
A Hierarchy of Mathematical Structures in

ACL2

Jónathan Heras

School of Computing, University of Dundee, DD1 4HN, Dundee, UK

Francisco Jesús Mart́ın–Mateos

Computational Logic Group, Dept. of Computer Science and Artificial Intelligence, University of
Seville, E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

Vico Pascual

Department of Mathematics and Computer Science, University of La Rioja, Edificio Vives, Luis
de Ulloa, s/n. 26004 Logroño, Spain

Abstract

In this paper, we present a methodology which allows one to deal with mathematical structures in
the ACL2 theorem prover. Namely, we cope with the representation of mathematical structures,
the certification that an object fulfills the axioms characterizing an algebraic structure and the
generation of generic theories about concrete structures. As a by-product, an ACL2 algebraic
hierarchy has been obtained. Our framework has been tested with the definition of homology
groups, an example coming from Homological Algebra which involves several notions related to
Universal Algebra. The method presented here, when compared to a from-scratch approach, is
preferred when working with complex mathematical structures; for instance, the ones coming
from Algebraic Topology. The final aim of this work is the verification of Computer Algebra
systems, a field where our hierarchy fits better than the ones developed in other systems.

Key words: Mathematical structures, ACL2, Algebraic Hierarchy, Homological Algebra, Proof
Engineering, Computer Algebra systems, Formal Verification.

? Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by
the European Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).

Email addresses: jonathanheras@computing.dundee.ac.uk (Jónathan Heras), fjesus@us.es

(Francisco Jesús Mart́ın–Mateos), vico.pascual@unirioja.es (Vico Pascual).

URLs: http://www.computing.dundee.ac.uk/staff/jheras/ (Jónathan Heras),

Preprint submitted to Elsevier 8 May 2013



1. Introduction

The implementation of algebraic structures in theorem proving environments is a well-
known problem; and most of interactive proof assistants offer a set of tools to deal with
it. In the literature, several implementations of algebraic hierarchies have been produced
for different systems.

These algebraic hierarchies are, in some cases, the foundation for large proof devel-
opments. There are several proposals for the Coq system: the CCorn hierarchy Geuvers
et al. (2002) based on dependent records and used in the proof of the Fundamental
Theorem of Algebra, the SSReflect hierarchy Garillot et al. (2009) based on packed
classes and used in the formalization of the proof of the Feit-Thompson Theorem Math-
ematical components team (2012), and also an approach based on the Coq’s type class
mechanism Spitters and van der Weegen (2011); other examples can be found in systems
such as Isabelle Foster et al. (2011); Kammller (1999), Mizar Rudnicki et al. (2001),
Nuprl Jackson (1995) and Lego Bailey (1999).

Nevertheless, up to the best of our knowledge, a similar development had not been
undertaken for the ACL2 theorem prover until now. In the work presented in this paper,
we have tackled the challenge of devising a methodology to deal with mathematical struc-
tures in ACL2. As a result, we have obtained an algebraic hierarchy which allows one to
build theories about mathematical structures taking advantage of the ACL2 capabilities.
The hierarchy ranges from setoids (a setoid is a set together with an equivalence relation
on it) to R-modules including structures such as groups or rings. In addition, this hier-
archy is flexible enough to be extended with new structures following our methodology.

As we will show throughout this paper, our hierarchy of algebraic structures can be
used to formalize non-trivial mathematical concepts. However, we are not trying to com-
pete with systems such as Coq or Mizar, where an impressive amount of results about
algebra have been already formalized; on the contrary, our final aim is oriented towards
ACL2’s forte: software and hardware verification, see Kaufmann et al. (2000a); Hardin
(2010). In particular, we are mainly focused on the verification of actual programs of
Computer Algebra systems – a kind of software where algebraic structures are instru-
mental. In addition, our work can be also useful for the verification of non mathematical
software which needs, from time to time, some results from algebra.

