Quantifier elimination in real closed fields : a formal proof

Cyril Cohen Assia Mahboubi
INRIA Saclay - Île-de-France
LIX École Polytechnique
INRIA Microsoft Research Joint Centre (cyril.cohenlassia.mahboubi)@inria.fr

September 9, 2011

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework program of the European Commission.

An example

$$
\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)
$$

Question: is it true or false ?

An example

$\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)$
Question: is it true or false ?

- Yes! It is true or false

An example

$$
\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)
$$

Question: is it true or false ?

- Yes! It is true or false
- Can we decide this kind of problem ?

An example

$$
\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)
$$

Question: is it true or false ?

- Yes! It is true or false
- Can we decide this kind of problem ?

An example

$\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)$
Question: is it true or false ?

- Yes! It is true or false
- Can we decide this kind of problem ? \Rightarrow Yes, by eliminating quantifiers

The problem we would like to solve

Quantifier elimination procedure for first order formulas on classical real numbers and involving the following constructions:

- field operations (,,$+- \times, \ldots$)
- equality and comparison

Formalised and verified in Coq

Reducing the problem

We reduced the problem to eliminating " $\exists x$ " in :

$$
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0
$$

Reducing the problem

We reduced the problem to eliminating " $\exists x$ " in :

$$
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0
$$

Sketch of the solution from there:

- Count the number of roots x of P such that for all $i, Q_{i}(x)>0$
- if it is positive then it is true, else it is false

Case of one variable

$$
\begin{gathered}
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0 \\
\text { with } P, Q_{i} \in R[X]
\end{gathered}
$$

- getting the roots: OK (root finding procedure)
- testing the signs of the Q_{i} : OK

Case of multiple variables

$$
\begin{gathered}
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0 \\
\text { with } P, Q_{i} \in R\left[X_{1}, \ldots, X_{n}\right][X]
\end{gathered}
$$

We need a characterisation of the existence of a solution, using an algebraic combinations of the variables.

Tarski query

Definition :

$$
\mathrm{TQ}(P, Q)=\sum_{x \in \operatorname{roots}(P)} \operatorname{sign}(Q(x))
$$

We showed we can characterise algebraically the sign of this quantity using the X_{j}

Constraints

So we have :

$$
\mathrm{TQ}(P, Q)=\sum_{x \in \operatorname{roots}(P)} \operatorname{sign}(Q(x))
$$

And want to know whether :

$$
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0
$$

Constraints

So we have :

$$
\mathrm{TQ}(P, Q)=\sum_{x \in \operatorname{roots}(P)} \operatorname{sign}(Q(x))
$$

And want to know whether :

$$
\exists x, P(x)=0 \wedge \bigwedge Q_{i}(x)>0
$$

i.e. whether

$$
\begin{aligned}
& \left(\sum_{x \in \operatorname{rroots}(P)}\left[\forall i, Q_{i}(x)>0\right]\right)>0 \\
& \text { with [true] }=1 \text { and [false] }=0
\end{aligned}
$$

If only one Q_{i}

$$
\exists x, P(x)=0 \wedge Q(x)>0
$$

We need :

$$
\sum_{E \operatorname{Eroots}(P)}[Q(x)>0]
$$

If only one Q_{i}

$$
\exists x, P(x)=0 \wedge Q(x)>0
$$

We need :

$$
\sum_{k \in \operatorname{roots}(P)}[\operatorname{sign}(Q(x))=1]
$$

If only one Q_{i}

$$
\exists x, P(x)=0 \wedge Q(x)>0
$$

We need :

$$
\mathrm{C}^{1}(P, Q):=\sum_{x \in \operatorname{roots}(P)}[\operatorname{sign}(Q(x))=1]
$$

If only one Q_{i}

$$
\exists x, P(x)=0 \wedge Q(x)>0
$$

We need :

$$
\begin{aligned}
\mathrm{C}^{\varepsilon}(P, Q) & :=\sum_{x \in \operatorname{roots}(P)}[\operatorname{sign}(Q(x))=\varepsilon] \\
& \text { with } \varepsilon \in\{1,-1,0\}
\end{aligned}
$$

Relating TQ and C^{\circledR}

$$
\mathrm{TQ}(P, Q)=\sum_{x \in \operatorname{roots}(P)} \operatorname{sign}(Q(x))
$$

Relating TQ and $\mathrm{C}^{\boxed{ }}$

$\mathrm{TQ}(P)=\sum_{x \in \operatorname{roots}(P)} \operatorname{sign}(Q(x))$
We omit Q for the sake of readability

