Symbolic Manipulation and Biomedical Images*

Jónathan Heras, Gadea Mata, María Poza, and Julio Rubio

Department of Mathematics and Computer Science University of La Rioja Spain

June 13, 2012

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

Table of Contents

Table of Contents

1 Motivation

2 Mathematical preliminaries

Table of Contents

1 Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields

Table of Contents

1 Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

Table of Contents

1 Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

5 Application

Table of Contents

1 Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction
- 5 Application
- 6 Conclusions and further work

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Table of Contents

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

5 Application

6 Conclusions and further work

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Analysis of Biomedical Images

Problems

- Reliability
- Size of the images
- Huge time investment
- Many processes are repetitive tasks

Goal

Automatic, efficient and reliable methods

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Digital Algebraic Topology

Digital Image

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Digital Algebraic Topology

Digital Image

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Digital Algebraic Topology

Digital Image

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Digital Algebraic Topology

Digital Image Homology Groups $\begin{array}{l} H_0 = \mathbb{Z} \oplus \mathbb{Z} \\ H_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \end{array}$ $C_0 =$ vertices $C_1 =$ edges $C_2 = \text{triangles}$ Simplicial Complex Chain Complex

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Digital Algebraic Topology

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

The method

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

The method

Table of Contents

- 2 Mathematical preliminaries
 - 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

5 Application

6 Conclusions and further work

Simplicial Complex

Definition

Let V be a set, called the vertex set, a simplex over V is any finite subset of V

Simplicial Complex

Definition

Let V be a set, called the vertex set, a simplex over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in C, \ \textit{si} \ \beta \subseteq \alpha \Rightarrow \beta \in C$

Simplicial Complex

Definition

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in C, \text{ si } \beta \subseteq \alpha \Rightarrow \beta \in C$

Simplicial Complex

Definition

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in C, \text{ si } \beta \subseteq \alpha \Rightarrow \beta \in C$

Simplicial Complex

Definition

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in C, \text{ si } \beta \subseteq \alpha \Rightarrow \beta \in C$

Chain Complex

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

 $0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$

Example

$$0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$$

$$\begin{array}{rcl} C_0 & = & \mathbb{Z} \mbox{ [vertices]} & d_0(v) & = & 0 \\ C_1 & = & \mathbb{Z} \mbox{ [edges]} & d_1(v_1v_2) & = & v_2 - v_1 \\ C_2 & = & \mathbb{Z} \mbox{ [triangles]} & d_2(v_1v_2v_3) & = & v_2v_3 - v_1v_3 + v_1v_2 \end{array}$$

Example

$$0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$$

$$0 \leftarrow \mathbb{Z}^{26} \xleftarrow{d_1} \mathbb{Z}^{36} \xleftarrow{d_2} \mathbb{Z}^{18} \leftarrow 0$$

Homology

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)-module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)-module de q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For every degree $n \in \mathbb{Z}$, the n-th homology group of C_* is defined as the quotient:

$$H_n(C_*)=Z_n/B_n$$

Homology

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)-module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)-module de q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For every degree $n \in \mathbb{Z}$, the n-th homology group of C_* is defined as the quotient:

$$H_n(C_*)=Z_n/B_n$$

Geometrically:

- H₀ measures the number of connected components
- H₁ measures the number of holes

Reduction

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a tern $\rho = (f, g, h)$

satisfying the following relations:

1)
$$fg = id_{D_*}$$
;

2)
$$d_C h + h d_C = i d_{C_*} - g f;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Theorem

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, what implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

Table of Contents

1 Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
 - 4 From computation to verification through deduction

5 Application

6 Conclusions and further work

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

Intuitive idea

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

Intuitive idea

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Given a chain complex C_* and a dvf, V over C_*
 - $C_* \Rightarrow C_*^c$
 - generators of C_*^c are critical cells of C_*

