
[Faculty of Science
Information and Computing Sciences]

Constraint-based Type Error Diagnosis
(Tutorial)

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

February 10, 2017

[Faculty of Science
Information and Computing Sciences]

2

About me

I Assistant professor in Utrecht, Software Technology
I Topics of interest:

I Static analysis of functional languages
I Non-standard/type and effect systems

I On and off: program plagiarism detection, object-sensitive
analysis, soft typing of dynamic languages, and switching
classes

I PhD students active in legacy system modernization, and
testing

I Type error diagnosis (for functional languages/EDSLs)

[Faculty of Science
Information and Computing Sciences]

3

Credits

The following people have contributed to this talk:

I Alejandro Serrano Mena, current PhD student

I Bastiaan Heeren, PhD student between 2000-2004

I Patrick Bahr, visiting postdoc in 2014

I Atze Dijkstra, implementor of UHC

I Many master students

I Many people contributed to Helium

[Faculty of Science
Information and Computing Sciences]

4

I. Introduction and Motivation

[Faculty of Science
Information and Computing Sciences]

5

Static type systems §I

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis
I When type checking we typically assume various simple

local properties to have been checked:
I syntactic correctness
I well-scopedness
I definedness of variables

I Which properties it enforces, depends intimately on the
language

I Cf. does every function have the right number of
arguments in C vs. Haskell

[Faculty of Science
Information and Computing Sciences]

6

What is type error diagnosis? §I

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis

[Faculty of Science
Information and Computing Sciences]

7

Languages follow Lehmann’s sixth law §I

I Java has seen the introduction of parametric polymorphism
(and type errors suffered)

I Java has seen the introduction of anonymous functions (I
have not dared look)

I Languages like Scala embrace multiple paradigms

I Odersky’s “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

I In terms of maintainability of (sizable) programs, dynamic
languages do not seem to scale well

I New trends: dynamic languages becoming more static

I Again, diagnosis rears its ugly (time-consuming) head

[Faculty of Science
Information and Computing Sciences]

8

Some simple Haskell §I

reverse = foldr (flip (:)) []
palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

8

Some simple Haskell §I

reverse = foldr (flip (:)) []
palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix? foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix?

foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

9

What is wrong? §I

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating → not succint
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I Anyone know the likely fix? foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

10

Unresolved top-level overloading §I

xxxx = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

The Hugs message (GHC’s message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : xxxx

*** Outstanding context : (Num [b], Num b)

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

10

Unresolved top-level overloading §I

xxxx = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

The Hugs message (GHC’s message is just more verbose)

ERROR "Main.hs":1 - Unresolved top-level overloading

*** Binding : xxxx

*** Outstanding context : (Num [b], Num b)

I Type classes make the type error message hard to
understand

I The location of the mistake is rather vague

I No suggestions how to fix the program

[Faculty of Science
Information and Computing Sciences]

11

Very old school parser combinators §I

pExpr = pAndPrioExpr
<|> sem Expr Lam
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->"

<∗> pExpr

gives

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

12

Order is arbitrary (in Hugs) §I

yyyy :: (Bool −> a) −> (a, a, a)
yyyy = \ f −> (f True, f False, f [])

What’s wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from (right-to-left) bias

[Faculty of Science
Information and Computing Sciences]

12

Order is arbitrary (in Hugs) §I

yyyy :: (Bool −> a) −> (a, a, a)
yyyy = \ f −> (f True, f False, f [])

What’s wrong with this program?

ERROR "Main.hs":2 - Type error in application

*** Expression : f False

*** Term : False

*** Type : Bool

*** Does not match : [a]

I There is a lot of evidence that f False is well typed

I The type signature is not taken into account

I The type inference process suffers from (right-to-left) bias

[Faculty of Science
Information and Computing Sciences]

13

Order is arbitrary (in GHC) §I

zzzz = \ f −> (f [], f True, f False)

Ov.hs:8:23:

Couldn’t match expected type ’[t2]’ with actual type ’Bool’

Relevant bindings include

f :: [t2] -> t (bound at Ov.hs:8:9)

zzzz :: ([t2] -> t) -> (t, t, t) (bound at Ov.hs:8:1)

In the first argument of ’f’, namely ’True’

In the expression: f True

I No signature to take into account

I Both f True and f False are found to be in error

I The type inference process suffers from (left-to-right) bias

[Faculty of Science
Information and Computing Sciences]

