What is π ?

Yves Bertot

August 2012

Introduction

- A history of π
- Modifying the library: removing axioms
- Computing π

Historically

- π is the surface of the circle, or the perimeter
- How does one model surface computation?
- Main tool: computing the surface under a curve
- Riemann or Newton integration
- Curve : $y=\sqrt{\left(1+x^{2}\right)}$

Coq standard library's approach

- Calculus: limits, derivatives, power series
- Alternated series
- Sine and Cosine functions defined as power series

Sine and Cosine definitions

- $\cos x=\sum_{i=0}^{\infty} \frac{(-1)^{i} x^{2 i}}{(2 i)!}$
- $\sin x=\sum_{i=0}^{\infty} \frac{(-1)^{i} x^{2 i+1}}{(2 i+1)!}$
- In formalized mathematics, we have to show that the limits exists

Formal definitions

Definition infinite_sum (s:nat $->$ R) (l:R) : Prop := forall eps:R, eps > 0 ->
exists N : nat, forall n :nat, ($n>=N$) \%nat $->$
R_dist (sum_f_RO s n) l < eps.

Definition cos_n (n:nat) : R :=

$$
(-1) ~ \sim ~ n ~ / ~ I N R ~(f a c t ~(2 * n)) . ~
$$

Definition cos_in (x l:R) : Prop := infinite_sum (fun i:nat => cos_n i * x ^ i) l.

Lemma exist_cos : forall $x: R,\left\{1: R \mid c o s _i n ~ x ~ l ~\right\} . ~$ (* Proof using a general lemma: d'Alembert's theorem *)

Definition cos (x:R) : R :=
let (a,_) := exist_cos (Rsqr x) in a.

Where is the circle?

- Lemma cos_plus: $\forall x, \cos (x+y)=\cos x \cos y-\sin x \sin y$
- Long and difficult proof, ad hoc
- Should have done a general lemma (Mertens for the product of series)
- Lemma sin2_cos2 : $\forall x, \sin ^{2} x+\cos ^{2} x=1$
- Easy consequence
- Down to here, everthing is nice, but where is π

Standard library definition of π until 2012

- $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{2 i+1}$
- An alternated series: the proof of convergence is easy
- Converges slowly, but good enough to show that $3<\pi<4$
- $\pi<4$ at the first term, $3<\pi$ at the $8^{\text {th }}$
- Why choose this definition?

Required properties of π for trigonometry

- $\sin \frac{\pi}{2}=1:$ admitted as an axiom
- $\cos \frac{\pi}{2}=0$: Important property
- $\cos \left(\frac{\pi}{2}-x\right)=\sin x$
- Deduce all properties of sin from properties of cos
- Proof of the axiom: work done by G. Allais

Proving the axiom: The tangent function

- Important properties of tan
- $\tan \left(\frac{\pi}{4}\right)=1, \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}, \tan ^{\prime} x=1+\tan ^{2} x$
- Move interest to the inverse function of tan, called atan.
- atan $^{\prime} x=\frac{1}{1+x^{2}}$
- Taylor expansion : $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}+\cdots(-1)^{i} x^{2 i}$
- Integrating gives : atan $x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots(-1)^{i} \frac{x^{2 i+1}}{2 i+1}$
- We want to compute atan 1

Removing the axiom an elusive target

- Nice proof by G. Allais
- Reciprocal functions and their derivatives
- The power series $\sum_{i=0}^{\infty} \frac{(-1)^{i} x^{2 i+1}}{2 i+1}$ converges between 0 and 1
- The power series and atan coincide in this interval
- But all properties of sin, hence tan and atan depend on the axiom

How to write the sums

Lemma lower_bound_atan :
forall $\mathrm{x} \mathrm{n}, \mathrm{O}<\mathrm{x}<1$->
sum_f_R0 (fun i => (-1)^ i * x^(2 * i + 1) /
INR (2 * i + 1)) (2 * n + 1)
< atan x .

