
Chalk

Wouter Swierstra
joint work with Koen Claessen, Carl Seger, Mary

Sheeran, and Emily Shriver

A tool for architecture design

Aim

• Try to design an architecture description
language that:

• can work at different levels of abstraction;

• is capable of early estimations of
performance and power;

• builds on our functional programming
expertise.

Behavioural

Structural

Behavioural

Structural

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

Behavioural

Structural

‣ Wired (Axelsson, Claessen, Sheeran)

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

Behavioural

Structural

‣ Wired (Axelsson, Claessen, Sheeran)

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

‣ Chalk

Lava

• A data type for primitive gates (and, not,...);

• Describe the structure of circuits:

mux (c,t,e) = or2 (and2 (not c) t)

 (and2 c e)

Lava

• Haskell combinators to assemble circuits
(sequential composition, butterfly circuits, ...)

• Simulation and testing using QuickCheck;

• VHDL generation for circuits;

• Hooks into automatic theorem provers.

Hawk

• Idea: use Haskell as an executable
hardware specification language.

• “Shallow embedding” – there is no separate
data type to represent the AST.

Hawk - Signals

Signals assign values to every clock cycle:

 type Signal a = [a]

Hawk combinators – I

Haskell functions to manipulate signals:

constant :: a -> Signal a
constant x = repeat x

lift :: (a -> b) -> Signal a -> Signal b
lift f signal = map f signal

Hawk combinators – II

delay :: a -> Signal a -> Signal a
delay x s = x :: s

mux :: Signal Bool
 -> Signal a -> Signal a -> Signal a
mux cs ts es = zipWith3 cond cs ts es
 where
 cond c t e = if c then t else e

Slightly non-trivial
examples

• Hawk has been used to describe
microprocessors

• ALU and register files;

• pipelining;

• branch prediction.

Hawk review

• Pro: easy to write down executable specs;

• Con: you can’t do anything with these specs
besides execute them.

• No generating VHDL;

• No automatic theorem proving;

• No “non-functional” analysis.

Chalk

• Chalk is a Hawkish specification language
that aims:

• to provide more functionality than just
executable specifications;

• to support hierarchical architecture
descriptions that can be refined
incrementally.

A deeper embedding

data Circuit a where
 Pure :: a -> Circuit a

 App :: Circuit (b -> a) -> Circuit b
 -> Circuit a

 Delay :: a -> Circuit a -> Circuit a
 Component :: String -> Circuit a ->
 -> Circuit a

A deeper embedding

data Circuit a where
 Pure :: a -> Circuit a

 App :: Circuit (b -> a) -> Circuit b
 -> Circuit a

 Delay :: a -> Circuit a -> Circuit a
 Component :: String -> Circuit a ->
 -> Circuit a

I’ll use an infix operator <*> instead of App

Example - mux

mux :: Circuit Bool ->

 Circuit a -> Circuit a -> Circuit a

mux cs ts es = component “Mux” $

 pure (\c t e -> if c then t else e)

 <*> cs

 <*> ts

 <*> es

ALU
data Cmd = ADD | SUB | INCR

alu :: Circuit Cmd ->
 Circuit (Int,Int) ->
 Circuit Int

alu cmds args = component “ALU” $

 pure eval <*> cmds <*> args

 where eval ADD (x,y) = x + y

 eval SUB (x,y) = x - y

 eval INCR (x,_) = x + 1

Register file
data Reg = R0 | R1 | R2 | R3

type Regs = (Int,Int,Int,Int)

regFile :: Signal (Reg, Int) ->
 Signal Reg -> Signal Reg ->
 (Signal Int, Signal Int)
regFile = loop initRegs regStep
 where
 loop :: s -> (s -> (a,s)) -> Signal a
 regStep :: Regs -> ((Int,Int), Regs)

Simple Hawk
Microprocessor

• We can assemble these pieces:

sham :: (Signal Cmd, Signal Reg,
 Signal Reg, Signal Reg)
 -> (Signal Reg, Signal Int)

 sham (cmds, destReg, srcA, srcB) = ...

• ... by using our register file to lookup the
state of the source registers;

• and passing this on to the ALU.

Simulation

• It is easy to extract original Hawk signal
functions:

simulate :: Circuit a -> [a]

simulate (Pure x) = repeat x

simulate (Delay x h) = x : simulate h

simulate (App f x) =

 zipWith ($) (simulate f) (simulate x)

Recap

• Hypothesis: writing specs using these
combinators is no harder than in Hawk;

• ...but we now have more structure at our
disposal.

• We can use this info to do other analyses.

Future work

• Circuit size;

• Graph visualisation;

• Symbolic performance analysis;

• Type-directed analyses;

• Non-standard interpretations;

• ...