14

Good Error Reporting Manifesto §I

From Improved Type Error Reporting by Yang, Trinder and
Wells

1. Correct detection and correct reporting

2. Precise: the smallest possible location

3. Succint: maximize useful and minimize non-useful info

4. Does not depend on implementation, i.e., amechanical

5. Source-based: not based on internal syntax

6. Unbiased

7. Comprehensive: enough to reason about the error

[Faculty of Science
Information and Computing Sciences]

15

II. Constraint-based Type Inference

[Faculty of Science
Information and Computing Sciences]

16

Hindley-Milner (intuitive summary) §II

I Consider the expression \ x −> x + 2.
I Hindley-Milner will

I introduce a fresh α for x
I look at the body x + 2: unify the arguments of + with

their formal types (here all Int)
I α becomes Int , and the whole expression has type

Int −> Int

[Faculty of Science
Information and Computing Sciences]

17

Adding let-polymorphism to the mix §II

I Consider

let y = \ z −> z
in \ x −> y x + 2

I For z , α1 is introduced, so that the body of y has type α1

I Since α1 does not show up in any other type (it is free) we
may generalize over α1 so that y :: ∀ β . β −> β

I Visit the body, introducing α for x , and instantiating β in
y to, say, α2 to give α2 −> α2

I Unifying α with α2 will identify the two, (arbitrarily)
leading to x :: α and the instance of y :: α −> α

I Then we perform the unifications of the previous slide

[Faculty of Science
Information and Computing Sciences]

18

The polymorphic lamdba-calculus §II

τ ≺ Γ(x)

Γ H̀M x : τ
[Var]HM

Γ H̀M e1 : τ1 → τ2 Γ H̀M e2 : τ1
Γ H̀M e1 e2 : τ2

[App]HM

Γ\x ∪ {x ::τ1} H̀M e : τ2
Γ H̀M λx→ e : (τ1 → τ2)

[Abs]HM

Γ H̀M e1 : τ1 Γ\x ∪ {x :generalize(Γ, τ1)} H̀M e2 : τ2
Γ H̀M let x = e1 in e2 : τ2

[Let]HM

I Algorithm W is a (deterministic) implementation of these
typing rules.

[Faculty of Science
Information and Computing Sciences]

19

Characteristics of Algorithm W §II

I Can infer most general types for the let-polymorphic
lambda-calculus

I Can deal with user-provided type information

I For extensions like higher-ranked types, type signatures
must be provided

I Binding group analysis may need to be performed (always
messy)

I Minor disadvantage: let-polymorphism does not integrate
that well with some advanced type system features.

I Major disadvantage: algorithmic bias

[Faculty of Science
Information and Computing Sciences]

20

What bias? §II

I Unifications are performed in a fixed order

I Order may be changed: many alternative implementations
of HM exist

I Order of unification is unimportant for the resulting types,

I but it is important if you blame the first unification that is
inconsistent with the foregoing.

[Faculty of Science
Information and Computing Sciences]

21

How to cope §II

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

I But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they
are solved.

I generate and collect the constraints that describe the
unifications that were to be performed, e.g., α == Int

I choose the order to solve them in some way that may be
determined by the programmer, or by the program

I Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

[Faculty of Science
Information and Computing Sciences]

21

How to cope §II

1. Investigate families of implementations (=solving orders)
algorithm W, M, G, H,...

I But which one to use when?

2. Take a constraint-based approach, separating the
unifications (=constraints) from the order in which they
are solved.

I generate and collect the constraints that describe the
unifications that were to be performed, e.g., α == Int

I choose the order to solve them in some way that may be
determined by the programmer, or by the program

I Or even better: consider constraints a set at the time to
identify situations that are known to often cause mistakes
and suggest fixes

[Faculty of Science
Information and Computing Sciences]

22

Constraint-based type inference §II

I Popular approach (see Pottier et al., Wells et al.,
OutsideIn(X), Pavlinovic et al.)

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

22

Constraint-based type inference §II

I Popular approach (see Pottier et al., Wells et al.,
OutsideIn(X), Pavlinovic et al.)

I A basic operation for type inference is unification.
Property: let S be unify(τ1, τ2), then Sτ1 = Sτ2

We can view unification of two types as a constraint.

