[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Constraint-based Type Error Diagnosis
(Tutorial)

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.HageOuu.nl

February 10, 2017



About me

» Assistant professor in Utrecht, Software Technology

» Topics of interest:
» Static analysis of functional languages
> Non-standard/type and effect systems

» On and off: program plagiarism detection, object-sensitive
analysis, soft typing of dynamic languages, and switching
classes

» PhD students active in legacy system modernization, and
testing

» Type error diagnosis (for functional languages/EDSLs)

ﬁ,; [Faculty of Science
N) § Universiteit Utrecht Information and Computing Sciences]



Credits

The following people have contributed to this talk:

v

Alejandro Serrano Mena, current PhD student
» Bastiaan Heeren, PhD student between 2000-2004
Patrick Bahr, visiting postdoc in 2014

v

v

Atze Dijkstra, implementor of UHC
» Many master students

» Many people contributed to Helium

& = o S q . .
E N é Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
3 KN\



l. Introduction and Motivation

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE



Static type systems gl

» Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

» “well-typed programs can't go wrong”

> type incorrect programs = the need for diagnosis

» When type checking we typically assume various simple
local properties to have been checked:
> syntactic correctness
> well-scopedness
> definedness of variables

» Which properties it enforces, depends intimately on the
language
» Cf. does every function have the right number of
arguments in C vs. Haskell
R [Faculty of Science
%

& = o S q . .
E N é Universiteit Utrecht Information and Computing Sciences]

5 KN



What is type error diagnosis? gl

» Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

» This may involve information

> that a program is type incorrect
which inconsistency was detected

which parts of the program contributed to the inconsistency
how the inconsistency may be fixed

vV vy

» Traditionally, functional languages have more room for
inconsistencies = at least some attention was paid to type
error diagnosis

5&\\“% [Faculty of Science
; b é Universiteit Utrecht Information and Computing Sciences]
6 N



Languages follow Lehmann’s sixth law gl

» Java has seen the introduction of parametric polymorphism
(and type errors suffered)

> Java has seen the introduction of anonymous functions (I
have not dared look)
» Languages like Scala embrace multiple paradigms

» Odersky's “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

> In terms of maintainability of (sizable) programs, dynamic
languages do not seem to scale well

» New trends: dynamic languages becoming more static

» Again, diagnosis rears its ugly (time-consuming) head

5&\\“% [Faculty of Science
E N é Universiteit Utrecht Information and Computing Sciences]
K

7 KN



e simple Haskell §1

reverse = foldr (flip (%)) []
palindrome s = reverse xs == xs

Is this program well typed?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o =) = = E DA



e simple Haskell §1

reverse = foldr (flip (%)) []
palindrome s = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]11]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == Xs

[Faculty of Science
Information and Computing Sciences]

[m] (=l = =

Universiteit Utrecht

DEE



Universiteit Utrecht

at is wrong?

Expected type: [t]
Actual type: [[[t]1]]

Occurs check: cannot construct the infinite type: t

In the second argument of ’(==)’, namely ’xs’
In the expression: reverse xs == Xs

[Faculty of Science
Information and Computing Sciences]
= =

DEE

[[t]1]

§1



What is wrong? gl

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]1]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse Xxs == XS
» It does not point to the source of the error — not precise
> It's intimidating — not succint
» It shows an artifact of the implementation — mechanical
» “Occurs check” is part of the unification algorithm
» Generally, message not very helpful

v

Anyone know the likely fix?

ng% [Faculty of Science

& = Universiteit Utrecht Information and Computing Sciences]

9 %%m§§



What is wrong? gl

Occurs check: cannot construct the infinite type: t ~ [[t]]
Expected type: [t]
Actual type: [[[t]1]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse Xxs == XS
» It does not point to the source of the error — not precise
> It's intimidating — not succint
» It shows an artifact of the implementation — mechanical
» “Occurs check” is part of the unification algorithm
» Generally, message not very helpful
» Anyone know the likely fix? foldr should be foldl

‘S\ ﬁ)ﬁ . [Facul.ty of S'ciem:e
%U§ Universiteit Utrecht Information and Computing Sciences]

9



xrrr = zs: [4,5,6]

where len = length xs

esolved top-level overloading
xzs =[1,2,3]

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE



Unresolved top-level overloading gl

zrrr = zs : [4,5,6]
where len = length zs
zs = [1,2,3]

The Hugs message (GHC's message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading
*** Binding ! XXXX