- Difficulty with many types of numbers
- This proof done by comparing the derivatives
- Proofs about derivability often clumsy

Removing the axiom : drastic step

- Choose a new definition for π
- Show that cos has a single root p between 0,2
- Between 0 and 2, $\sum_{i=0}^{2 * k+1} \frac{(-1)^{i} x^{2 i}}{(2 i)!}<\cos x<\sum_{i=0}^{2 * k+1} \frac{(-1)^{i} x^{2 i}}{(2 i)!}$
- Thus $\cos 2<0$
- We also have $0<\cos 1$, and \cos is continuous
- The Intermediate value theorem gives a root between 1 and 2
- Define π as $2 p$
- All properties of sin remain, but no axiom anymore
- Proofs about tan, atan go through and justify the power series

Machin formulas

- Better to compute atan for numbers smaller than 1
- Use the second trigonometric property of tan
- $\operatorname{atan} \frac{1}{5}+\operatorname{atan} \frac{2}{3}=\operatorname{atan} 1=\frac{\pi}{4}$
- $\operatorname{atan} \frac{1}{5}+\operatorname{atan} \frac{7}{17}=\operatorname{atan} \frac{2}{3} \ldots$
- After more computations : $\frac{\pi}{4}=4 \operatorname{atan} \frac{1}{5}-\operatorname{atan} \frac{1}{239}$
- This was used in 1706 to compute the first 100 decimals of π
- Computes fairly fast in Coq
- Other Machin formulas can be obtained
- $\operatorname{atan} \frac{1}{2}+\operatorname{atan} \frac{1}{3} \quad 2 \operatorname{atan} \frac{1}{3}+\operatorname{atan} \frac{1}{7}$ $3 \operatorname{atan} \frac{1}{4}+\operatorname{atan} \frac{1}{20}+\operatorname{atan} \frac{1}{1085}$ $44 \operatorname{atan} \frac{1}{57}+7 \tan \frac{1}{239}-12 \operatorname{atan} \frac{1}{682}+24 \operatorname{atan} \frac{1}{12943}$ (last one taken from Krebbers and Spitters)

What about the area of the circle?

- Area under the curve $y=\sqrt{1-x^{2}}$ between -1 and 1
- Necessary link to asin, easily formalized by mirroring atan
- Small difficulty: asin is defined only between -1 and 1 , atan is defined over all \mathbb{R}
- Propose to re-design IVT to accept functions only locally continuous and derivable

Lemma derivable_pt_lim_asin :

```
forall x, -1 < x < 1 ->
derivable_pt_lim asin x (1/sqrt (1 - x^2)).
```


Approximation by inscribed polygons

Archimedes' approximations by polygons

- I don't know what Archimedes did, but...
- You can compute the surface of triangles as used in the polygons
- $a=2 b \sqrt{1-b^{2}} ; b=\sqrt{\frac{1-\sqrt{1-\mathrm{a}^{2}}}{2}}$
- Similar formula for a polygon outside

Proving and computing Archimedes' sequence

- Starting with an hexagon $a_{0}=\frac{\sqrt{3}}{2}, a_{1}=\frac{1}{2}$
- Successive values: 2.6, 3, 3.1, 3.132, 3.139, 3.141
- Proof of correctness: we show that the sequence is $3 \times 2^{n} \sin \frac{\pi}{3 \times 2^{n}}$
- This sequence can be computed in Coq, using Zsqrt to approximate $\sqrt{ }$ (not proved correct)

Coq code for Archimedes's sequence

Definition Qsqrt x p : Q :=
Zsqrt_plain ((Qnum x * 10 ~ (2 * p))/(QDen x)) \# 10 ^ p.

Fixpoint Qarch n p : Q :=
match n with

```
    0%nat => Qsqrt (3#4) p
|S m => Qsqrt ((1 - Qsqrt(1 - Qarch m p^2) p) * (1#2)) p
```

end.

Definition compute_pi_archimedes n p:= dec (((3 * 2 ~ n)\#1) * Qarch n p) (Z_of_nat p).