I An equality constraint imposes two types to be equivalent.
Syntax: τ1 ≡ τ2

I We define satisfaction of an equality constraint as follows.
S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

I Example:
I [τ1 := Int, τ2 := Int] satisfies τ1 → τ1 ≡ τ2 → Int

[Faculty of Science
Information and Computing Sciences]

23

Bottom-up typing rules §II

{x :β}, ∅ B̀U x : β [Var]BU

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2
A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} B̀U e1 e2 : β

[App]BU

A, C B̀U e : τ

A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} B̀U λx→ e : (β → τ)
[Abs]BU

I A judgement (A, C B̀U e : τ) consists of the following.
I A: assumption set (contains assigned types for the free

variables)
I C: constraint set
I e: expression
I τ : asssigned type (variable)

[Faculty of Science
Information and Computing Sciences]

24

Example §II

twice = \ f −> \ x −> f (f x)

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

25

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)
A={f:t1}

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)VAR(f)

Constraints

[Faculty of Science
Information and Computing Sciences]

26

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)

VAR(f)
A={f:t2}

A={f:t1}

t2

t1

ABS(f)

ABS(x)

APP

APP

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

27

Example §II

twice = \ f −> \ x −> f (f x)

VAR(f)

VAR(f) VAR(x)
A={x:t3}A={f:t2}

A={f:t1}

t3t2

t1

ABS(f)

ABS(x)

APP

APP

Constraints

[Faculty of Science
Information and Computing Sciences]

28

Example §II

twice = \ f −> \ x −> f (f x)

APPVAR(f)

VAR(f) VAR(x)

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t4

t3t2

t1

ABS(f)

ABS(x)

APP

Constraints

t2 ≡ t3 -> t4

[Faculty of Science
Information and Computing Sciences]

29

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t5

t4

t3t2

t1

ABS(f)

ABS(x)
Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

30

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

ABS(x)

VAR(f)

VAR(f) VAR(x)

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t6 -> t5

t5

t4

t3t2

t1

ABS(f)

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

[Faculty of Science
Information and Computing Sciences]

31

Example §II

twice = \ f −> \ x −> f (f x)

APP

APP

ABS(x)

ABS(f)

VAR(f)

VAR(f) VAR(x)

A={}

A={f:t1, f:t2}

A={f:t1, f:t2, x:t3}

A={f:t2, x:t3}

A={x:t3}A={f:t2}

A={f:t1}

t7 -> (t6 -> t5)

t6 -> t5

t5

t4

t3t2

t1

Constraints

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

[Faculty of Science
Information and Computing Sciences]

32

Example §II

twice = \ f −> \ x −> f (f x)

I C =

t2 ≡ t3 -> t4

t1 ≡ t4 -> t5

t3 ≡ t6

t1 ≡ t7

t2 ≡ t7

I S =

{
t1,t2,t7 := t6 -> t6

t3,t4,t5 := t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t7 -> t6 -> t5) = (t6 -> t6) -> t6 -> t6

for twice.

[Faculty of Science
Information and Computing Sciences]

33

Constraints and polymorphism §II

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

33

Constraints and polymorphism §II

I Syntax of an instance constraint:

τ1 6M τ

I Semantics with respect to a substitution S:

S satisfies (τ1 6M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)

I Example:
I [t1 := t2, t4 := t5 -> t5] satisfies t4 6∅ t1 -> t2

A1, C1 B̀U e1 : τ1 A2, C2 B̀U e2 : τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ 6M τ1 | x :τ ′ ∈ A2}
B̀U let x = e1 in e2 : τ2

[Let]BU

[Faculty of Science
Information and Computing Sciences]

34

Example §II

identity = let i = \ x −> x in i i

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

VAR(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

35

Example §II

identity = let i = \ x −> x in i i

VAR(x)
A={x:t1}

t1

LET(i)

APP

VAR(i)VAR(i)

ABS(x)

Constraints

[Faculty of Science
Information and Computing Sciences]

36

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x)
A={x:t1}

A={}

t1

t2 -> t1

LET(i)

APP

VAR(i)VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

37

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x) VAR(i)

A={i:t3}

A={x:t1}

A={}

t3

t1

t2 -> t1

LET(i)

APP

VAR(i)

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

38

Example §II

identity = let i = \ x −> x in i i

ABS(x)

