Formalized foundations of polynomial real analysis

Cyril Cohen

INRIA Saclay - île-de-France
LIX École Polytechnique
INRIA Microsoft Research Joint Centre
Cyril.Cohen@inria.fr

14/10/2010

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework program of the European Commission.

Formalize real polynomial analysis in the SSReflect extension of the Coq proof assistant.
SSReflect provides a lot of tools and uses a lot of specific programming techniques in the domain of finite groups and combinatorics.
Reuse theses techniques to handle more <continuous» theories.

Real Closed Fields

Algebraic structure of reals: Real Closed Fields (RCF)
Field + Ordered + Intermediate value theorem for polynomials

Decidable Equality

In SSReflect, structures have decidable equality.
We can define this (implicit) coercion in Coq
Coercion is_true (b : bool) : Prop := (b = true).
SSReflect

- uses intensively this coercion
- has facilities to go from one point of view to the other (bool-Prop reflection).
We then see boolean equality as propositional equality, for free.

What do we need?

\Rightarrow Make case analysis on $x \leq y$
\Rightarrow Combine statements (using transitivity with both $\leq<$, compatibility with operations, etc ..)
\Rightarrow Speak about signs and absolute value
\Rightarrow Use max and min

Making le a boolean predicate.
Like before, consider this boolean predicate as proposition through the coercion is_true
\Rightarrow Use equalities to rewrite expressions with order

- $(x+z<=y+z)=(x<=y)$
- ($\operatorname{sign} x==1)=(0<x)$
- ...

Making le a boolean predicate.
Like before, consider this boolean predicate as proposition through the coercion is_true
\Rightarrow Use equalities to rewrite expressions with order

- $(x+z<=y+z)=(x<=y)$
- $(\operatorname{sign} x==1)=(0<x)$
- ...
\Rightarrow Use if $\mathrm{x}<=\mathrm{y}$ then ... else ... in programs
- Multiple lemmas about transitivity and compatibility between le, lt and field operations
\Rightarrow Need for good naming conventions.

Strict comparison

We'll define the strict order lt from the large one le by : Definition lt x y := ~~ (le y x). and prove its properties.

Ordered ring mixin

```
Record mixin_of (R : ringType) := Mixin \{
    le : rel R;
    _ : antisymmetric le;
    _ : transitive le;
    _ : total le;
    _ : forall z x y, le x y -> le (x + z) (y + z);
    _ : forall x y, le 0 x \(\rightarrow\) le 0 y \(->\) le \(0(x * y)\)
\}.
```


Integration in existing SSReflect algebraic hierarchy

Integration in existing SSReflect algebraic hierarchy

Integration in existing SSReflect algebraic hierarchy

Rolle Theorem for polynomials

A first hint that RCF is a good abstraction of reals :
We are able to prove :
Lemma rolle : forall (a b : R) (p : \{poly R\}),
$\mathrm{a}<\mathrm{b} \rightarrow \mathrm{p} .[\mathrm{a}]=0->\mathrm{p} .[\mathrm{b}]=0->$
exists $c, a<c<b / \backslash p^{\wedge}() .[c]==0$.

Sketch of the constructive proof

Lemma rolle_weak : forall (a b : R) (p : \{poly R\}),

$$
\begin{aligned}
& \mathrm{a}<\mathrm{b}->\mathrm{p} \cdot[\mathrm{a}]=0->\mathrm{p} \cdot[\mathrm{~b}]=0-> \\
& \text { exists } c, a<c<b \\
& \quad /\left(\mathrm{p}^{-\prime}() .[\mathrm{c}]=0 \backslash / \mathrm{p} \cdot[\mathrm{c}]=0\right) .
\end{aligned}
$$

And conclude rolle from it by iterating rolle_weak. It terminates because P has less than $\operatorname{deg}(P)$ roots.

What else can we do with IVT?

Particularly useful examples

- Rolle Theorem
- Mean Value Theorem
- Write a function that computes the real roots of any polynomial
- Prove that given a polynomial P, and a root x of P, one can find a neighborhood of x on which P has no root except x.
- ...

Isolation of roots

Towards quantifier elimination

First step of Quantifier Elimination in RCF.
Which entails decidability of the theory of RCF.

Let's pick one concept from it : Cauchy Index (proof almost done).

Definition of the Cauchy Index

$$
\operatorname{CInd}\left(\frac{P}{Q},\right] a, b[)=
$$

number of positive jumps - number of negative jumps

Useful property of Cauchy Index

Property

If $P(a), P(b), Q(a), Q(b) \neq 0$ then,

$$
\begin{aligned}
& \operatorname{CInd}\left(\frac{P}{Q},\right] a, b[)+\operatorname{CInd}\left(\frac{Q}{P},\right] a, b[)= \\
& \begin{cases}\operatorname{sign}(P Q(b)) & \text { if } P Q(a) P Q(b)<0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Idea of the proof : combinatorics

Idea of the proof: combinatorics

Idea of the proof : combinatorics

Idea of the proof: combinatorics

Jumps in the list of signs of $P Q$. $[-1 ; 1 ;-1 ;-1 ; 1 ;-1 ; 1]$

Trick of the proof

The sum of jumps of a list $I=x_{0}, \ldots, x_{n} \in\{-1,1\}^{*}$ verifies a useful property: it's the jump between x_{0} and x_{n}.
i.e.

$$
\begin{cases}\operatorname{sign}\left(x_{n}\right) & \text { if } x_{0} x_{n}<0 \\ 0 & \text { else }\end{cases}
$$

Idea of the proof : combinatorics

Jumps in the list of signs of $P Q .[-1 ; 1 ;-1 ;-1 ; 1 ;-1 ; 1]$ Jump between the first sign -1 and the last one 1, i.e.

$$
\begin{cases}\operatorname{sign}(P Q(b)) & \text { if } P Q(a) P Q(b)<0 \\ 0 & \text { else }\end{cases}
$$

Conclusion

A library which provides usable tools.
It is used in works in progress on

- Quantifier elimination in RCF
- Formalisation of Bernstein Polynomials

What next?

- Instantiate the Real Closed Fields Structure
- Prove some reflexive tactics using it
- ... to provide a little more automation
- Generalize notion of continuity in this context
- Extend to further real analysis

Thank you for your attention. Any questions?

