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Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain).

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es

Abstract. Kenzo is a Computer Algebra system devoted to Algebraic
Topology, written in the Common Lisp programming language. In this
paper, programs which allow us to analyze monochromatic digital images
with the Kenzo system are presented. Besides a complete automated
proof of the correctness of our programs is provided. The proof is carried
out using ACL2, a system for proving properties of programs written in
(a subset of) Common Lisp.

1 Introduction

In the field of Intelligent Information Processing, mechanized reasoning systems
provide a chance of increasing the reliability of software systems, namely Com-
puter Algebra systems. This paper is devoted to a concrete case study of this
topic in Algebraic Topology, a mathematical discipline which studies topological
spaces by algebraic means, in particular through algebraic invariants, such as
homology and homotopy groups.

In spite of being an abstract mathematical subject, Algebraic Topology me-
thods can be implemented in software systems and then applied to different
contexts such as coding theory [15], robotics [11] or digital image analysis [6] (in
this last case, in particular in the study of medical images [14]). Nevertheless, if
we want to use these systems in real life problems, we have to be completely sure
that the systems are safe. Therefore, to increase the reliability of these methods
and the systems that implement them, we can use Theorem Proving tools.

In the context of Computational Algebraic Topology, we can highlight the
Kenzo system [5], a Common Lisp program which works with the main mathe-
matical structures used in Algebraic Topology. Kenzo was written by Francis
Sergeraert mainly as a research tool and has got relevant results which have not
been confirmed nor refuted by any other means. Then, the question of Kenzo re-
liability (beyond testing) arose in a natural way. Several works (see [1] and [13])
have focussed on studying the correctness of Kenzo fragments with the ACL2
theorem prover [9]. Other works have focussed on verifying the correctness of
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Kenzo algorithms using higher-order Theorem Provers tools such as Isabelle or
Coq, see [2,4].

However, up to now, the question of using the Kenzo system as a tool to study
problems outside the Algebraic Topology context has not been undertaken. In
this paper, we present the application of Kenzo to the analysis of monochromatic
digital images by means of simplicial complexes (a generalization of the notion
of graph to higher dimensions). To this aim, a new Kenzo module, implement-
ing simplicial complexes and its application to study digital images, has been
developed. In addition, the correctness of this module has been certified using
ACL2.

The rest of this paper is organized as follows. Section 2 introduces the basic
mathematical background needed. The method to analyze digital images by
means of simplicial complexes is explained in Section 3. The new Kenzo module
is presented in Section 4; the ACL2 certification of that module is given in
Section 5. This paper ends with a section of Conclusions and Further work, and
the bibliography.

The interested reader can consult the complete development in [7].

2 Mathematical Preliminaries

The following definitions and results about them can be found in [12].
First of all, we introduce the notion of simplicial complex, instrumental in our

context since it gives a concrete combinatorial description of otherwise rather ab-
stract objects, which makes many important topological computations possible.
Let us start with the basic terminology.

Let V be an ordered set, called the vertex set. An (ordered abstract) simplex
over V is any ordered finite subset of V . An (ordered abstract) n-simplex over V
is a simplex over V whose cardinality is equal to n+ 1. Given a simplex α over
V , we call subsets of α faces of α.

Definition 1 An (ordered abstract) simplicial complex over V is a set of sim-
plexes K over V such that it is closed by taking faces; that is to say: ∀α ∈ K, if
β ⊆ α then β ∈ K.

Let K be a simplicial complex. Then the set Sn(K) of n-simplexes of K is the
set made of the simplexes of cardinality n+ 1 of K.

A facet of a simplicial complex K over V is a maximal simplex with respect
to the subset relation, ⊆, among the simplexes of K.

Let us note that a finite simplicial complex can be generated from its facets
taking the union of the powerset of each one of its facets. In general, we have
the following definition.

Definition 2 Let S be a finite sequence of simplexes, then the union of the
powerset of each one of the elements of S is, trivially, a simplicial complex called
the simplicial complex associated with S.

Then, the following algorithm can be defined.



Algorithm 3 .
Input: a sequence of simplexes S.
Output: the simplicial complex associated with S.

In spite of being a powerful tool, many common constructions in Topology
are difficult to make in the framework of simplicial complexes explicit. It soon
became clear around 1950 that the notion of simplicial set is more convenient.

Definition 4 A simplicial set K, is a union K =
⋃
q≥0

Kq, where the Kq are

disjoints sets, together with functions:

∂qi : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηqi : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to the relations:

(1) ∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j,

(2) ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j,

(3) ∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j,

(4) ∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i ,

(5) ∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1.

The ∂qi and ηqi are called face and degeneracy operators respectively. The ele-
ments of Kq are called q-simplexes.

The following definition provides a link between the notions of simplicial set
and simplicial complex.

