
Mechanising mathematics:
the case of Algebraic Topology

Julio Rubio

Universidad de La Rioja
Departamento de Matemáticas y Computación

Tomás Recio 60

CIEM (Castro Urdiales), May 17th-21th, 2010

Joint work of the Programming and Symbolic Computation Team

https://esus.unirioja.es/psycotrip/

Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and

by European Commission FP7, STREP project ForMath.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 1 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 2 / 17



Computer Algebra in Algebraic Topology

Kenzo

1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo

1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)

2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .

3 . . . including infinite dimensional spaces
(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo
1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Computer Algebra in Algebraic Topology

Kenzo
1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo
1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 3 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 4 / 17



Sergeraert’s effective homology (2/3)

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 5 / 17



Sergeraert’s effective homology (2/3)

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 5 / 17



Sergeraert’s effective homology (2/3)

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 5 / 17



Sergeraert’s effective homology (2/3)

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 5 / 17



Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 6 / 17



Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 6 / 17



Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 6 / 17



Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 6 / 17



Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 6 / 17



Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 7 / 17



Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 7 / 17



Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 7 / 17



Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 7 / 17



Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 7 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing

2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)

3 Communicating
(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 8 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 9 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 10 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:

I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:

I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:

I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).

I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).

I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 11 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.
I ACL2 is only a subset of Common Lisp

(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.
I ACL2 is only a subset of Common Lisp

(no loops, no destructive modifications).
I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.
I ACL2 is only a subset of Common Lisp

(no loops, no destructive modifications).
I Poorer performance in the ACL2 version.

On-going research. . .

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 12 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 13 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 14 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:

I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:

I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:

I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:
I Infrastructure to formalize mathematics in constructive type theory

(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:
I Infrastructure to formalize mathematics in constructive type theory

(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.

I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:
I Infrastructure to formalize mathematics in constructive type theory

(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.

I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:
I Infrastructure to formalize mathematics in constructive type theory

(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 15 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.

I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.

I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.

I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.

I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.
I Computing: Kenzo.

I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.
I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.

I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.
I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.
I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 16 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.

I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.

I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.

I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.

I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.

I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.

I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)

I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.

I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.
I R&D project TutorMates (company Addlink).

Thanks, Tomás!

Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17



Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.
I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.
I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.
I R&D project TutorMates (company Addlink).

Thanks, Tomás!
Julio Rubio (Universidad de La Rioja) Mechanising mathematics 17 / 17


	Summary.
	Computer Algebra: Sergeraert's Kenzo system.
	Before Computer Algebra: effective homology.
	Beyond Computer Algebra: mechanized mathematics.
	Proving as humans: Isabelle/HOL.
	Being constructive: Coq.
	Keeping close to Kenzo: ACL2.
	Integrating all of that: fKenzo.
	Formalising mathematics: the European Project ForMath.
	Conclusions.
	Beyond conclusions.

