
interns who have assisted in characterizing circuit
structures to help formulate or verify architecture-level
power sensitivities for specialized components such as
queues, multiplexors, latches, and local clock buffers.
Special mention must be made of Koushik Das, Alper
Buyuktosunoglu, and Tejas Karkhanis in this regard. We

gratefully acknowledge the help received from numerous
colleagues at the IBM Thomas J. Watson Research
Center, including Victor Zyuban, Philip Strenski,
Stanley Schuster, and Peter Cook, in strengthening our
understanding of circuit-level power modeling and tradeoff
issues. Zhigang Hu, a colleague who joined our team after
the initial submission of this paper, is currently engaged
in upgrading the base Turandot performance model to
incorporate many new features. The authors are grateful
to Zhigang for his help in the ongoing development of the
next-generation PowerTimer-II toolset, which will support
multithreading, among many other new features.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard
Performance Evaluation Corporation, Transaction Processing
Performance Council, Synopsys, Inc., or Intel Corporation.

References
1. M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power

Considerations in the Design of the Alpha 21264
Microprocessor,” Proceedings of the IEEE/ACM Design
Automation Conference, 1998, pp. 726 –731.

2. D. Brooks, J.-D. Wellman, P. Bose, and M. Martonosi,
“Power–Performance Modeling and Tradeoff Analysis for
a High-End Microprocessor,” presented at the Workshop
on Power-Aware Computer Systems (PACS’00, held in
conjunction with ASPLOS-IX), Cambridge, MA,
November 2000; also appeared as Lecture Notes on
Computer Science (LCNS), Vol. 2008, 2001, pp. 126 –136.

3. J. S. Neely, H. H. Chen, S. G. Walker, J. Venuto, and
T. J. Bucelot, “CPAM: A Common Power Analysis
Methodology for High Performance Design,” Proceedings
of the 9th Topical Meeting on Electrical Performance of
Electronic Packaging, Scottsdale, AZ, October 2000, pp.
303–306.

4. M. Moudgill, J.-D. Wellman, and J. Moreno,
“Environment for PowerPC Microarchitecture
Exploration,” IEEE Micro 19, No. 3, 15–25 (May/June
1999); see also http://www.research.ibm.com/MET/.

5. M. Moudgill, P. Bose, and J. Moreno, “Validation of
Turandot, a Fast Processor Model for Microarchitecture
Exploration,” Proceedings of the IEEE International
Performance, Computing and Communication Conference,
February 1999, pp. 451– 457.

6. F. P. O’Connell and S. W. White, “POWER3: The Next
Generation of PowerPC Processors,” IBM J. Res. & Dev.
44, No. 6, 873– 884 (November 2000).

7. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and
B. Sinharoy, “POWER4 System Microarchitecture,” IBM
J. Res. & Dev. 46, No. 1, 1–116 (January 2002).

8. S. Borkar, “Design Challenges of Technology Scaling,”
IEEE Micro 19, No. 4, 23–29 (July/August 1999).

9. Standard Performance Evaluation Corporation (SPEC),
Warrentown, VA; see http://www.spec.org/ for details.

10. Benchmark C of the Transaction Processing Recording
Council (TPC), San Francisco, CA; see http://www.tpc.org/
for details.

11. D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson,
P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman,
V. Zyuban, M. Gupta, and P. W. Cook, “Power-Aware
Microarchitectures: Design and Modeling Challenges for
Next-Generation Microprocessors,” IEEE Micro 20, No. 6,
26 – 44 (November 2000).

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

668

12. V. Zyuban and P. Strenski, “Unified Methodology
for Resolving Power–Performance Tradeoffs of the
Microarchitectural and Circuit Levels,” Proceedings of the
International Symposium on Low-Power Electronics and
Design, August 2002, pp. 166 –171.

13. V. Zyuban and P. N. Strenski, “Balancing Hardware
Intensity in Microprocessor Pipelines,” IBM J. Res. & Dev.
47, No. 5/6, 585–598 (this issue, September/November
2003).

14. U. Ko, P. T. Balsara, and A. K. Nanda, “Energy
Optimization of Multilevel Cache Architectures for RISC
and CISC Processors,” IEEE Trans. VLSI Syst. 6, No. 2,
299 –308 (June 1998).

15. V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, P.
Emma, V. Zyuban, and P. Strenski, “Optimizing Pipelines
for Power and Performance,” Proceedings of the
International Symposium on Microarchitecture (MICRO-35),
November 2002, pp. 333–344.

