
Simulating a Manycore Processor:

A Scalable Functional Model for the Adapteva Epiphany Architecture

Ola Jeppsson
Chalmers University of Technology

Gothenburg, SWEDEN
olaj@student.chalmers.se

Sally A. McKee
Chalmers University of Technology

Gothenburg, SWEDEN
mckee@chalmers.se

ABSTRACT
For many decades, Moore’s law allowed processor archi-
tects to consistently deliver higher-performing designs by in-
creasing clock speeds and increasing Instruction-Level Par-
allelism. This approach also led to ever increasing power
dissipation. The trend for the past decade has thus been
to place multiple (simpler) cores on chip to enable coarser-
grain parallelism and greater throughput, possibly at the
expense of single-application performance.

Adapteva’s Epiphany architecture carries this approach
to an extreme: it implements simple RISC cores with 32K
of explicitly managed memory, stripping away caches and
speculative hardware and replacing a shared bus with a sim-
ple mesh. The result is a scalable, low-power architecture:
the 64-core Epiphany-IV is estimated to deliver 70 (single
precision) GFLOPS per watt. How to adapt software to
fully exploit this impressive design remains an open prob-
lem. Hardware/software codesign would have developed a
simulator that application programmers could use prior to
the availability of the actual chips, but the only simulator
available prior to the work presented here models a single
Epiphany core. We build on that to develop a scalable, par-
allel functional chip simulator.

1. INTRODUCTION
For many decades, shrinking feature sizes have enabled

more and more transistors on chip, which allowed processor
architects to consistently deliver higher-performing proces-
sors by raising clock speeds and adding more hardware to
increase Instruction-Level Parallelism. Unfortunately, tech-
niques like speculative and out-of-order execution not only
increase performance — they also increase power consump-
tion, which, in turn, increases heat dissipation.

For instance, the single-core era culminated in 2005 for
Intel, the industry leader for desktop computer microproces-
sors. The company cancelled its Tejas and Jayhawk projects,
which analysts attributed to heat problems [4]. Power and
thermal considerations have now become first-class design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCC ’14 Lund, SWEDEN
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

parameters. Instead of focusing on single-core performance,
chip manufacturers have turned to multicore designs to de-
liver greater parallel performance in their processor chips.
Many (including Intel and Adapteva) predict 1000-core chips
by the year 2020.

Before we began this project, there existed only a single-
core Epiphany simulator: simulating an Epiphany chip with
all cores running concurrently was not possible. Without
full-chip simulation, hardware and software design decisions
must be made based on analysis and experience or by pro-
totyping. Having a scalable simulator makes it possible to
explore richer hardware design spaces (and would be wel-
comed by the Adapteva designers) and makes it possible to
develop and optimize scalable applications (even before the
chips for which they are designed become available).1

2. ADAPTEVA EPIPHANY
First, we briefly introduce the Epiphany architecture. Most

information needed to implement the simulator can be found
in the reference manual [2]. Other information has come
from the community forums and, in a few cases, testing
things on hardware.

The Epiphany architecture is a many-core processor de-
sign consisting of “tiny” RISC cores connected in a 2D mesh
on-chip network. Both the cores and the NoC have been de-
signed for scalability and energy efficiency, and therefore
many things one would expect in modern multicore proces-
sors have been stripped away. For instance, there are no
inter-core buses, no caches (and no cache-coherency proto-
col), and no speculation (not even branch prediction). The
result is a very energy-efficient architecture that can achieve
up to 70 GFLOPS/Watt [2] and scale to 1000s of cores.

2.1 RISC Cores
The cores are simple RISCs with dual-issue pipelines, one

single-precision FPU, and two integer ALUs. The ISA in-
cludes about 40 instructions (depending on how you count).
A core can execute two floating-point operations (e.g., multiply-
accumulate) and one load operation per clock cycle. The
cores have no caches. The register file has 64 general-purpose
registers. All registers are memory mapped. Each core
has two event timers, and the interrupt controller supports
nested interrupts. DMA units per core support two parallel
transactions.

1The Adapteva community has over 5,000 registered mem-
bers, and over 10,000 evaluation boards have been sold.

mailto:olaj@student.chalmers.se

Figure 1: Epiphany Architecture [2]

2.2 Network-on-Chip
Figure 1 shows the 2D mesh layout of the NoC. The

Epiphany implements separate networks for different types
of traffic: one for reads (the rMesh), one for on-chip writes
(the cMesh), and one for off-chip writes (the xMesh). We
collectively refer to these as the eMesh. Messages are first
routed east-west, then north-south. Four eLink routers con-
nect the cores on their north, south, east, and west edges.
Total off-chip bandwidth is 6.4 GB/s, and total on-chip net-
work bandwidth is 64 GB/s at every core router, assuming
a clock frequency of 1GHz.