*x*+x Qutstanding context : (Num [b], Num b)

» Type classes make the type error message hard to
understand

» The location of the mistake is rather vague
N

N
N

» No suggestions how to fix the program

Universiteit Utrecht

s
N

[Faculty of Science
Information and Computing Sciences]

W



Very old school parser combinators gl

pExpr = pAndPrioFExpr
<|> sem_Expr_Lam
<$ pKey "\\"
<> pFoldrl (sem_Lamlds_Cons, sem_Lamlds_Nil) pVarid
<> pKey "->"
<> pFErpr

gives

ERROR "BigTypeError.hs":1 - Type error in application

*%* Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <*> pKey "->"

*%* Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int, (Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Levell,[S] -> [S]))
-> Type -> d -> [([Char], (Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,f -> £,[S] -> [S]1), [Token])]
*%* Does not match : [Token] -> [([Char] -> Type -> d -> [([Char], (Type,Int,Int)
-> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> £,[S] -> [S]), [Token])]
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

"
W



der is arbitrary (in Hugs) §1

yyyy :: (Bool = a) —> (a, a,a)
yyyy = \f = (f True,f False, f [])

What's wrong with this program?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o =) = = E DA



Order is arbitrary (in Hugs) q

yyyy = (Bool = a) —> (a,a, a)
yyyy =\f = (f True, f False, f [])

What's wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False
**xx Term : False
**x*x Type : Bool

*xx* Does not match : [a]

» There is a lot of evidence that £ False is well typed
» The type signature is not taken into account

» The type inference process suffers from (right-to-left) bias
[Faculty of Science
Information and Computing Sciences]

N
N

K

s
N

Universiteit Utrecht

W



Order is arbitrary (in GHC) q

zzzz = \f = (f [|,f True,f False)

Ov.hs:8:23:
Couldn’t match expected type ’[t2]’ with actual type ’Bool’
Relevant bindings include
£ :: [t2] -> t (bound at Ov.hs:8:9)
zzzz :: ([t2] -> t) -> (t, t, t) (bound at Ov.hs:8:1)
In the first argument of ’f’, namely ’True’
In the expression: f True

» No signature to take into account
» Both f True and f False are found to be in error
» The type inference process suffers from (left-to-right) bias

NI
= é; Universiteit Utrecht

13 %%m§§

[Faculty of Science
Information and Computing Sciences]



Good Error Reporting Manifesto gl

From Improved Type Error Reporting by Yang, Trinder and

Wells
1. Correct detection and correct reporting
2. Precise: the smallest possible location
3. Succint: maximize useful and minimize non-useful info
4. Does not depend on implementation, i.e., amechanical
5. Source-based: not based on internal syntax
6. Unbiased
7. Comprehensive: enough to reason about the error

ﬁ,; [Faculty of Science
N) § Universiteit Utrecht Information and Computing Sciences]

14 "‘%@.



Il. Constraint-based Type Inference

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE



Hindley-Milner (intuitive summary) s

» Consider the expression \ z — x + 2.
> Hindley-Milner will
> introduce a fresh « for z
> look at the body x + 2: unify the arguments of + with
their formal types (here all Int)
» « becomes Int, and the whole expression has type
Int — Int

Q % ) . . [Facul.ty of S'cience
%ﬂ S Universiteit Utrecht Information and Computing Sciences]

16



Adding let-polymorphism to the mix il

17

Consider

let y=\z—>z2
in \z >yz+2

For z, ay is introduced, so that the body of y has type oy

Since « does not show up in any other type (it is free) we
may generalize over oy sothat y :V 3.8 — 8

Visit the body, introducing « for z, and instantiating 3 in
y to, say, ao to give ag —> o

Unifying a with o will identify the two, (arbitrarily)
leading to z :: & and the instance of y :: @ —> «

Then we perform the unifications of the previous slide

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]



polymorphic lamdba-calculus il

T < I'(x)
T g @7

Fl—HM €1 :T1 — T2 Fl—HM €9 I T]
T |—HM €1 €2 . T)

Mz U{z:n} b e:m
T by Az —e:(n— )

_ T by er:m I\z U {x:generalize(T', 1)} b e2: 7

—

I' Gy let z =e1iney : 1

» Algorithm W is a (deterministic) implementation of these
typing rules.
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
(=] F = E DA



Characteristics of Algorithm WV gl

» Can infer most general types for the let-polymorphic
lambda-calculus

» Can deal with user-provided type information

» For extensions like higher-ranked types, type signatures
must be provided

» Binding group analysis may need to be performed (always
messy)

» Minor disadvantage: let-polymorphism does not integrate
that well with some advanced type system features.