Intuitive idea

- Reduce information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

• Given a chain complex C_* and a dvf, V over C_*

- $C_* \Rightarrow C_*^c$
- generators of C_*^c are critical cells of C_*

$$\begin{array}{c} \mathsf{0} \leftarrow \mathbb{Z}^{16} \xleftarrow{d_1} \mathbb{Z}^{32} \xleftarrow{d_2} \mathbb{Z}^{16} \leftarrow \mathsf{0} \\ \downarrow \\ \mathsf{0} \leftarrow \mathbb{Z} \xleftarrow{\widehat{d}_1} \mathbb{Z} \xleftarrow{\widehat{d}_2} \mathsf{0} \leftarrow \mathsf{0} \end{array}$$

Discrete Morse Theory

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex with distinguished \mathbb{Z} -basis $\beta_p \subset C_p$. A (p-1)-cell σ is a face of a p-cell τ if the coefficient of σ in $d\tau$ is non-null. It is a regular face if this coefficient is +1 or -1

Definition

A discrete vector field on C_* is a collection of pairs $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ satisfying the conditions:

Severy σ_i is some element of β_p, in which case the other corresponding component τ_i ∈ β_{p+1}. The degree p depends on i and in general is not constant

- 2 Every component σ_i is a *regular face* of the corresponding component τ_i
- \bigcirc A generator of C_* appears at most one time in V

Discrete Morse Theory

Definition

- A V-path of degree p is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \le k < m}$ satisfying:
 - 1 Every pair $((\sigma_{i_k}, \tau_{i_k}))$ is a component of V and the cell τ_{i_k} is a p-cell
 - **2** For every 0 < k < m, the component σ_{i_k} is a face of $\tau_{i_{k-1}}$, non necessarily regular, but different from $\sigma_{i_{k-1}}$

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{Z}$ is provided satisfying the property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$

Example: an admissible discrete vector field

Admissible x

Admissible \checkmark

Discrete Morse Theory

Definition

A cell χ which does not appear in a discrete vector field $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ is called a *critical cell*

Vector-Field Reduction Theorem

Let $C_* = (C_p, d_p \beta_p)_p$ be a free chain complex and $V = \{(\sigma_i, \beta_i)\}_{i \in \beta}$ be an admissible discrete vector field on C_* . Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Longrightarrow (C_p^c, d_p')$ where $C_p^c = \mathbb{Z} \left[\beta_p^c\right]$ is the free \mathbb{Z} -module generated by the critical p-cells

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Table of Contents

Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- From computation to verification through deduction

5 Application

6 Conclusions and further work

- Haskell as programming language
- *QuickCheck* to test the programs
- Coq/SSReflect to verify the correctness of the programs

Haskell

Algorithm (gen_adm_dvf)

Input: A matrix M Output: An admissible discrete vector field for M

Algorithm (*reduced_cc*)

Input: A chain complex C_* Output: A reduced chain complex \hat{C}_*

gen_adm_dvf [[1,0,1,1],[0,0,1,0],[1,1,0,1]]
[(0,0),(1,2),(2,1)]

- A specification of the properties which our program must verify
- Testing them
 - Towards verification
 - Detect bugs

```
> quickCheck M -> admissible (gen_adm_dvf M)
+ + + OK, passed 100 tests
```


Coq

- Theorem Prover tool
- Higher-order logic
- SSReflect
 - Extension of Coq
 - Introduce new tactics and libraries
 - Used to formalize the Four Colour Theorem

Motivation Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work		
File Edit Options Buffers Tools Coq Proof-Genera	l Holes Help	
😡 😳 🎮 🗶 🔺 🕨 🗶 🕪 🎒 🚣	0 🖝 😄 🛛 🚏	

--:-- example.v All L2 (Coq Script(0) Holes)-----

-U:%%- ***response*** All L1 (Coq Response)------

end.

--:-- example.v All L2 (Coq Script(0) Holes)-----

sum_n is recursively defined (decreasing on 1st argument)

-U:%%- *response* All L1 (Coq Response)------

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work File Edit Options Buffers Tools Cog Proof-General Holes Help 🏾 🖀 🔎 🚯 😿 🚍 🤣 🗑 00 00 PPM 👅 🔺 🕨 💆 🚧 🏢 Fixpoint sum_n (n:nat):= match n with | 0 => 0| S m => n + (sum_n m) end. Lemma sum_n_p (n:nat): $2 * (sum_n n) = n*(n+1)$. Proof.

