
Type Classes for Mathematics

Robbert Krebbers
Joint work with Bas Spitters and Eelis van der Weegen1

Radboud University Nijmegen

March 31, 2011

1The research leading to these results has received funding from the
European Union’s 7th Framework Programme under grant agreement nr.
243847 (ForMath).

Goal

Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.

For example:

I Real number arithmetic based on an abstract interface for
underlying dense ring.

Interfaces for mathematical structures

We need solid interfaces for:

I Algebraic hierarchy (groups, rings, fields, . . .)

I Relations, orders, . . .

I Categories, functors, universal algebra, . . .

I Numbers: N, Z, Q, . . .

I Operations, . . .

Interfaces for mathematical structures

Engineering challenges:

I Structure inference.

I Multiple inheritance/sharing.

I Convenient algebraic manipulation (e.g. rewriting).

I Idiomatic use of names and notations.

Solutions in Coq

Existing solutions:

I Dependent records

I Packed classes (Ssreflect)

I Modules

New solution: use type classes!

Fully unbundled

Definition reflexive {A: Type} (R : A → A → Prop) : Prop := ∀ a, R a a.

Flexible in theory, inconvenient in practice:

I Nothing to bind notations to

I Declaring/passing inconvenient

I No structure inference

Fully bundled

Record SemiGroup : Type := {
sg car :> Setoid ;
sg op : sg car → sg car → sg car ;
sg proper : Proper ((=) =⇒ (=) =⇒ (=)) sg op ;
sg ass : ∀ x y z, sg op x (sg op y z) = sg op (sg op x y) z) }

Problems:

I Prevents sharing, e.g. group together two CommutativeMonoids
to create a SemiRing.

I Multiple inheritance (diamond problem).

I Long projection paths.

Unbundled using type classes

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Class SemiRing A {e : Equiv A} {plus: RingPlus A}
{mult: RingMult A} {zero: RingZero A} {one: RingOne A} : Prop := {

semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.

Changes:

1. Make SemiRing a type class (“predicate class”).

2. Use operational type classes for relations and operations.

Examples
Instance syntax

Instance nat equiv: Equiv nat := eq.
Instance nat plus: RingPlus nat := plus.
Instance nat 0: RingZero nat := 0%nat.
Instance nat 1: RingOne nat := 1%nat.
Instance nat mult: RingMult nat := mult.

Instance: SemiRing nat.
Proof.

. . .
Qed.

Examples
Usage syntax

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.
Proof. . . . Qed.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)). (* f x & f (-x) = f x - f x *)

rewrite ← preserves sg op. (* f (x - x) = f x - f x *)

rewrite 2!right inverse. (* f unit = unit *)

apply preserves mon unit.
Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros. (* y = z *)

apply (left cancellation (+) x). (* x + y = x + z *)

now rewrite (commutativity x z).
Qed.

Algebraic hierarchy

SemiGroup

Setoid

Monoid

CommutativeMonoid Group

AbGroupSemiRing

Ring

IntegralDomain

Field

Features:

I No distinction between axiomatic and
derived inheritance.

I No sharing/multiple inheritance
problems.

I No rebundling.

I No projection paths.

I Instances opaque.

I Terms never refer to proofs.

I Overlapping instances harmless.

I Seamless setoid/rewriting support.

I Seamless support for morphisms
between structures.

Number structures

Our specifications:

I Naturals: initial semiring.

I Integers: initial ring.

I Rationals: field of fractions of Z.

Remarks:

I Use some category theory and universal algebra for initiality.

I Models of these structures are unique up to isomorphism.

I Stdlib structures, nat, N, Z, bigZ, Q, bigQ are models.

Order theory

PartialOrder

AntiSymmetric PreOrder Setoid

Reflexive Transitive

SemiRingOrder

RingOrder

Features:

I Interacts well with algebraic
hierarchy.

I Support for order morphisms.

I Default orders on N, Z and Q.

I Total semiring order uniquely
specifies the order on N.

I Total ring order uniquely
specifies the order on Z and Q.

Basic operations

I Common definitions:
I nat pow: repeated multiplication,
I shiftl: repeated multiplication by 2.

I Implementing these operations this way is too slow.

I We want different implementations for different number
representations.

I And avoid definitions and proofs becoming implementation
dependent.

Hence we introduce abstract specifications for operations.

Abstract specifications of operations
Using Σ-types

I Well suited for simple functions.

I An example:

Class Abs A ‘{Equiv A} ‘{Order A} ‘{RingZero A} ‘{GroupInv A}
:= abs sig: ∀ x, { y | (0 ≤ x → y = x) ∧ (x ≤ 0 → y = −x)}.

Definition abs ‘{Abs A} := λ x : A, ‘ (abs sig x).

I Program allows to create instances easily.

Program Instance: Abs Z := Zabs.

I But unable to quantify over all possible input values.

Abstract specifications of operations
Bundled

I For example:

Class ShiftL A B ‘{Equiv A} ‘{Equiv B} ‘{RingOne A} ‘{RingPlus A}
‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl : A → B → A ;
shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) shiftl ;
shiftl 0 :> RightIdentity shiftl 0 ;
shiftl S : ∀ x n, shiftl x (1 + n) = 2 ∗ shiftl x n }.

Infix ”� ” := shiftl (at level 33, left associativity).

I Here shiftl is a δ-redex, hence simpl unfolds it.

I For BigN, x � n becomes BigN.shiftl x n.