» Major disadvantage: algorithmic bias

5&\\“% [Faculty of Science
; b é Universiteit Utrecht Information and Computing Sciences]
19 NS



What bias? S

» Unifications are performed in a fixed order

» Order may be changed: many alternative implementations
of HM exist

» Order of unification is unimportant for the resulting types,

> but it is important if you blame the first unification that is
inconsistent with the foregoing.

& = o S q . .
E N é Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
20 KN\



to cope

algorithm W, M, G, H,...

§ll
1. Investigate families of implementations (=solving orders)
» But which one to use when?

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
= =

DEE



How to cope §ll

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

» But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they

are solved.
> generate and collect the constraints that describe the
unifications that were to be performed, e.g., « == Int

> choose the order to solve them in some way that may be
determined by the programmer, or by the program

» Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

5&\\“% [Faculty of Science
=0 é Universiteit Utrecht Information and Computing Sciences]

21 7{4&“



Constraint-based type inference il

» Popular approach (see Pottier et al., Wells et al.,
Outsideln(X), Pavlinovic et al.)

» A basic operation for type inference is unification.
Property: let S be unify(r1,12), then S71 = Sy

We can view unification of two types as a constraint.

[Faculty of Science

NI
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

22



Constraint-based type inference il

» Popular approach (see Pottier et al., Wells et al.,
Outsideln(X), Pavlinovic et al.)

» A basic operation for type inference is unification.
Property: let S be unify(r1,12), then S71 = Sy

We can view unification of two types as a constraint.

» An equality constraint imposes two types to be equivalent.
Syntax: 71 = 7
» We define satisfaction of an equality constraint as follows.
S satisfies (11 = T2) =g STI = ST
> Example:
> [ := Int, 75 := Int] satisfies 71 — 71 = 72 — Int

N
N

K

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

Wiy,
N

22



Bottom-up typing rules il

{z:8}, 0 Wy z: 8 [VAR]:

A1, C sy e1: 1 Az, Co gy ex:
AU Ao, C1UC2U{T15T2—>5} oy e1 es:f

[APP]s,

A C Ky e: T
A\z, CU{r' =8 |z:7 € A} gy Az —e: (B—T)

[ABS]s:

» A judgement (A, C ks e:7) consists of the following.
» A: assumption set (contains assigned types for the free
variables)
» C: constraint set
> e: expression
» 7: asssigned type (variable)

‘S\ ﬁ)ﬁ . [Facul.ty of S'ciem:e
%U§ Universiteit Utrecht Information and Computing Sciences]

28



mple

VAR()

ABS(f)

ABS(x)

APP

APP

VAR()

Universiteit Utrecht

VAR(X)

twice =\f > \z = f (f z)

Constraints

[Faculty of Science
Information and Computing Sciences]
= =

DEE

s



A={f:t1}

t1

mple

VAR()

ABS(f)

ABS(x)

APP

APP

VAR()

Universiteit Utrecht

VAR(X)

twice =\f > \z = f (f z)

Constraints

[Faculty of Science
Information and Computing Sciences]
= =

DEE

s



mple

ABS(f)
ABS(x)
APP
A={f:t1}
VAR() APP
t1
A={f:12}

t2

VAR(f)

Universiteit Utrecht

VAR(X)

twice =\f > \z = f (f z)

Constraints

[Faculty of Science
Information and Computing Sciences]
= =

DEE

s



mple

ABS(f)
ABS(x)
APP
A={f:t1}
VAR() APP
t1
A={f:12}

t2

VAR(f)

Universiteit Utrecht

VAR(x)

A={x:t3}
t3

twice =\f > \z = f (f z)

Constraints

[Faculty of Science
Information and Computing Sciences]
= =

DEE

s



mple 1l

twice=\f —=>\z = f (f z)

ABS(f)
Constraints
ABS(x)
t2 = t3 -> t4
APP
A={f:t1} VAR(®) APP A={f:t2, x:t3}
tl t4
A={f:t2} VAR(®) VARX) A={x:t3}
t2 t3

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

Or«@r«=r>«=>» T DAC



ample

twice =\f =>\z = f (f z)