VAR(x) VAR(i) VAR(i)
A={i:t4}

A={i:t3}

A={x:t1}

A={}

t4

t3

t1

t2 -> t1

LET(i)

APP

Constraints

t1 ≡ t2

[Faculty of Science
Information and Computing Sciences]

39

Example §II

identity = let i = \ x −> x in i i

APPABS(x)

VAR(x) VAR(i) VAR(i)

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t4

t3

t1

t2 -> t1

LET(i)

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

[Faculty of Science
Information and Computing Sciences]

40

Example §II

identity = let i = \ x −> x in i i

APP

LET(i)

ABS(x)

VAR(x) VAR(i) VAR(i)

A={}

A={i:t3, i:t4}

A={i:t4}

A={i:t3}

A={x:t1}

A={}

t5

t5

t4

t3

t1

t2 -> t1

Constraints

t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

[Faculty of Science
Information and Computing Sciences]

41

Example §II

identity = let i = \ x −> x in i i

I C =

t1 ≡ t2

t3 ≡ t4 -> t5

t3 6∅ t2 -> t1

t4 6∅ t2 -> t1

I S =

t1 := t2

t3 := (t6 -> t6) -> t6 -> t6

t4,t5 := t6 -> t6

I S satisfies C (moreover, S is a minimal substitution that
satisfies C). As a result, we have inferred the type

S(t5) = t6 -> t6

for identity.

[Faculty of Science
Information and Computing Sciences]

42

III. Type Inferencing in Helium

[Faculty of Science
Information and Computing Sciences]

43

The Helium compiler §III

I Constraint based approach to type inferencing

I Implements many heuristics, multiple solvers

I Existing algorithms/implementations can be emulated

I cabal install helium

cabal install lvmrun

I Only: Haskell 98 minus type class and instance definitions
I And bias still exists from early binding groups to later ones

I Others have addressed this issue

I Supports domain specific type error diagnosis

I Details of the type rules: see Bastiaan Heeren’s PhD

[Faculty of Science
Information and Computing Sciences]

43

The Helium compiler §III

I Constraint based approach to type inferencing

I Implements many heuristics, multiple solvers

I Existing algorithms/implementations can be emulated

I cabal install helium

cabal install lvmrun

I Only: Haskell 98 minus type class and instance definitions
I And bias still exists from early binding groups to later ones

I Others have addressed this issue

I Supports domain specific type error diagnosis

I Details of the type rules: see Bastiaan Heeren’s PhD

[Faculty of Science
Information and Computing Sciences]

44

Some important compiler flags §III

I --overloading and --no-overloading

I --enable-logging, --host and --port

I --algorithm-w and --algorithm-m

I --experimental gives many more flags
I --kind-inferencing
I --select-cnr to select a particular constraint for blame
I flags for choosing a particular solver
I many other treewalks for ordering constraints

[Faculty of Science
Information and Computing Sciences]

45

Constraints generated by Helium §III

For the program,

allinc = \ xs −> map (+1) xs

Helium generates (−d option)

v5 := Inst(forall a b. (a -> b) -> [a] -> [b])

v9 := Inst(forall a. Num a => a -> a -> a)

Int == v10 : {literal}

v9 == v8 -> v10 -> v7 : {infix application}

v8 -> v7 == v6 : {left section}

v3 == v11 : {variable}

v5 == v6 -> v11 -> v4 : {application}

v3 -> v4 == v2 : {lambda abstraction}

v2 == v0 : {right-hand side}

v0 == v1 : {right hand side}

s22 := Gen([], v1) : {Generalize allinc}

[Faculty of Science
Information and Computing Sciences]

46

Greedy constraint solver §III

Given a set of type constraints, the greedy constraint solver
returns a substitution that satisfies these constraints, and a list
of constraint that could not be satisfied by the solver. The
latter is used to produce type error messages.

I Advantages:
I Efficient and fast
I Straightforward implementation

I Disadvantage:
I The order of the type constraints strongly influences the

reported error messages. The type inference process is
biased.

[Faculty of Science
Information and Computing Sciences]

47

Ordering type constraints §III

I One is free to choose the order in which the constraints
should be considered by the greedy constraint solver.
(Although there is a restriction for an implicit instance
constraint)

I Instead of returning a list of constraints, return a
constraint tree that follows the shape of the AST.

I A tree-walk flattens the constraint tree and orders the
constraints.