16. A. Hartstein and T. R. Puzak, “The Optimum Pipeline
Depth for a Microprocessor,” Proceedings of the 29th
International Symposium on Computer Architecture
(ISCA-29), May 2002, pp. 7–13.

17. M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Keckler,
K. I. Farkas, and P. Shivakumar, “The Optimal Logic
Depth per Pipeline Stage Is 6 to 8 FO4 Inverter Delays,”
Proceedings of the 29th International Symposium on
Computer Architecture (ISCA-29), May 2002, pp. 14 –24.

18. E. Sprangle and D. Carmean, “Increasing Processor
Performance by Implementing Deeper Pipelines,”
Proceedings of the 29th International Symposium on
Computer Architecture (ISCA-29), May 2002, pp. 25–34.

19. R. Gonzalez and M. Horowitz, “Energy Dissipation in
General Purpose Microprocessors,” IEEE J. Solid-State
Circuits 31, No. 9, 1277–1284 (1996).

20. T. Conte, K. Menezes, and S. Sathaye, “A Technique to
Determine Power-Efficient, High Performance Super
Scalar Processors,” Proceedings of the 28th Hawaii
International Conference on System Science, January 1995,
Vol. 1, pp. 324 –333.

21. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural Level Power Analysis
and Optimizations,” Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2000,
pp. 83–94.

22. D. Brooks, “Design and Modeling of Power-Efficient
Computer Architectures,” Ph.D. dissertation, Princeton
University, November 2001.

23. N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim,
and W. Ye, “Energy-Driven Integrated Hardware–
Software Optimizations Using SimplePower,” Proceedings
of the International Symposium on Computer Architecture
(ISCA), June 2000, pp. 95–106.

24. A. Dhodapkar, C. Lim, G. Cai, and W. Daasch,
“TEM2P2EST: A Thermal Enabled Multi-Model Power/
Performance ESTimator,” Digest of Technical Papers,
Workshop on Power-Aware Computer Systems (PACS’00),
Cambridge, MA, November 2000; also appeared as
Lecture Notes on Computer Science (LCNS), Vol. 2008,
2001, pp. 112–125.

25. S. H. Gunther, F. Binns, D. Carmean, and J. C. Hall,
“Managing the Impact of Increasing Microprocessor
Power Consumption,” Intel Technol. J., Q1, 2001; see
http://www.intel.com/technology/itj/q12001/articles/art_4.htm/.

26. D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Technical Report TR-1342, University of
Wisconsin, June 1997.

27. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M.
Leibowitz, and V. Schwartzburd, “Verification of the IBM
RISC System/6000 by a Dynamic Biased Pseudo-Random
Test Program Generator,” IBM Syst. J. 30, No. 4, 527–537
(April 1991).

28. M. Kantrowitz and L. M. Noack, “Functional Verification
of a Multiple Issue, Pipelined, Super Scalar Alpha
Processor—the Alpha 21164 CPU Chip,” Proc. Digital
Tech. J. 7, No. 1, 136 –144 (1995).

29. B. Black and J. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer 31, No. 5, 59 – 65
(May 1998).

30. D. Brooks, M. Martonosi, and P. Bose, “Abstraction via
Separable Components: An Empirical Study of Absolute
and Relative Accuracy in Processor Performance
Modeling,” Research Report RC-21909, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY,
December 2000.

31. P. Bose, “Testing for Function and Performance: Towards
an Integrated Processor Validation Methodology,” J.
Electron. Testing: Theory & Appl. 16, 29 – 48 (2000).

Received November 10, 2002; accepted for publication
July 3, 2003

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 D. BROOKS ET AL.

669

David Brooks Division of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138
(dbrooks@eecs.harvard.edu). Dr. Brooks is an Assistant
Professor of Computer Science at Harvard University. He
received a B.S. degree from the University of Southern
California in 1997, and M.A. and Ph.D. degrees from
Princeton University in 1999 and 2001, respectively, all in
electrical engineering. While this paper was being written, Dr.
Brooks was a Research Staff Member at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York.
His research interests include architectural-level power-
modeling and power-efficient design of hardware and software
for embedded and high-performance computer systems.