ABS(f)
ABS(x)
A={f:t1, f:t2, x:
APP
t5
A={f:t1} A={f:t2,
VAR(f) APP
t1l t4
A={f:t2}
VAR() VAR(X)
t2
& Universiteit Utrecht

s

Constraints

t2 = t3 -> t4
tl = t4 > tb
t 3}
x:t3}
A={x: 13}
3

[Faculty of Science
Information and Computing Sciences]

Or«@r«=r>«=>» T DAC



ample

twice =\f =>\z = f (f z)

ABS(f)
ABS(Y) A={f:t1, f:t2}
X
t6 ->t5
A={f:t1, f:t2, x:
APP
t5
A={f:t1} A={f:t2,
VAR(f) APP
tl t4
A={f:t2}
VAR(f) VAR(X)
t2
& Universiteit Utrecht

Constraints

s

t2 = t3 -> t4
tl = t4 > tb
U t3 = t6
x:t3}
A={x:t3}
t3

[Faculty of Science

Information and Computing Sciences]

[} = =

= E DAC¢



ample

twice =\f —>\z = f (f z)

s

Constraints

ABS(f) A0
t7 -> (t6 -> t5)
A={f:t1, f:t2}
ABSK) t6 ->t5
t2
tl
APP A={f:tl, f:t2, x:t3} t3
t5
t1
t2
A={f:t1} A={f:t2, x:t3}
VAR(f) APP
tl t4
A={f:t2} VAR(®) VARKX) A={x: 13}
t2 t3
4» Universiteit Utrecht

= t3 > t4
= t4 -> tb
= t6
= t7
= t7

[Faculty of Science
Information and Computing Sciences]

Or«@r«=r>«=>» T DAC



Example gl

32

twice=\f —=>\z = f (f z)

t2 = t3 -> t4

tl = t4 -> t5
» C = t3 = t6

tl = t7

t2 = t7

t1,t2,t7 = t6 -> t6
| 2 S =

t3,t4,th = t6

» S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t7 -> t6 —> t5) = (t6 -> t6) -> t6 —> t6

Egil,% for twice. [Faculty of Science
ms

Universiteit Utrecht Information and Computing Sciences]



hstraints and polymorphism §ll

» Syntax of an instance constraint:

TISMT

» Semantics with respect to a substitution S:
S satisfies (11 <pr 72) =def ST1 < generalize(SM,ST)

> Example:
» [t1 := t2, t4 := t5 —-> t5] satisfies t4 <y t1 -> t2

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o =) = = E DA



Constraints and polymorphism 11

» Syntax of an instance constraint:

TILSMT
» Semantics with respect to a substitution S:
S satisfies (11 <pr 72) =def ST1 < generalize(SM,S13)

» Example:
» [t1 := t2, t4 := t5 -> t5] satisfies t4 <p t1 —> t2

A1, C1 sy e1: 71 Az, Co gy ex:
AU A\z, CGUCU{T <y 71| z:7 € Ao}
by let z=¢1 ines:m

[LET]sy

:&\ ﬁ)é [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

33



mple

identity =let i =\z —> zin i

s

Constraints
LET()
ABS(X) APP
VAR(X) VAR() VAR()
Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
= =

DEE



mple

identity =let i =\z —> zin i

s

Constraints
LET()
ABS(x) APP
it 11}1 VAR(X) VAR() VAR()
Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
= =

DEE



mple

APP

LET(i)
ABS(x)
VAR(X) VAR(i)
Universiteit Utrecht

identity =let i =\z —> zin i

VAR()

[m]

s

Constraints
tl = t2

[Faculty of Science
Information and Computing Sciences]

F = = E DAC¢



mple

APP

LET(i)
ABS(x)
VAR(X) VAR()
A={i:t3}
t3
Universiteit Utrecht

identity =let i =\z —> zin i

VAR(i)

s

Constraints
tl = t2

[Faculty of Science
Information and Computing Sciences]

& = =

DEE



mple 1l

identity =let i =\z —> zin i

Constraints

tl = t2
LET(i)
ABS(x) APP
i X A={i:t4}
VAR(X) VAR() VAR() aa
A={i:t3}
t3
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o =) = = E DA



ample

APP

LET(i)
ABS(x)
VAR(X) VAR()
A={i:t3}
t3
Universiteit Utrecht

identity =let i =\z —>zinii

s

Constraints

t1

t3
A={i:t3,
t5
VAR(i)