--:-- example.v All L2 (Coq Script(0) Holes)------

1 subgoal (ID 6)

n : nat 2 * sum n n = n * (n + 1)

-U:%%- *response* All L1 (Coq Response)------

```
Motivation
                      Mathematical preliminaries
                  Admissible discrete vector fields
 From computation to verification through deduction
                                   Application
                    Conclusions and further work
File Edit Options Buffers Tools Cog Proof-General Holes Help
  🐽 😳 🎮 I 🖌 🕨 II 🖮 🖀 📣 🎒 🖝 🚍 😔 🗋
Fixpoint sum_n (n:nat):=
match n with
| 0 => 0
| S m => n + (sum_n m)
end.
Lemma sum_n_p (n:nat): 2 * (sum_n n) = n*(n+1).
Proof.
elim n.
```

--:-- example.v All L2 (Coq Script(0) Holes)-----

```
2 subgoals, subgoal 1 (ID 14)
```

```
2 * sum_n 0 = 0 * (0 + 1)

subgoal 2 (ID 15) is:

forall n : nat,

2 * sum_n n = n * (n + 1) -> 2 * sum_n n.+1 = n.+1 * (n.+1 + 1)

U:%- * response* All L1 (Coq Response)-------
```

```
Motivation
                     Mathematical preliminaries
                  Admissible discrete vector fields
 From computation to verification through deduction
                                  Application
                    Conclusions and further work
File Edit Options Buffers Tools Cog Proof-General Holes Help
  00 00 PPM 👅 🔺 🕨 💆 🕪
                                              🕦 🐖 😄 🤣 🚏
Fixpoint sum_n (n:nat):=
match n with
| 0 => 0
| S m => n + (sum_n m)
end.
Lemma sum_n_p (n:nat): 2 * (sum_n n) = n*(n+1).
Proof.
elim n.
 rewrite /sum_n //=.
--:-- example.v
                             (Cog Script(0) Holes)-----
                   A11 12
1 subgoal (ID 15)
  _____
  forall n : nat,
  2 * sum n n = n * (n + 1) \rightarrow 2 * sum n n + 1 = n + 1 * (n + 1 + 1)
```

-U:%%- *response* All L1 (Cog Response)------

 Mathematical preliminaries Admissible discrete vector fields

 From computation to verification through deduction Application Conclusions and further work

 File Edit Options Buffers Tools Coq Proof-General Holes Help

 OD
 CO

 File Edit Options Buffers Tools Coq Proof-General Holes Help

 OD
 CO

 File Edit Options Buffers Tools Coq Proof-General Holes Help

 OD
 CO

 File Edit options Buffers Tools Coq Proof-General Holes Help

 OD
 CO

 Image: Solution Summary Constraints

 Firepoint sum_n (n:nat):=

 match n with

 | 0 => 0

 | S m => n + (sum_n m)

 end.

Lemma sum_n_p (n:nat): 2 * (sum_n n) = n*(n+1).
Proof.
elim: n.
 rewrite /sum_n //=.
move>> n H.
rewrite /sum n -/sum n.

--:-- example.v All L2 (Coq Script(0) Holes)-----

```
1 subgoal (ID 21)
```

-U:%%- *response* All L1 (Coq Response)------

 Motivation

 Mathematical preliminaries

 Admissible discrete vector fields

 From computation to verification through deduction

 Application

 Conclusions and further work

 File Edit Options Buffers Tools Coq Proof-General Holes Help

 © CO
 PM

 Image: Comparison of the state of the

```
Fixpoint sum_n (n:nat):=
match n with
| 0 => 0
| S m => n + (sum_n m)
end.
Lemma sum_n_p (n:nat): 2 * (sum_n n) = n*(n+1).
Proof.
elim: n.
rewrite /sum_n //=.
move=> n H.
rewrite /sum_n -/sum_n.
rewrite muln addr.
```