Pradip Bose IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pbose@us.ibm.com). Dr. Bose is a Research Staff
Member at the Thomas J. Watson Research Center. He
currently leads the power-aware microarchitecture project,
focusing on the development of methodologies for early-stage
power–performance tradeoff analysis and design of power-
efficient microprocessors. His current research interests
include computer architecture, power–performance modeling
and validation, and design automation. Dr. Bose received
M.S. and Ph.D. degrees in electrical and computer
engineering from the University of Illinois at
Urbana–Champaign, and a B.Tech. (Honors) degree in
electronics and electrical communication engineering from
the Indian Institute of Technology, Kharagpur. At IBM,
Dr. Bose has been involved in the earliest research efforts on
superscalar RISC machines, which led to the RS/6000 family
of workstations developed by IBM in Austin, Texas. He has
worked closely with virtually all of the high-end PowerPC
development projects since then. Dr. Bose has been active
in numerous leading conference committees; he is a Senior
Member of the IEEE and Editor-in-Chief of the IEEE Micro
magazine.

Vijayalakshmi Srinivasan IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (viji@us.ibm.com). Dr. Srinivasan joined
the IBM Thomas J. Watson Research Center in 2001 as a
Research Staff Member. She received a B.S. degree in physics
from the University of Madras in 1990, an M.S. degree in
computer science and engineering from the Indian Institute
of Science in 1994, and a Ph.D. in computer science and
engineering from the University of Michigan in 2001. Her
research areas include computer architecture and performance
analysis. Dr. Srinivasan is currently part of a power-aware
microsystems project focusing on developing high-level energy
models for various microarchitecture structures that can be
used with architecture-level machine simulators to evaluate
power–performance tradeoffs.

Michael K. Gschwind IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (mkg@us.ibm.com). Dr. Gschwind is a Research
Staff Member at the Thomas J. Watson Research Center.
At IBM, he has contributed to several generations of
binary translation architectures exploiting instruction-level
parallelism, the evaluation of future microarchitecture
options for current architectures. He was one of the originators
of the supercomputer-on-a-chip “Cell” next-generation high-
performance system architecture, which is currently being
developed in a joint development center in Austin, Texas, by

the IBM, Sony, and Toshiba corporations. Dr. Gschwind’s
current research is focused on the power and performance of
high-frequency, low-power, high-performance architectures for
media, high-performance, and general-purpose computing
applications. Before joining IBM in 1997, he was a faculty
member at the Department of Computer Engineering,
Technische Universität Wien, Vienna, Austria. Dr. Gschwind
received M.S. and Ph.D. degrees in computer science from
Technische Universität Wien in 1991 and 1996, respectively.
His research interests include compilers, computer
architecture, instruction-level parallelism, hardware/software
codesign, application-specific processors, and field-
programmable gate arrays. He is the author of more than 60
papers, holds several patents on high-performance computer
architecture, and has received eight IBM Invention Plateau
Awards and several awards for his technical contributions. Dr.
Gschwind is a Senior Member of the IEEE and the IEEE
Computer Society, and a member of Phi Kappa Phi and the
Fulbright Alumni Association.

Philip G. Emma IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pemma@us.ibm.com). Dr. Emma received B.S.,
M.S., and Ph.D. degrees in electrical engineering from the
University of Illinois, joining IBM at the Thomas J. Watson
Research Center in 1983. He has worked in the areas of
systems, architecture, microarchitecture, circuit design,
packaging, and interconnect technology. He holds more than
80 patents in these areas and is an IBM Master Inventor.
Dr. Emma currently manages the Systems Technology and
Microarchitecture Department at the Thomas J. Watson
Research Center; he is a member of the IBM Academy
of Technology and a Fellow of the IEEE.

Michael G. Rosenfield IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(mgrosen@us.ibm.com). Dr. Rosenfield is currently Director
of the Austin Research Laboratory, focusing on high-
performance VLSI design and tools, system-level power
analysis, and new system architectures. He was previously
Senior Manager of VLSI Design and Architecture at the IBM
Thomas J. Watson Research Center in Yorktown Heights,
New York, where he and his team were involved in high-
performance microprocessor VLSI design for the IBM Server
Group and the IBM Microelectronics Division. Their work
pertained to tools, methodologies, and commonality as well as
power-aware microarchitecture, circuits/technology codesign,
performance analysis, exploratory microarchitectures, and
advanced compiler design. Previously, Dr. Rosenfield held
management positions at the Research Division in parallel
communication architecture and in advanced lithography. In
1993, he was the technical assistant to the Research Vice
President of Systems, Technology, and Science. Dr. Rosenfield
received Ph.D. and M.S. degrees from the University of
California at Berkeley and a B.S. degree in physics from the
University of Vermont.

D. BROOKS ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

670