Definition 5 Let SC be an (ordered abstract) simplicial complex over V . Then
the simplicial set K(SC) canonically associated with SC is defined as follows. The
set Kn(SC) is Sn(SC), that is, the set made of the simplexes of cardinality n+ 1
of SC. In addition, let (v0, . . . , vq) be a q-simplex, then the face and degeneracy
operators of the simplicial set K(SC) are defined as follows:

∂qi ((v0, . . . , vi, . . . , vq)) = (v0, . . . , vi−1, vi+1, . . . , vq),
ηqi ((v0, . . . , vi, . . . , vq)) = (v0, . . . , vi, vi, . . . , vq).

From this definition the following algorithm can be presented.

Algorithm 6 .
Input: a simplicial complex SC.
Output: the simplicial set K(SC) canonically associated with SC.

Now, we are going to introduce a central notion in Algebraic Topology which
plays a key role in the study of some properties of concrete objects, as we will
see in the following section. We consider Z as the ground ring.



Definition 7 A chain complex C∗ is a pair of sequences (Cn, dn)n∈Z where for
every n ∈ Z: the component Cn is a Z-module (the chain group of dimension
n); the component dn is a module morphism dn : Cn → Cn−1 (the differential
map); and, the composition dndn+1 is null (dndn+1 = 0).

The n-homology group of C∗, denoted by Hn(C∗), is defined as the quotient
Ker dn/Im dn+1.

In an intuitive sense, homology groups measure n-dimensional holes in topo-
logical spaces. For instance, H0 measures the number of connected components
of a space.

We can define now the link between simplicial sets and chain complexes.

Definition 8 Let K be a simplicial set, we define the chain complex associated
with K, C∗(K) = (Cn(K), dn)n∈N, in the following way: (1) Cn(K) = Z[Kn] is
the free Z-module generated by Kn; and, (2) the map dn : Cn(K) → Cn−1(K)
is given by dn(x) =

∑n
i=0(−1)i∂i(x) for x ∈ Kn and it is extended by linearity

to the combinations c =
∑m

i=1 λixi ∈ Cn(K).
Then, we can define the following algorithm.

Algorithm 9 .
Input: a simplicial set K.
Output: the chain complex C∗(K) canonically associated with K.

Finally, homology groups of a simplicial set K are defined as the ones of the
chain complex C∗(K); and the homology groups of a simplicial complex SC as
the ones of the simplicial set K(SC).

3 The simplicial framework to study digital images

The definitions presented in the previous section are classical definitions from
Algebraic Topology. However, since our final goal consists in working with ma-
thematical objects coming from digital images, let us show how this machinery
from Algebraic Topology may be used in this particular context.

It is worth noting that there are several methods to construct a simplicial
complex from a digital image, see [3]. Let us explain one of them; roughly speak-
ing, the chosen method triangulates images as can be seen in Figure 1.

We work with monochromatic two dimensional images. Then, an image can
be represented by a finite 2-dimensional array of 1’s and 0’s in which the black
pixels are represented by 1’s and the white pixels are represented by 0’s.

Let I be an image encoded as a 2-dimensional array of 1’s and 0’s. Let
V = N × N be the vertex set, each vertex is a pair of natural numbers. Let
p = (a, b) be the coordinates of a black pixel in I. For each p we obtain
two triangles which are two facets of the simplicial complex associated with I.
Namely, for each p = (a, b) we obtain the triangles: ((a, b), (a+1, b), (a+1, b+1))
and ((a, b), (a, b+1), (a+1, b+1)). If we repeat the process for the coordinates of
all the black pixels in I, we obtain all the facets of a simplicial complex associated
with I, let us call it KI . Then, the following algorithm can be defined.



Fig. 1. A digital image and its simplicial complex representation

Algorithm 10 .
Input: a digital image I.
Output: the facets of the simplicial complex KI .

Once that we have obtained the list of facets from a digital image, we can
apply all the machinery explained in the previous section to obtain properties of
the image through the computation of homology groups, see our methodology
diagrammatically described in Figure 2.
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Fig. 2. Methodology to analyze digital images

The interpretation of properties of I from the homology groups in dimension
0 and 1 of KI , which are either null or a direct sum of Z components, is as
follows. The number of Z components of the homology groups of dimension
0 and 1 measures respectively the number of connected components and the
number of holes of the image. For instance, the homology groups of the image of
Figure 1 are H0 = Z⊕ Z and H1 = Z⊕ Z⊕ Z; so, the image has two connected
components and three holes.

4 A new Kenzo module

We have developed a new Common Lisp module to work with digital images. This
module implements algorithms 3, 6 and 10 since Algorithm 9 and the one which
computes the homology groups of a chain complex are already implemented in
Kenzo. The following lines are devoted to explain the essential part of these
programs.