--:-- example.v All L2 (Coq Script(0) Holes)-----

```
1 subgoal (ID 21)
```

```
n : nat
H : 2 * sum_n n = n * (n + 1)
------
2 * n.+1 + 2 * sum_n n = n.+1 * (n.+1 + 1)
```

-U:%%- *response* All L1 (Coq Response)------

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work File Edit Options Buffers Tools Cog Proof-General Holes Help 00 00 PPM 🚺 🚽 🕨 🕅 Ver 🔵 - 🔂 🗑 ิด Fixpoint sum_n (n:nat):= match n with | 0 => 0| S m => n + (sum_n m) end. Lemma sum_n_p (n:nat): $2 * (sum_n n) = n*(n+1)$. Proof. elim n. rewrite /sum n //=.

move=> n H.
rewrite /sum_n -/sum_n.
rewrite muln_addr.
rewrite H; ring.

--:-- example.v All L2 (Coq Script(0) Holes)-----

No more subgoals.

-U:%%- *response* All L1 (Coq Response)------

Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work File Edit Options Buffers Tools Cog Proof-General Holes Help 00 00 PPM 🚺 🚽 🕨 🕅 Ver 🔵 - 🔂 🗑 ิด Fixpoint sum_n (n:nat):= match n with | 0 => 0| S m => n + (sum_n m) end. Lemma sum_n_p (n:nat): $2 * (sum_n n) = n*(n+1)$. Proof. elim n. rewrite /sum n //=. move=> n H. rewrite /sum n -/sum n. rewrite muln addr.

(Cog Script(0) Holes)-----

rewrite H; ring.

sum_n_p is defined

-U:%%- *response*

All L2

All L1

Qed. --:-- example.v

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

(Cog Response)-----

SSReflect

Lema SSReflect:

Lema SSReflect:

Lemma *is_reduction* (C:chaincomplex) : reduction C (reduced_cc C).

Lema SSReflect:

Lemma reduction_preserves_betti (C D : chaincomplex) (rho : reduction C D): Betti C = Betti D.

Table of Contents

Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

5 Application

Conclusions and further work

- Synapses are the points of connection between neurons
- Relevance: Computational capabilities of the brain
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases
- An automated and reliable method is necessary

Counting Synapses

Counting Synapses

Counting Synapses

Table of Contents

Motivation

- 2 Mathematical preliminaries
- 3 Admissible discrete vector fields
- 4 From computation to verification through deduction

5 Application

• Towards an Algebraic Topology Formal library

- Towards an Algebraic Topology Formal library
- Methodology to study Biomedical images using Homological tools

- Towards an Algebraic Topology Formal library
- Methodology to study Biomedical images using Homological tools
- Discrete Vector Fields to deal with big images

- Towards an Algebraic Topology Formal library
- Methodology to study Biomedical images using Homological tools
- Discrete Vector Fields to deal with big images
- Certified computation of Homology from digital images
Motivation Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

- Towards an Algebraic Topology Formal library
- Methodology to study Biomedical images using Homological tools
- Discrete Vector Fields to deal with big images
- Certified computation of Homology from digital images
- Application to a biomedical problem: counting synapses

Motivation Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

- Verification
 - Another reductions: collapses
 - Cubical complex
 - $\bullet\,$ Homology over $\mathbb Z$
- Apply homological tools in other Biomedical imaging contexts
 - tools:
 - Persistent Homology
 - Homology in higher dimensions
 - context:
 - Count and classify spines
 - Detect neurological structure

Motivation Mathematical preliminaries Admissible discrete vector fields From computation to verification through deduction Application Conclusions and further work

Symbolic Manipulation and Biomedical Images*

Jónathan Heras, Gadea Mata, María Poza, and Julio Rubio

Department of Mathematics and Computer Science University of La Rioja Spain

June 13, 2012

J. Heras, G. Mata, M. Poza, and J. Rubio Symbolic Manipulation and Biomedical Images

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847