2.3 Memory Model
The architecture has a shared, globally addressable 32-bit

(4GB) memory address space. An address is logically di-
vided into the coreID (upper 12 bits) and offset (lower 20
bits). Thus, every core can address a dedicated 1 MB mem-
ory region. The upper six bits of the coreID determine the
core’s row; the lower six determine its column. An address
with coreID is set to zero aliases to the local core’s memory
region. The architecture thus supports up to 4095 cores.

The architecture supports TESTSET (for synchroniza-
tion), LOAD, and STORE operations. The upper 16th
of each core’s memory region holds memory-mapped reg-
isters. The configurations on the market (Epiphany-III and
Epiphany-IV) also map a portion of the address space to
32MB of external RAM.

All local memory accesses have a strong memory ordering,
i.e., they take effect in the same order as they were issued.
Memory accesses routed through one of the three NoCs have
a weaker memory ordering. The router arbitration and dis-
patch rules are deterministic, but the programmer is not al-
lowed to make assumptions regarding synchronization, since
there is no way to know the global “system state”. Section
4.2 of the reference manual [2] lists the only guarantees on
which the programmer can depend (summarized in Table 1).

3. THE GNU DEBUGGER
The simulator uses the common simulator framework for

gdb (the GNU debugger), which is widely used and serves
as the defacto standard debugger in the open-source com-
munity. Written by Richard Stallman in the 1980s, it was
maintained by Cygnus Solutions throughout the 1990s until
they merged with Red Hat in 1999. During this time gdb
gained most of its target support and many gdb-based sim-
ulators were written. Like the Adapteva simulator on which
we base our work, most of these are for embedded systems.

gdb is divided into three main subsystems: user interface,
target control interface, and symbol handling [6]. Simula-

All local memory accesses have a strong memory ordering,
i.e., they take effect in the same order as they were issued.

All memory requests that enter the NoC obey the following:

Load operations complete before the returned data is
used by a subsequent instruction

Load operations using data previously written use the
updated values

Store operations eventually propagate to their ultimate
destination

Table 1: Memory Ordering Guarantees

gdb run

remoteexec simulator

API

User
interfaces

Targets

Figure 2: gdb Overview

tors are most concerned with the user interface and target
control interface. Compiling gdb with a simulator target cre-
ates two binaries, epiphany-elf-gdb and epiphany-elf-run.
epiphany-elf-gdb is linked with the target simulator (in
our case the Epiphany simulator) and presents the standard
gdb user interface. epiphany-elf-run is a stand-alone tool
that connects to the simulator target and runs a binary pro-
vided as a command-line argument.

3.1 Simulator Framework
The GNU toolchain (binutils, gcc, gdb) has been ported

to many architectures over the years, and since writing a
simulator in the process makes it easier to test generated
code, gdb has acquired several simulator targets. The pro-
cess generally includes these steps:

• define the CPU components (register file, program counter,
pipeline), instruction set binary format, and instruc-
tion semantics in a CPU definition file;
• write architecture-specific devices;
• write needed support code for a main-loop generator

script; and
• write simulator interface code.

The CPU definition file is written in an embedded Scheme-
based domain specific language. That definition is fed through
CGEN [3] (CPU tools GENerator) to create C files for in-
struction decoding and execution within the simulator frame-
work. Since code for the simulator interface and main loop
tends to be similar across architectures, an existing simula-
tor target can often be used as a base. For example, parts of
the Epiphany implementation originate from an Mitsubishi
M32R port.

4. IMPLEMENTATION

CPU Simulator eMesh SimulatorMemory Access

CPU Simulator eMesh SimulatorMemory Access

Shared Memory

 CPU State

 CPU State

 Core SRAM

Core SRAM

External RAM

Figure 3: Simulator Overview

We next discuss details of our simulator implementation.
Figure 3 shows how we extend the single-core simulator to
model a many-core system. Our design is process-based: for
every core in the simulated system we launch a epiphany-elf-
run process. When the Epiphany simulator target is initial-
ized, it also initializes the mesh simulator, which connects
to a shared memory file. The mesh network simulator uses
POSIX shared memory to connect relevant portions of each
core simulator via a unified address space. All memory re-
quests are routed through the mesh simulator. The register
file resides in the cpu_state structure, but since the mesh
simulator for some operations needs to access remote CPU
state, we also store that in the shared address space.