The first of our programs implements Algorithm 3, that is, it generates a
simplicial complex from a sequence of simplexes. The description of the main
function in charge of this task is shown here:



simplicial-complex-generator ls: From a list of simplexes, ls, this function
generates the associated simplicial complex, that is to say, another list of
simplexes.

The second program implements Algorithm 6. It generates the simplicial set
canonically associated with a simplicial complex using the already implemented
Kenzo class Simplicial-Set. The main function is:

ss-from-sc simplicial-complex: From a simplicial complex, simplicial-complex,
this function builds the associated simplicial set, a Simplicial-Set instance.

Finally, Algorithm 10 is implemented in the following function.

generate-facets-image digital-image: From a digital image, digital image, this
function constructs the facets of the associated simplicial complex, that is,
a list of simplexes.

To provide a better understanding of the new tools, an elementary example of
their use is presented now. Let us consider the image of the left side of Figure 1.
That image can be represented by the following 2-dimensional array (a list of
lists) which is assigned to the variable image:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf image
’((0 1 0 0 1) (1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1) (0 0 0 1 0))) z

((0 1 0 0 1) (1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1) (0 0 0 1 0))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, we can chain our programs to obtain a simplicial set which will
be assigned to the variable ss-image:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf ss-image (ss-from-sc (simplicial-complex-generator
(generate-facets-image image)))) z

[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We obtain as result a Simplicial-Set object that can be used to compute
the homology groups thanks to the Kenzo kernel (which internally constructs
the chain complex associated with the simplicial set).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology ss-image 0 2) z
Homology in dimension 0:
Component Z
Component Z
Homology in dimension 1:
Component Z
Component Z
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As can be seen, the result is the expected one.

5 Certification of the Kenzo module in ACL2

As we have said previously, we want to formalize the correctness of the functions
simplicial-complex-generator, ss-from-sc and generate-facets-image; that is



to say, proving that our implementation of algorithms 3, 6 and 10 is correct. To
this aim, we have used the ACL2 Theorem Prover [9].

ACL2 is, at the same time, a programming language (an extension of an
applicative subset of Common Lisp), a first-order logic for specifying and prov-
ing properties of the programs defined in the language and a theorem prover
supporting mechanized reasoning in the logic.

Since both Kenzo and ACL2 are Common Lisp programs we can verify the
correctness of Kenzo functions in ACL2. Some works were already carried out
in this line, for instance, Algorithm 9 was formalized using ACL2 in [10].

The formalization of our implementation of algorithms 3 and 10 in ACL2 is
split into two steps. First of all, we need some auxiliary functions which define
the necessary concepts to prove our theorems. Namely, we need to define the
notions of simplex, list of simplexes, set of simplexes, face, member and digital
image in ACL2. Subsequently, lemmas stating the correctness and completeness
of our programs are proved. Eventually, we can state and prove the following
theorems.

ACL2 Theorem 11 Let ls be a list of simplexes, then
(simplicial-complex-generator ls) constructs the simplicial complex whose list
of facets is ls.

ACL2 Theorem 12 Let I be a digital image, then (generate-facets-image I)
constructs the facets of the simplicial complex KI .

The proof of the above theorems, in spite of involving some auxiliary results,
is achieved by ACL2 without any special hindrance due to the fact that our pro-
grams follow simple inductive schemas that are suitable for the ACL2 reasoning
heuristics.

The task of certifying the correctness of our implementation of Algorithm 6,
that is to say, the ss-from-sc function, has not been undertaken from scratch,
but we have used a previous work presented in [8] that allows us to prove the
correctness of simplicial sets constructed in the Kenzo system. In [8], we have
developed a tool which generates a proof that a Kenzo object K is a simplicial
set if K fulfills some minimal conditions.

In this way, the proof effort is considerably reduced to prove the correctness
of ss-from-sc since we only need to prove 2 properties, and the tool presented
in [8] automatically generates the proof of the correctness of our implementation.
Then, we have the following theorem.

ACL2 Theorem 13 Let sc be a simplicial complex, then (ss-from-sc sc) con-
structs the simplicial set associated with the simplicial complex sc.

6 Conclusions and further work

The programs presented in this paper allow one to analyze digital images using
the methodology diagrammatically described in Figure 2. The implementation



has been written in Common Lisp, enhancing the Kenzo system but also allowing
us to certify the correctness of the programs in the ACL2 Theorem Prover.

As further work, we are interested in certifying the computation of homology
groups, the only step in our methodology which has not been formalized. More-
over, we could also develop new programs to be applied in different contexts
such as coding theory or robotics. Likewise that in the case of digital images,
the formal verification of those programs with a Theorem Prover tool would be
significant.
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