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Goal

Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.

For example:

I Real number arithmetic based on an abstract interface for
underlying dense ring.



Interfaces for mathematical structures

We need solid interfaces for:

I Algebraic hierarchy (groups, rings, fields, . . . )

I Relations, orders, . . .

I Categories, functors, universal algebra, . . .

I Numbers: N, Z, Q, . . .

I Operations, . . .



Interfaces for mathematical structures

Engineering challenges:

I Structure inference.

I Multiple inheritance/sharing.

I Convenient algebraic manipulation (e.g. rewriting).

I Idiomatic use of names and notations.



Solutions in Coq

Existing solutions:

I Dependent records

I Packed classes (Ssreflect)

I Modules

New solution: use type classes!



Fully unbundled

Definition reflexive {A: Type} (R : A → A → Prop) : Prop := ∀ a, R a a.

Flexible in theory, inconvenient in practice:

I Nothing to bind notations to

I Declaring/passing inconvenient

I No structure inference



Fully bundled

Record SemiGroup : Type := {
sg car :> Setoid ;
sg op : sg car → sg car → sg car ;
sg proper : Proper ((=) =⇒ (=) =⇒ (=)) sg op ;
sg ass : ∀ x y z, sg op x (sg op y z) = sg op (sg op x y) z) }

Problems:

I Prevents sharing, e.g. group together two CommutativeMonoids
to create a SemiRing.

I Multiple inheritance (diamond problem).

I Long projection paths.



Unbundled using type classes

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Class SemiRing A {e : Equiv A} {plus: RingPlus A}
{mult: RingMult A} {zero: RingZero A} {one: RingOne A} : Prop := {

semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.

Changes:

1. Make SemiRing a type class (“predicate class”).

2. Use operational type classes for relations and operations.



Examples
Instance syntax

Instance nat equiv: Equiv nat := eq.
Instance nat plus: RingPlus nat := plus.
Instance nat 0: RingZero nat := 0%nat.
Instance nat 1: RingOne nat := 1%nat.
Instance nat mult: RingMult nat := mult.

Instance: SemiRing nat.
Proof.

. . .
Qed.



Examples
Usage syntax

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.
Proof. . . . Qed.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)). (* f x & f (-x) = f x - f x *)

rewrite ← preserves sg op. (* f (x - x) = f x - f x *)

rewrite 2!right inverse. (* f unit = unit *)

apply preserves mon unit.
Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros. (* y = z *)

apply (left cancellation (+) x). (* x + y = x + z *)

now rewrite (commutativity x z).
Qed.



Algebraic hierarchy

SemiGroup

Setoid

Monoid

CommutativeMonoid Group

AbGroupSemiRing

Ring

IntegralDomain

Field

Features:

I No distinction between axiomatic and
derived inheritance.

I No sharing/multiple inheritance
problems.

I No rebundling.

I No projection paths.

I Instances opaque.

I Terms never refer to proofs.

I Overlapping instances harmless.

I Seamless setoid/rewriting support.

I Seamless support for morphisms
between structures.



Number structures

Our specifications:

I Naturals: initial semiring.

I Integers: initial ring.

I Rationals: field of fractions of Z.

Remarks:

I Use some category theory and universal algebra for initiality.

I Models of these structures are unique up to isomorphism.

I Stdlib structures, nat, N, Z, bigZ, Q, bigQ are models.



Order theory

PartialOrder

AntiSymmetric PreOrder Setoid

Reflexive Transitive

SemiRingOrder

RingOrder

Features:

I Interacts well with algebraic
hierarchy.

I Support for order morphisms.

I Default orders on N, Z and Q.

I Total semiring order uniquely
specifies the order on N.

I Total ring order uniquely
specifies the order on Z and Q.



Basic operations

I Common definitions:
I nat pow: repeated multiplication,
I shiftl: repeated multiplication by 2.

I Implementing these operations this way is too slow.

I We want different implementations for different number
representations.

I And avoid definitions and proofs becoming implementation
dependent.

Hence we introduce abstract specifications for operations.



Abstract specifications of operations
Using Σ-types

I Well suited for simple functions.

I An example:

Class Abs A ‘{Equiv A} ‘{Order A} ‘{RingZero A} ‘{GroupInv A}
:= abs sig: ∀ x, { y | (0 ≤ x → y = x) ∧ (x ≤ 0 → y = −x)}.

Definition abs ‘{Abs A} := λ x : A, ‘ (abs sig x).

I Program allows to create instances easily.

Program Instance: Abs Z := Zabs.

I But unable to quantify over all possible input values.



Abstract specifications of operations
Bundled

I For example:

Class ShiftL A B ‘{Equiv A} ‘{Equiv B} ‘{RingOne A} ‘{RingPlus A}
‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl : A → B → A ;
shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) shiftl ;
shiftl 0 :> RightIdentity shiftl 0 ;
shiftl S : ∀ x n, shiftl x (1 + n) = 2 ∗ shiftl x n }.

Infix ”� ” := shiftl (at level 33, left associativity).

I Here shiftl is a δ-redex, hence simpl unfolds it.

I For BigN, x � n becomes BigN.shiftl x n.

I As a result, rewrite often fails.



Abstract specifications of operations
Unbundled

I For example:

Class ShiftL A B := shiftl: A → B → A.
Infix ”� ” := shiftl (at level 33, left associativity).

Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} ‘{Equiv B}
‘{RingOne A} ‘{RingPlus A} ‘{RingMult A}
‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) (�) ;
shiftl 0 :> RightIdentity (�) 0 ;
shiftl S : ∀ x n, x � (1 + n) = 2 ∗ x � n }.

I The δ-redex is gone due to the operational class.

I Remark: not shiftl x n := x ∗ 2 ˆ n since we cannot take a
negative power on the dyadics.



Theory on basic operations

I Theory on shifting with exponents in N and Z is similar.

I Want to avoid duplication of theorems and proofs.

Class Biinduction R ‘{Equiv R}
‘{RingZero R} ‘{RingOne R} ‘{RingPlus R} : Prop

:= biinduction (P: R → Prop) ‘{!Proper ((=) =⇒ iff) P} :
P 0 → (∀ n, P n ↔ P (1 + n)) → ∀ n, P n.

I Some syntax:

Section shiftl.
Context ‘{SemiRing A} ‘{!LeftCancellation (.∗.) (2:A)}

‘{SemiRing B} ‘{!Biinduction B} ‘{!ShiftLSpec A B sl}.

Lemma shiftl base plus x y n : (x + y) � n = x � n + y � n.

Global Instance shiftl inj: ∀ n, Injective (�n).
End shiftl.



Decision procedures

The Decision class collects types with a decidable equality.

Class Decision P := decide: sumbool P (¬ P).

I Declare a parameter ‘{∀ x y, Decision (x ≤ y)},
I Use decide (x ≤ y) to decide whether x ≤ y or ¬ x ≤ y.

I Canonical names for deciders.

I Easily define/compose deciders.



Decision procedures
Eager evaluation

Consider:

Record Dyadic := dyadic { mant : Int ; expo : Int }. (* m ∗ 2e *)

Global Instance dy precedes: Order Dyadic := λ x y,
ZtoQ (mant x) ∗ 2 ˆ (expo x) ≤ ZtoQ (mant y) ∗ 2 ˆ (expo y)

Problem:

I decide (x ≤ y) is actually @decide Dyadic (x ≤ y) dyadic dec.

I x ≤ y is evaluated due to eager evaluation (in Prop).

We avoid this problem introducing a λ-abstraction:

Definition decide rel ‘(R : relation A) {dec : ∀ x y, Decision (R x y)}
(x y : A) : Decision (R x y) := dec x y.



Decision procedures
Example

Context ‘{!PartialOrder (≤) } {!TotalOrder (≤) } ‘{∀ x y, Decision (x ≤ y)}.
Global Program Instance sprecedes dec: ∀ x y, Decision (x < y) | 9 := λ x y,

match decide rel (≤) y x with
| left E ⇒ right
| right E ⇒ left
end.



Quoting

I Find syntactic representation of semantic expression

I Required for proof by reflection (ring, omega)

Usually implemented at meta-level (Ltac, ML).
Alternative: object level quoting.

I Unification hints (Matita)

I Canonical structures (Ssreflect)



Quoting

Our implementation: type classes!
Instance resolution:

I Syntax-directed

I Prolog-style resolution

I Unification-based programming language



Quoting
Example

Trivial example:

Class Quote (x : A) := { quote : Exp ; eval quote : x ≡ Denote quote }.

Instance q unit: Quote mon unit := { quote := Unit }.
Instance q op ‘(q1 : Quote t1) ‘(q2 : Quote t2) : Quote (t1 & t2)

:= { quote := Op (quote t1) (quote t2) }.

More interestingly: use type classes to represent heaps.



Quoting

I Automatically rewrite to point-free.

I Automatically derive uniform continuity.

I Plan: integrate with universal algebra.



Implementation of the reals

I Define the reals over a dense set A as [O’Connor]:

R := CA := {f : Q+ → A | f is regular}

I C is a monad.

I To define a function R→ R: define a uniformly continuous
function f : A→ R, and obtain f̌ : R→ R.

I Efficient combination of proving and programming.

Need an abstract specification of the dense set.



Implementation of the reals
Approximate rationals

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.



Implementation of the reals

Verified versions of:

I Basic field operations (+, ∗, -, /)

I Exponentiation by a natural.

I Computation of power series.

I exp, arctan, sin and cos.

I π := 176∗arctan 1
57+28∗arctan 1

239−48∗arctan 1
682+96∗arctan 1

12943 .

I Square root using Wolfram iteration.



Implementation of the reals
Benchmarks

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.

I Now able to compute 2,000 decimals of π and 425 decimals of
exp π − π within one minute in Coq!

I (Previously 300 and 25 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).



Implementation of the reals
Improvements

I Flocq: more fine grained floating point algorithms.

I Type classified theory on metric spaces.

I native compute: evaluation by compilation to Ocaml.

I Newton iteration to compute the square root.



Conclusions

I Works well in practice.

I Match mathematical practice.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

I Greatly improved the performance of the reals.



Issues

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.

I Universe polymorphism (finite sequences as free monoid).

I Setoid rewriting with relations in Type.

I Dependent pattern match (quoting to UA-terms).



Sources

http://robbertkrebbers.nl/research/reals/

http://robbertkrebbers.nl/research/reals/

