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Summary

Computer Algebra: Sergeraert’s Kenzo system.

Before Computer Algebra: effective homology.

Beyond Computer Algebra: mechanized mathematics.

Proving as humans: Isabelle/HOL.

Being constructive: Coq.

Keeping close to Kenzo: ACL2.

Integrating all of that: fKenzo.

Formalising mathematics: the European Project ForMath.

Conclusions.

Beyond conclusions.
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Computer Algebra in Algebraic Topology

Kenzo

1 Common Lisp program created by F. Sergeraert (since 1990)
2 Computes homology groups of simplicial sets. . .
3 . . . including infinite dimensional spaces

(as iterated loop spaces)

Demo

Trusting Kenzo

1 Example: H6(Ω3(P∞R/P3R); Z) = (Z/2Z)10

2 Is it correct?
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Sergeraert’s effective homology (1/3)

Philosophy: don’t pass too early to the quotient.

Technique: keep an explicit link (reduction) between the chain
complex of an space and a chain complex of finite type.

A chain complex is {(Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {(Cn, dn)}n∈Z and {(C ′n, d
′
n)}n∈Z, a chain

morphism between them is a family f of group homomorphisms
fn : Cn → C ′n, ∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.
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Sergeraert’s effective homology (2/3)

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).
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Sergeraert’s effective homology (3/3)

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.
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Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.
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Mechanising Mathematics

Beyond Computer Algebra (beyond computing)

Three axes towards the mechanisation of mathematics:

1 Computing
2 Proving (mechanized reasoning)
3 Communicating

(remote access, user interfaces, interoperability...)

Final aim: integrated computer aided mathematical tools

In our concrete case: with an emphasis in Software Engineering
(Program Verification)
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Logic for the working mathematician: HOL

Isabelle/HOL is an interactive theorem proving environment.

Higher Order Logic (HOL) allows the modeller to translate the “by
hand” proofs to the computer, in a “quite” direct way.

First milestone: Jesús Aransay’s proof of the Basic Perturbation
Lemma in Isabelle/HOL.

Isabelle statement:

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff =

(λx. if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x

else 1C)|) (f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Further challenge: program extraction.
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The role of constructivism

When working in constructive type theory:
programming and proving become the same
(Curry-Howard isomorphism)

A proof assistant based on constructive type theory: Coq
(Huet-Coquand Calculus of Constructions)

Benefits: programs for free.

Drawback: more demanding proofs.

Only one example: the types Ci and Ci+1−1 are different
(with i integer).

César Doḿınguez proved in Coq the effective homology of
bicomplexes.

Distance from Kenzo?
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Proving properties of Common Lisp programs: ACL2

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:

I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

Could Kenzo be verified in ACL2?

ACL2 is first order. . .

. . . but Kenzo intensively uses higher-order functional programming
(functional coding of infinite sets).

(Recall: Isabelle/HOL and Coq were higher order tools.)

Pragmatic approach: ACL2 verification of first order fragments of
Kenzo.
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Proving properties of Kenzo in ACL2

Verifying that the implementation of Kenzo objects really corresponds
with the actual mathematical objects.

Example: build-in Kenzo simplicial sets are really simplicial sets.

Verify that ∂i∂j = ∂j∂i+1 if 0 ≤ j ≤ i
Kenzo only provides a function computing ∂i , but no way to prove
that the function has the right properties.

Developed in ACL2 by Jónathan Heras and Vico Pascual.

Difficulties to reach the real Kenzo code.

I ACL2 is only a subset of Common Lisp
(no loops, no destructive modifications).

I Poorer performance in the ACL2 version.

On-going research. . .
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Proving simplicial theorems with ACL2

ACL2 can be used to formalize mathematics, that, in principle, would
need higher order logic.

Example: ∀ simplicial set K , there exists a homotopy equivalence
between C (K ) the chain complex of K and CN(K ), the normalized
chain complex of K.

I Relation with Kenzo: this justifies the use in Kenzo of the smaller
version CN(K ).

I Developed in ACL2 by F. J. Mart́ın-Mateos and J. L. Ruiz-Reina
(Sevilla) and L. Lambán.

Going down to first order: more mathematics are needed.

In this concrete case: working with a category of pre-sheaves.
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Integrating all of that: fKenzo.

Jónathan Heras’s fKenzo = friendly Kenzo.

fKenzo is a Kenzo front-end and. . .

. . . an experimental tool for systems integration and interoperability.

OpenMath as interlingua.

Example (Ana Romero): using GAP to compute group resolutions,
and then Kenzo to deal with the corresponding aspherical simplicial
space.

What about theorem proving?

Demo.
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Formalising mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:

I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Four Work Packages:

I Infrastructure to formalize mathematics in constructive type theory
(ssreflect, Gonthier’s mechanized proof of the Four Colour
Theorem).

I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology and. . . (medical) image processing.
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Conclusions

Theorem Provers are mature enough to tackle real mathematical
problems.

Specially interesting in conjunction with Computer Algebra systems
(increasing reliability).

Our subject: Algebraic Topology.

I Computing: Kenzo.
I Proving: Isabelle, Coq, ACL2.
I Integration: fKenzo.

Much more research effort is needed to devise a really usable and
flexible tool.
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Something that is not concluding...

. . . my relationship with Tomás Recio.

Geometry.

I 1987, February, Preparata’s talk, Zaragoza.
I 1987, September, conference at Sevilla.
I 1988, Institut Fourier, Grenoble.

Computer Algebra.

I 1993, Pedro Real PhD thesis.
I 1999, Spanish Conference on Computer Algebra (EACA)
I Since 2001, Scientific Committee EACA.
I . . .

Mathematical Education.

I R&D project TutorMates (company Addlink).

Thanks, Tomás!
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