Relating TQ and C^{\circledR}

$$
\mathrm{TQ}_{z}=\sum_{x \in z} \operatorname{sign}(Q(x))
$$

$$
\text { with } z=\operatorname{roots}(P)
$$

Relating TQ and C^{\circledR}

$$
\mathrm{TQ}_{z}=\sum_{x \in z \wedge Q(x)>0} \operatorname{sign}(Q(x))+\sum_{x \in \geq \wedge Q(x)<0} \operatorname{sign}(Q(x))
$$

with $z=\operatorname{roots}(P)$

Relating TQ and C^{\circledR}

with $z=\operatorname{roots}(P)$

Relating TQ and C^{\circledR}

with $z=\operatorname{roots}(P)$

Relating TQ and C^{\circledR}

$$
\mathrm{TQ}_{z}=\sum_{x \in z}[Q(x)>0]-\sum_{x \in z}[Q(x)<0]
$$

with $z=\operatorname{roots}(P)$

Relating TQ and C^{ε}

$$
\mathrm{TQ}_{z}=\sum_{x \in z}[\operatorname{sign}(Q(x))=1]-\sum_{x \in z}[\operatorname{sign}(Q(x))=-1]
$$

with $z=\operatorname{roots}(P)$

Relating TQ and $\mathrm{C}^{\boxed{ }}$

with $z=\operatorname{roots}(P)$

Relating TQ and C^{\circledR}

$$
\mathrm{TQ}_{z}(Q)=\mathrm{C}_{z}^{1}(Q)-\mathrm{C}_{z}^{-1}(Q)
$$

with $z=\operatorname{roots}(P)$
We restore the " printing" of Q

Relating TQ and C^{\circledR}

$$
\begin{aligned}
& \mathrm{TQ}_{z}(Q)=\mathrm{C}_{z}^{1}(Q)-\mathrm{C}_{2}^{-1}(Q) \\
& \mathrm{TQ}_{z}\left(Q^{2}\right)=\mathrm{C}_{z}^{1}(Q)+\mathrm{C}_{z}^{-1}(Q)
\end{aligned}
$$

$$
\text { with } z=\operatorname{roots}(P)
$$

Relating TQ and C^{\circledR}

$$
\begin{aligned}
& \mathrm{TQ}_{z}(Q)=\mathrm{C}_{z}^{1}(Q)-\mathrm{C}_{2}^{-1}(Q) \\
& \mathrm{TQ}_{z}\left(Q^{2}\right)=\mathrm{C}_{1}^{1}(Q)+\mathrm{C}_{2}^{-1}(Q) \\
& \mathrm{TQ}_{z}(1)=\mathrm{C}_{z}^{1}(Q)+\mathrm{C}_{z}^{-1}(Q)+\mathrm{C}_{z}^{0}(Q)
\end{aligned}
$$

with $z=\operatorname{roots}(P)$

Matricial equation

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{TQ}_{z}(Q) \\
\mathrm{TQ}_{z}\left(Q^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\mathrm{C}_{z}^{1}(Q) \\
\mathrm{C}_{z}^{-1}(Q) \\
\mathrm{C}_{z}^{0}(Q)
\end{array}\right) \\
\text { with } z=\operatorname{roots}(P)
\end{gathered}
$$

Matricial equation

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{TQ}_{z}(Q) \\
\mathrm{TQ}_{z}\left(Q^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\mathrm{C}_{z}^{1}(Q) \\
\mathrm{C}_{z}^{-1}(Q) \\
\mathrm{C}_{z}^{0}(Q)
\end{array}\right) \\
\text { with } z=\operatorname{roots}(P) \\
\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right|=2
\end{gathered}
$$

Matricial equation

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{TQ}_{z}(Q) \\
\mathrm{TQ}_{z}\left(Q^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\mathrm{C}_{z}^{1}(Q) \\
\mathrm{C}_{z}^{-1}(Q) \\
\mathrm{C}_{z}^{0}(Q)
\end{array}\right) \\
\text { with } z=\operatorname{roots}(P) \\
\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \text { is invertible }
\end{gathered}
$$

For many Q_{i}

We generalise C^{ε} again :

$$
\mathrm{C}^{\varepsilon_{1}, \ldots, \varepsilon_{n}}\left(P, Q_{1}, \ldots, Q_{n}\right)=\sum_{x \in \operatorname{roots}(P)}\left[\forall i, \operatorname{sign}\left(Q_{i}(x)\right)=\varepsilon_{i}\right]
$$