= t2
= t4 -> tb

i:t4}

A={i:t4}
t4

[Faculty of Science
Information and Computing Sciences]

o =) = = E DA



ample

identity =let i =\z —> zini i

s

Constraints

t1
t
LET(i) A=) 2
t5 B3
t4
A={} A={i:t3,
o ABS(x) APP -
{x:t1} ) )
ol VAR(X) VAR() VAR()
A={i:t3}
t3
Universiteit Utrecht

= t2

= t4 -> t5
g t2 > t1
g t2 > t1
i:t4}
A={i:t4)
ta

[Faculty of Science
Information and Computing Sciences]

o =) = = E DA



Example

§1

identity =let i =\x —> zin i i

tl = t2

> C— t3 = t4
t3 <y t2

t4 g t2

Bl =

» S = t3 =
t4,t5 =

-> tb5
-> t1
-> t1

t2
(t6 -> t6) -> t6 -> t6
t6 -> t6

» S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

aWp  for identity.

5 Universiteit Utrecht

41

S(t5) =t6 -> t6

[Faculty of Science
Information and Computing Sciences]



Ill. Type Inferencing in Helium

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE



The Helium compiler gl

v

Constraint based approach to type inferencing

v

Implements many heuristics, multiple solvers

v

Existing algorithms/implementations can be emulated

> cabal install helium
cabal install lvmrun

v

Only: Haskell 98 minus type class and instance definitions

v

And bias still exists from early binding groups to later ones
» Others have addressed this issue

5&\\“% [Faculty of Science
; b é Universiteit Utrecht Information and Computing Sciences]
43 N



The Helium compiler gl

» Constraint based approach to type inferencing
> Implements many heuristics, multiple solvers
» Existing algorithms/implementations can be emulated
> cabal install helium
cabal install lvmrun
» Only: Haskell 98 minus type class and instance definitions
» And bias still exists from early binding groups to later ones
» Others have addressed this issue
» Supports domain specific type error diagnosis

» Details of the type rules: see Bastiaan Heeren's PhD

& = o S q . .
E N é Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
43 KN\



Some important compiler flags gl

» —-overloading and --no-overloading
» —-enable-logging, ——host and --port
> ——algorithm-w and —-—algorithm-m

v

-—experimental gives many more flags
» —-kind-inferencing
» —--select-cnr to select a particular constraint for blame
» flags for choosing a particular solver
» many other treewalks for ordering constraints

:&\ ﬁ)ﬁ . [Facul.ty of S'ciem:e
%U§ Universiteit Utrecht Information and Computing Sciences]

44



Constraints generated by Helium gl
For the program,
alline =\ zs = map (+1) zs

Helium generates (—d option)
v5 := Inst(forall a b. (a -> b) -> [a] -> [b]l)

v9 := Inst(forall a. Num a => a -> a -> a)

Int == v10 : {literal}

v9 == v8 -> v10 -> v7 : {infix application}

v8 -> v7 == v6 : {left section}

v3 == viil : {variable}

vb == v6 -> vil -> v4 : {application}

v3 -> v4d == v2 : {lambda abstraction}

v2 == vO : {right-hand side}

v0 == vl : {right hand side}
Wi 522 1= Gen([1, v1) : {Generalize allinc& )
L Y— S

s N



Greedy constraint solver gl

Given a set of type constraints, the greedy constraint solver
returns a substitution that satisfies these constraints, and a list
of constraint that could not be satisfied by the solver. The
latter is used to produce type error messages.

» Advantages:

» Efficient and fast
» Straightforward implementation

» Disadvantage:

» The order of the type constraints strongly influences the
reported error messages. The type inference process is
biased.

4 2. [Faculty of Science
E N é Universiteit Utrecht Information and Computing Sciences]

NN
46 KN



Ordering type constraints gl

> One is free to choose the order in which the constraints
should be considered by the greedy constraint solver.
(Although there is a restriction for an implicit instance
constraint)

> Instead of returning a list of constraints, return a
constraint tree that follows the shape of the AST.

> A tree-walk flattens the constraint tree and orders the
constraints.

» W: almost a post-order tree walk
» M: almost a pre-order tree walk
» Bottom-up: ...

» Pushing down type signatures: ...

5&\\“% [Faculty of Science
; &) é Universiteit Utrecht Information and Computing Sciences]
47 NS



A realistic type rule 111

» Some constraints 'belong’ to certain subexpressions:

Tc = [c2,c3] © $¢1V7e1,Tca, Tcs ¢
cg=(Mm=Bool) ca=(m=p0 cz3=(m=06)
A, Tei1Fer:n
Ao, Teo Fes:m A3, Tes Fe3:m3

A1 H Ay + Az, Te Fif e; then e, else e3:

> c; is generated by the conditional, but associated with the
boolean subexpression.

» Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do ¢; before T¢1).

[Faculty of Science
Information and Computing Sciences]

K 2
== . Py
Z U F Universiteit Utrecht

NN
48 KN



Global constraint solver ll

Uses type graphs allow us to solve the collected type constraints
in a more global way. These can represent inconsistent sets of
constraints.

» Advantages:

v

Global properties can be detected

A lot of information is available

The type inference process can be unbiased

It is easy to include new heuristics to spot common
mistakes.

vV vy

» Disadvantage:

» Extra overhead makes this solver a bit slower
» But: only for the first inconsistent binding group!

5&\\“% [Faculty of Science
; b é Universiteit Utrecht Information and Computing Sciences]
49 N



ve graphs (for zs:[4,5,6])

111

main = zs : [4,5, 6]

where len = length xs
zs = [1,2,3]

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
&

DEE



Type graph heuristics gl

If a type graph contains an inconsistency, then heuristics help to
choose which location is reported as type incorrect.

» Examples:

» minimal number of type errors

» count occurrences of clashing type constants (3x Int versus
1x Bool)

> reporting an expression as type incorrect is preferred over
reporting a pattern

» wrong literal constant (4 versus 4.0)

» not enough arguments are supplied for a function
application

» permute the elements of a tuple

> (:) is used instead of (++)
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
51 K



Heuristics in Helium gl

listOfHeuristics options siblings path =

[avoidForbiddenConstraints -- remove constraints that should NEVER be reporte
, highParticipation 0.95 path

, phaseFilter -- phasing from the type inference directives

] ++

[Heuristic (Voting (
[siblingFunctions siblings

, siblingLiterals

, applicationHeuristic

, variableFunction -- ApplicationHeuristic without application
, tuple Heuristic -- ApplicationHeuristic for tuples

, foHasTooManyArguments

, constraintFromUser path -- From .type files

, unaryMinus (Overloading’ elem‘options)

] ++

[similarNegation | Overloading‘notElem‘options] ++
[unifierVertez | UnifierHeuristics‘elem‘options]))] ++
[inPredicatePath | Overloading‘elem‘options] ++
[avoidApplication Constraints, avoidNegationConstraints
, avoid Trusted Constraints, avoidFolklore Constraints
, firstComeFirstBlamed -- Will delete all except the first

£§\ ﬁ)ﬁ ] . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
52



Helium message gl

main = xs : [4,5,6]
where len = length xs

zs = [1,2,3]
(2,9): Warning: Definition "len" is not used
(1,11): Type error in constructor
expression 3 8

type D a -> [a 1 —> [a]

expected type : [Int] -> [Int] -> b
probable fix : use ++ instead

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o =) = = E DA



Example: permute function arguments gl

test :: Parser Char String
test = option "" (token "hello!")

In Helium:

expression
term

type

probable fix

(2,8): Type error in application

: option "" (token "hello!")

: option

: Parser a b -> b -> Parser a b
does not match :
: flip the arguments

String -> Parser Char String -> c¢

AW
§ &) é Universiteit Utrecht
54 NS

[Faculty of Science
Information and Computing Sciences]



Limitations of Helium ll

55 N

» The Helium language is relatively small

» A major limitation of the type inference process: consistent

binding groups are never blamed.

myfold f z [] = [z]

myfold f z (z : xs) = myfold f (f z x) xs
rev = myfold (fiip ()) []

palin :: Eq a => [a] — Bool

palin xs = rev xs == xs

Helium blames palin, some other systems can blame
myfold instead. Signatures for rev and myfold improve
Helium's message.

Note: we use our intuition of what rev and palin do, a
compiler (typically) cannot. [Faculty of Science

i Universiteit Utrecht Information and Computing Sciences]



Summary g1l

We have described a parametric type inferencer

» Constraint-based: specification and implementation are
separated

» Standard algorithms can be simulated by choosing an order
for the constraints

» Two implementations are available to solve the constraints

> Type graph heuristics help in reporting the most likely

mistake
type graph
heuristics
specialized
typerules !
i
! ! solve constraints
] 3 P A 3 substitution +
constraint constraint lobal (type graph)
AST collect tree flatten list J (typegraph) type errors
— = =
constraints tree -
—_— solve constraints
greedy
&\\Wi/,; [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

= U
56 N