I As a result, rewrite often fails.

Abstract specifications of operations
Unbundled

I For example:

Class ShiftL A B := shiftl: A → B → A.
Infix ”� ” := shiftl (at level 33, left associativity).

Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} ‘{Equiv B}
‘{RingOne A} ‘{RingPlus A} ‘{RingMult A}
‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) (�) ;
shiftl 0 :> RightIdentity (�) 0 ;
shiftl S : ∀ x n, x � (1 + n) = 2 ∗ x � n }.

I The δ-redex is gone due to the operational class.

I Remark: not shiftl x n := x ∗ 2 ˆ n since we cannot take a
negative power on the dyadics.

Theory on basic operations

I Theory on shifting with exponents in N and Z is similar.

I Want to avoid duplication of theorems and proofs.

Class Biinduction R ‘{Equiv R}
‘{RingZero R} ‘{RingOne R} ‘{RingPlus R} : Prop

:= biinduction (P: R → Prop) ‘{!Proper ((=) =⇒ iff) P} :
P 0 → (∀ n, P n ↔ P (1 + n)) → ∀ n, P n.

I Some syntax:

Section shiftl.
Context ‘{SemiRing A} ‘{!LeftCancellation (.∗.) (2:A)}

‘{SemiRing B} ‘{!Biinduction B} ‘{!ShiftLSpec A B sl}.

Lemma shiftl base plus x y n : (x + y) � n = x � n + y � n.

Global Instance shiftl inj: ∀ n, Injective (�n).
End shiftl.

Decision procedures

The Decision class collects types with a decidable equality.

Class Decision P := decide: sumbool P (¬ P).

I Declare a parameter ‘{∀ x y, Decision (x ≤ y)},
I Use decide (x ≤ y) to decide whether x ≤ y or ¬ x ≤ y.

I Canonical names for deciders.

I Easily define/compose deciders.

Decision procedures
Eager evaluation

Consider:

Record Dyadic := dyadic { mant : Int ; expo : Int }. (* m ∗ 2e *)

Global Instance dy precedes: Order Dyadic := λ x y,
ZtoQ (mant x) ∗ 2 ˆ (expo x) ≤ ZtoQ (mant y) ∗ 2 ˆ (expo y)

Problem:

I decide (x ≤ y) is actually @decide Dyadic (x ≤ y) dyadic dec.

I x ≤ y is evaluated due to eager evaluation (in Prop).

We avoid this problem introducing a λ-abstraction:

Definition decide rel ‘(R : relation A) {dec : ∀ x y, Decision (R x y)}
(x y : A) : Decision (R x y) := dec x y.

Decision procedures
Example

Context ‘{!PartialOrder (≤) } {!TotalOrder (≤) } ‘{∀ x y, Decision (x ≤ y)}.
Global Program Instance sprecedes dec: ∀ x y, Decision (x < y) | 9 := λ x y,

match decide rel (≤) y x with
| left E ⇒ right
| right E ⇒ left
end.

Quoting

I Find syntactic representation of semantic expression

I Required for proof by reflection (ring, omega)

Usually implemented at meta-level (Ltac, ML).
Alternative: object level quoting.

I Unification hints (Matita)

I Canonical structures (Ssreflect)

Quoting

Our implementation: type classes!
Instance resolution:

I Syntax-directed

I Prolog-style resolution

I Unification-based programming language

Quoting
Example

Trivial example:

Class Quote (x : A) := { quote : Exp ; eval quote : x ≡ Denote quote }.

Instance q unit: Quote mon unit := { quote := Unit }.
Instance q op ‘(q1 : Quote t1) ‘(q2 : Quote t2) : Quote (t1 & t2)

:= { quote := Op (quote t1) (quote t2) }.

More interestingly: use type classes to represent heaps.

Quoting

I Automatically rewrite to point-free.

I Automatically derive uniform continuity.

I Plan: integrate with universal algebra.

Implementation of the reals

I Define the reals over a dense set A as [O’Connor]:

R := CA := {f : Q+ → A | f is regular}

I C is a monad.

I To define a function R→ R: define a uniformly continuous
function f : A→ R, and obtain f̌ : R→ R.

I Efficient combination of proving and programming.

Need an abstract specification of the dense set.

Implementation of the reals
Approximate rationals

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.

Implementation of the reals

Verified versions of:

I Basic field operations (+, ∗, -, /)

I Exponentiation by a natural.

I Computation of power series.

I exp, arctan, sin and cos.

I π := 176∗arctan 1
57+28∗arctan 1

239−48∗arctan 1
682+96∗arctan 1

12943 .

I Square root using Wolfram iteration.

Implementation of the reals
Benchmarks

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.

I Now able to compute 2,000 decimals of π and 425 decimals of
exp π − π within one minute in Coq!

I (Previously 300 and 25 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).

Implementation of the reals
Improvements

I Flocq: more fine grained floating point algorithms.

I Type classified theory on metric spaces.

I native compute: evaluation by compilation to Ocaml.

I Newton iteration to compute the square root.

Conclusions

I Works well in practice.

I Match mathematical practice.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

I Greatly improved the performance of the reals.

Issues

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.

I Universe polymorphism (finite sequences as free monoid).

I Setoid rewriting with relations in Type.

I Dependent pattern match (quoting to UA-terms).

Sources

http://robbertkrebbers.nl/research/reals/

http://robbertkrebbers.nl/research/reals/