Matricial system

$$
\left(\begin{array}{c}
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 \\
1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 \\
0 \\
1 & -1 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 \\
1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1
\end{array}\right)\left(\begin{array}{c}
\mathrm{C}_{-}^{1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{-}^{1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,0}\left(Q_{1}, Q_{2}\right)
\end{array}\right)
$$

with $z=\operatorname{roots}(P)$

Matricial system

Example with 2 polynomials Q_{i}

$$
\left(\begin{array}{c}
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \otimes\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\mathrm{C}_{z}^{1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,0}\left(Q_{1}, Q_{2}\right)
\end{array}\right)
$$

with $z=\operatorname{roots}(P)$

Matricial system

Example with 2 polynomials Q_{i}

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \otimes 2\left(\begin{array}{c}
\mathrm{C}_{z}^{1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,0}\left(Q_{1}, Q_{2}\right)
\end{array}\right) \\
\text { with } z=\operatorname{roots}(P)
\end{gathered}
$$

Matricial system

Example with 2 polynomials Q_{i}

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}^{2} Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}\left(Q_{1}\right) \\
\mathrm{TQ}_{z}\left(Q_{2}^{2}\right) \\
\mathrm{TQ}_{z}(1)
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \otimes 2\left(\begin{array}{c}
\mathrm{C}_{z}^{1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,-1}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{-1,0}\left(Q_{1}, Q_{2}\right) \\
\mathrm{C}_{z}^{0,0}\left(Q_{1}, Q_{2}\right)
\end{array}\right) \\
\text { with } z=\operatorname{roots}(P)
\end{gathered}
$$

We formalised in Coq

Ordered structures:

- lots of lemmas: good statements and good naming conventions
- intervals and neighbourhoods infrastructure

Polynomials

- properties about pseudo-division
- properties about roots and multiplicity
- root finding using dichotomy, neighbourhoods
- Cauchy index
\Rightarrow gives the algebraic characterisation for TQ

Issues during the formalisation

Amongst others :

- Imprecision of the paper proof (Algorithms in Real Algebraic Geometry)
- Problems with dependent types and data-structures

Paper proof Imprecision

Relation between the $\mathrm{TQ}_{z}\left(\bar{Q}^{\bar{\sigma}}\right)$ and $\mathrm{C}_{z}^{\bar{\varepsilon}}(\bar{Q})$

- Need to compute all the expressions the form
- $\mathrm{TQ}_{z}\left(Q_{1}^{\sigma_{1}} Q_{2}^{\sigma_{2}} \ldots Q_{n}^{\sigma_{n}}\right)$ for $\sigma \in\{0,1,2\}$.
- $\mathrm{C}_{z}^{\varepsilon_{1}, \ldots, \varepsilon_{n}}\left(Q_{1}, \ldots, Q_{n}\right)$ for $\varepsilon \in\{1,-1,0\}$.

And organise them properly inside the matrices

- Induction hypothesis non-trivial and omitted in the paper " with $z=\operatorname{roots}(P) " \longrightarrow$ for any $z "$

Matrix data-structure

Matrices encoded as finite functions (Ssreflect library)

- type is dependent on the size of the matrix
- forall A i j, A = B <-> A i j = B i j

Thanks to the dependent type, we can easily express block matrices

Matrix data-structure

Matrices encoded as finite functions (Ssreflect library)

- M : 'M[R]_(m, n)
- forall A i j, A = B <-> A i j = B i j

Thanks to the dependent type, we can easily express block matrices

Dependent types issues

Nine block 3^{n}-matrices put together gives a $3^{n}+3^{n}+3^{n}$-matrix.

Not convertible to 3^{n+1}-matrix (as such)

Reduction is locked

- Ssreflect matrices are locked
\Rightarrow Prevents unwanted partial evaluation
- No computation for a simple 3-matrix determinant :

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

- done using rewriting lemmas

Context

- Proof done on any discrete real closed field (with decidable comparison)
- Procedure by reflection : reification of the logic

An example

$$
\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)
$$

Question: is it true or false ?

- Yes! It is true or false
- Can we decide this kind of problem ? \Rightarrow Yes, by eliminating quantifiers
- Is there an efficient algorithm ?

An example

$$
\forall x \in \mathbb{R},\left(x>0 \Rightarrow \exists y \in \mathbb{R},\left(y^{2} \leq x \wedge y^{5}-y+3 x=0\right)\right)
$$

Question: is it true or false ?

- Yes! It is true or false
- Can we decide this kind of problem ? \Rightarrow Yes, by eliminating quantifiers
- Is there an efficient algorithm ?

Effective computation and related work

- Would executable if data-structures allowed it.
- Not efficient

Related work :

- Tactic for HOL Light (different spirit) : John Harisson
- Cylindrical Algebraic Decomposition in Coq (no completed proof yet): Assia Mahboubi

Conclusion and future work

Conclusion:

- Makes first order theory of real closed fields decidable
- Opens the way to proving the Cylindrical Algebraic Decomposition (CAD)
Future work:
- Integrate automation (fourier, ring) to the development
- Prove CAD correctness

The End

Thank you for your attention. Questions ?