4.1 Single-Core Simulator Integration
The core simulator upon which we build was written by

Embecosm Ltd [1]. on behalf of Adapteva. Most instruction
semantics had already been defined, but due to the design of
the gdb simulator framework, the simulator lacked support
for self-modifying code in the modeled system. Due to the
small local memories (32KB) in the Epiphany cores, execut-
ing code must be able to load instructions dynamically (like
software overlays). Enabling self-modifying code required
that we modify mechanisms intended to speed simulation.
For instance, a semantics cache maintains decoded target
machine instructions, and in the original simulator code,
writes to addresses in the semantics cache would update
memory but not invalidate the instructions in the cache.

We map the entire simulated 32-bit address space to a
“shim” device that forwards all memory requests to the
eMesh network simulator. Recall that the CPU state of all
cores resides in the shared address space, where the eMesh
simulator can access it easily.

algorithm 1 shows pseudo code for the simulator main
loop. The highlighted lines are the original single-core main
loop. Lines 1-6 are inserted by the main-loop generator
script. The instruction set has an “IDLE” function that
puts the core in a low-power state and disables the program
sequencer. We implement something similar in software: in
line 7 we check whether the core is in the active state, and
if not, we sleep until we get a wakeup event.

In line 12 we ensure that only instructions inside the core’s
local memory region can ever reside in the semantics cache.

Algorithm 1: Main Loop (simplified for illustration)
Highlighted lines are the original main loop

1 while True do
2 sc ← scache.lookup(PC);
3 if sc = ∅ then
4 insn ← fetch_from_memory(PC);
5 sc ← decode(insn);
6 scache.insert(PC, sc);
7 old_PC ← PC;
8 if core is in active state then
9 PC ← execute(sc);

10 else
11 wait_for_wakeup_event();
12 if old_PC ̸∈ local memory region then
13 scache.invalidate(old_PC);
14 if external_mem_write_flag then
15 scache.flush();
16 external_mem_write_flag ← False;
17 if ext_scr_write_slot.reg ̸= -1 then
18 reg_write(ext_scr_write_slot.reg,
19 ext_scr_write_slot.value);
20 ext_scr_write_slot.reg ← -1;
21 signal_scr_write_slot_empty();
22 PC ← handle_out_of_band_events(PC);

Without this constraint we would need to do an invalidate
call to all cores’ semantics caches on all writes. In line 14
we check whether the external write flag is set, and if so, we
flush the entire semantics cache. This flag is always set on
a remote core when there is a write to that core’s memory.

In line 17 we check whether another core has a pending
write request to a special core register. Writes to special core
registers are serialized on the target core because they might
alter internal core state. Finally, in line 23 we handle out-
of-band events that might have occurred. Such events might
affect program flow and are usually triggered by writes to
special core registers, e.g., by interrupts or reset signals.

4.2 eMesh Simulator
As shown in Figure 3, the eMesh simulator creates a

shared address space accessible by all simulated cores. This
is accomplished via the POSIX shared memory API. We use
POSIX threads (pthreads) for interprocess communication.

The eMesh simulator provides an API for all types of
memory transactions (LOAD, STORE, TESTSET) and func-
tions to connect and disconnect to the shared address space.
We also provide a client API so that other components can
access the Epiphany address space (e.g., to model the exter-
nal host or to instrument a simulated application).

Every memory request must be translated. The address
translator maps an address in the Epiphany address space to
its corresponding location in the simulator address space. It
also determines to which type of memory (core SRAM, ex-
ternal DRAM, memory-mapped registers [general-purpose
or special-core], or invalid) the address corresponds.

After the address is translated, the request is serviced.
How this is done depends on the type of memory. Mem-
ory accesses to core SRAM and external DRAM are imple-

mented as native loads and store operations; the target core
need not be invoked.

Memory mapped registers are a little trickier. All writes
to memory-mapped registers are serialized on the target
core. This is accomplished with one write slot, a mutex,
and a condition variable. Reads to special-core registers are
implemented via normal load instructions. Since reads from
memory-mapped general-purpose registers are only allowed
when the target core is inactive, we must check this before
allowing the request.

We created a backend for e-hal (the Epiphany hardware
abstraction layer) that uses the client API. This lets us com-
pile Parallella host applications natively for x86_64 without
code modification2. We experimented with cross compiling
some example programs (from the epiphany-examples di-
rectory on the Adaptiva github account) with generally good
results. Obviously, programs that use implicit synchroniza-
tion or use core functionality not yet supported do not work.