I W: almost a post-order tree walk
I M: almost a pre-order tree walk
I Bottom-up: ...
I Pushing down type signatures: ...

[Faculty of Science
Information and Computing Sciences]

48

A realistic type rule §III

I Some constraints ’belong’ to certain subexpressions:

I c1 is generated by the conditional, but associated with the
boolean subexpression.

I Example strategy: left-to-right, bottom-up for then and
else part, push down Bool (do c1 before TC1).

[Faculty of Science
Information and Computing Sciences]

49

Global constraint solver §III

Uses type graphs allow us to solve the collected type constraints
in a more global way. These can represent inconsistent sets of
constraints.

I Advantages:
I Global properties can be detected
I A lot of information is available
I The type inference process can be unbiased
I It is easy to include new heuristics to spot common

mistakes.

I Disadvantage:
I Extra overhead makes this solver a bit slower
I But: only for the first inconsistent binding group!

[Faculty of Science
Information and Computing Sciences]

50

Type graphs (for xs : [4, 5, 6]) §III

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

[Faculty of Science
Information and Computing Sciences]

51

Type graph heuristics §III

If a type graph contains an inconsistency, then heuristics help to
choose which location is reported as type incorrect.

I Examples:
I minimal number of type errors
I count occurrences of clashing type constants (3×Int versus

1×Bool)
I reporting an expression as type incorrect is preferred over

reporting a pattern
I wrong literal constant (4 versus 4.0)
I not enough arguments are supplied for a function

application
I permute the elements of a tuple
I (:) is used instead of (++)

[Faculty of Science
Information and Computing Sciences]

52

Heuristics in Helium §III
listOfHeuristics options siblings path =

...
[avoidForbiddenConstraints -- remove constraints that should NEVER be reported
, highParticipation 0.95 path
, phaseFilter -- phasing from the type inference directives
] ++
[Heuristic (Voting (

[siblingFunctions siblings
, siblingLiterals
, applicationHeuristic
, variableFunction -- ApplicationHeuristic without application
, tupleHeuristic -- ApplicationHeuristic for tuples
, fbHasTooManyArguments
, constraintFromUser path -- From .type files
, unaryMinus (Overloading‘elem‘options)
] ++
[similarNegation | Overloading‘notElem‘options] ++
[unifierVertex | UnifierHeuristics‘elem‘options]))] ++

[inPredicatePath | Overloading‘elem‘options] ++
[avoidApplicationConstraints, avoidNegationConstraints
, avoidTrustedConstraints, avoidFolkloreConstraints
,firstComeFirstBlamed -- Will delete all except the first
]

[Faculty of Science
Information and Computing Sciences]

53

The Helium message §III

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

(2,9): Warning: Definition "len" is not used

(1,11): Type error in constructor

expression : :

type : a -> [a] -> [a]

expected type : [Int] -> [Int] -> b

probable fix : use ++ instead

[Faculty of Science
Information and Computing Sciences]

54

Example: permute function arguments §III

test :: Parser Char String
test = option "" (token "hello!")

In Helium:

(2,8): Type error in application

expression : option "" (token "hello!")

term : option

type : Parser a b -> b -> Parser a b

does not match : String -> Parser Char String -> c

probable fix : flip the arguments

[Faculty of Science
Information and Computing Sciences]

55

Limitations of Helium §III

I The Helium language is relatively small

I A major limitation of the type inference process: consistent
binding groups are never blamed.

myfold f z [] = [z]
myfold f z (x : xs) = myfold f (f z x) xs

rev = myfold (flip (:)) []

palin :: Eq a => [a] −> Bool
palin xs = rev xs == xs

I Helium blames palin, some other systems can blame
myfold instead. Signatures for rev and myfold improve
Helium’s message.

I Note: we use our intuition of what rev and palin do, a
compiler (typically) cannot.

[Faculty of Science
Information and Computing Sciences]

56

Summary §III

We have described a parametric type inferencer

I Constraint-based: specification and implementation are
separated

I Standard algorithms can be simulated by choosing an order
for the constraints

I Two implementations are available to solve the constraints

I Type graph heuristics help in reporting the most likely
mistake

solve constraints

global (type graph)

solve constraints

greedy

flatten

treeconstraints

collectAST tree
constraint constraint

list
substitution +

type errors

type rules
specialized treewalk

type graph
heuristics