We have also extended the mesh simulator with network-
ing support. This is implemented in MPI [7] and is a compile-
time option. We use MPI’s RMA (remote memory access)
API to implement normal memory access (core SRAM and
external RAM). We implement all register accesses with nor-
mal message passing and a helper thread on the remote side.
We implement TESTSET with MPI_compare_and_swap(),
which is only available with MPI-3.0 [5]. Since we use both
threads and MPI-3.0 we require a fairly recent MPI imple-
mentation compiled with MPI_THREADS_MULTIPLE support.

4.3 epiphany-elf-sim
As noted, the simulator is process-based, i.e., one sim-

ulated core maps to one system process. When we began
development, we started these processes by hand (which is
cumbersome and does not scale). We therefore created a
command-line tool that makes it easy to launch simulations.
Mesh properties and the program(s) that should be loaded
onto the cores are given as command-line arguments, and
the tool spawns and manages the core simulator processes.

5. RESULTS
The simulator currently supports most features not marked

as LABS (i.e., untested or broken functionalities) in the ref-
erence manual, with the exception of DMA and event timers.
The simulator can execute millions of instructions per sec-
ond and scales up 4095 cores running on a single computer.
With the networking backend, we have run tests with up
to 768 simulated cores spread over 48 nodes in an HPC
environment. In larger single-node simulations the mem-
ory footprint averages under 3MB per simulated core. The
biggest design problem from a performance perspective is
that writes from non-local (external) cores result in flushing
the entire semantics cache (see algorithm 1, line 14) instead
of just invalidating the affected region.

6. FUTURE WORK
The two most notable missing CPU features are DMA and

event timers. We believe that DMA can be implemented ad-
equately with the current eMesh simulator design. For the
event timers, some of the sources are harder to implement
2All data structures must have the same memory layout in
both the 32-bit and 64-bit versions.

than others. Some requires a more accurate instruction tim-
ing model. Some of the possible event sources are emitted
when packets flow through the NoC-router connected to the
CPU.

We would like to add support for more advanced mesh
features like multi-cast and user-defined routing rules. One
obvious solution for more accurate routing is message pass-
ing. We could make MPI a hard dependency and spawn an
extra router thread in every simulator process. We could
use event queues (like MPI_Send() but without MPI). Or
we could model the mesh as a directed graph and let the
initiating core route the request all the way to the target
core, using locks on the edges for sequencing messages. This
should result in fewer context switches.

Before a simulation starts, all cores synchronize on a bar-
rier, but after that the cores are not rate-limited and can
“drift apart”. Even though the simulator remains function-
ally correct, making implicit timing assumptions can still
render programs faulty. The core simulators need to have a
sense of global time.

The current simulator is purely functional, and thus it
lacks a timing model. Adding such a timing model will en-
able more accurate performance analysis.

7. CONCLUSIONS
We have modified a single-core Epiphany simulator and

integrated it with our own mesh simulator to model the
Epiphany network-on-chip. This has enabled us to do full
chip simulations modeling large numbers of cores. Although
most of the necessary basic functionality is in place, the tool
is still a work-in-progress, and we welcome others who would
like to contribute to its further development. Source code is
available from http://github.com/olajep/epiphany-gdb and
will likely soon be included in the Epiphany Parallella SDK.

8. REFERENCES
[1] Embecosm Ltd. URL: http://www.embecosm.com.
[2] Adapteva Inc. Epiphany Architecture Reference, Mar.

2014. URL: http:
//www.adapteva.com/docs/epiphany_arch_ref.pdf.

[3] D. Evans and et al. CGEN: CPU tools GENerator.
URL: https://sourceware.org/cgen/.

[4] M. Flynn and P. Hung. Microprocessor design issues:
Thoughts on the road ahead. Micro, IEEE,
25(3):16–31, May 2005. doi:10.1109/MM.2005.56.

[5] M. P. I. Forum. MPI: A Message-Passing Interface
Standard Version 3.0, 09 2012. Chapter author for
Collective Communication, Process Topologies, and
One Sided Communications.

[6] J. Gilmore and S. Shebs. GDB Internals. Technical
report, 2013.

[7] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2:
Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, USA, 1999.

http://github.com/olajep/epiphany-gdb
http://www.embecosm.com
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
https://sourceware.org/cgen/
http://dx.doi.org/10.1109/MM.2005.56

	Introduction
	Adapteva Epiphany
	RISC Cores
	Network-on-Chip
	Memory Model

	The GNU Debugger
	Simulator Framework

	Implementation
	Single-Core Simulator Integration
	eMesh Simulator
	epiphany-elf-sim

	Results
	Future Work
	Conclusions
	References