The rest of this paper is organized as follows. In the next section, we present a brief
introduction to the ACL2 system and the tools employed in our development. Section 3
is devoted to introduce our methodology to deal with mathematical structures and the
resultant algebraic hierarchy. As a benchmark to test our approach, the formalization of
homology groups is explained in Section 4. The suitability of our method to cope with for-
malizations related to complex mathematical structures is presented in Section 5, showing
the advantages of using our approach instead of working from scratch. In Section 6, we
discuss related work associated with both the formalization of algebraic structures using
interactive theorem provers, and its use to verify the correctness of Computer Algebra
systems. The paper ends with a section of conclusions and further work, and the bibli-
ography.

http://www.glc.us.es/fmartin/ (Francisco Jesús Mart́ın–Mateos),

http://www.unirioja.es/cu/mvico/ (Vico Pascual).

2



2. A brief introduction to ACL2

ACL2 Kaufmann et al. (2000b); Kaufmann and Moore, J S. (2012) is a programming
language, a logic, and a theorem prover supporting reasoning in the logic. The ACL2
programming language is an extension of an applicative subset of Common Lisp. The
ACL2 logic is a first-order logic with equality, used for specifying properties and reason-
ing about the functions defined in the programming language. All the variables in the
formulas allowed by the ACL2 system are implicitly universally quantified. The syntax
of its terms and formulas is that of Common Lisp and it includes axioms for proposi-
tional logic, equality and for a number of predefined Common Lisp functions and data
types. Rules of inference of the logic include those for propositional calculus, equality
and instantiation.

One important rule of inference is the principle of induction, that allows proofs by
well-founded induction on the ordinal ε0. The logic has a constructive definition of the
ordinals up to ε0, in terms of lists and natural numbers. The system also includes the
usual well-founded order relation defined on this set of ordinals.

By the principle of definition, new function definitions are admitted as axioms only if
there exists a measure and a well-founded relation with respect to which the arguments
of each recursive call decrease, thus ensuring that the function terminates. In this way,
no inconsistencies are introduced by new function definitions. Usually, the system can
prove automatically termination properties using both a predefined ordinal measure and
the built-in well-founded relation on ordinals. Nevertheless, if the termination proof is
not trivial, the user has to explicitly provide a measure on the arguments and a well-
founded relation with respect to which this measure decreases. In addition, new function
definitions must be total on the language of terms, so when functions are naturally defined
only working on a subset of terms, some behavior must also be defined on arguments
outside of that subset.

An additional way to introduce new function symbols in the logic is by means of
the encapsulate mechanism Kaufmann and Moore, J S. (2001). Instead of giving their
definitional body, only certain properties are assumed about them; to ensure consistency,
witness functions (which are functions local to an encapsulate block) having the same
properties have to be exhibited. Inside an encapsulate, the properties stated need to be
proved for the local witnesses, and outside, they work as assumed axioms.

A derived rule of inference, called functional instantiation, see Kaufmann et al. (2000b),
provides a limited higher-order-like reasoning mechanism instantiating the function sym-
bols of a previously proved theorem. This rule replaces function symbols with other ones,
provided it can be proved that the new functions satisfy the constraints or the defini-
tional axioms of the replaced functions (depending on whether they were introduced by
an encapsulate or by the principle of definition, respectively).

The ACL2 theorem prover mechanizes the ACL2 logic, and is particularly successful
obtaining mechanical proofs mainly based on simplification and induction. The role of
the user in this mechanization is important: usually a non-trivial result is not proved in
a first attempt, and the user has to lead the prover to a successful proof providing a set
of lemmas, inspired by the failed proof, that the prover uses mainly as rewrite rules.

In addition to the built-in inference rules and tools provided by the ACL2 system,
we extensively use a tool developed by external authors: the defstructure tool Brock
(1997), which provides the ACL2 defstructure macro to create general purpose record
structures.

3



Setoid

Magma

Semigroup

Monoid

Group

Abelian Group

RingR-module

Setoid-Morphism

Magma-Morphism

Semigroup-Morphism

Monoid-Morphism

Group-Morphism

Abelian-Group-Morphism

Ring-Morphism

R-module-Morphism

2

2

2

2

2

2

2

2

Fig. 1. Hierarchy of mathematical structures and morphisms.

We will skip many details and some of the function definitions will be omitted. We urge
the interested reader to consult the original and complete source code at http://www.

computing.dundee.ac.uk/staff/jheras/ahomsia/. In addition a detailed explanation
of the implementation of the tools presented in this paper can be read in Heras et al.
(2012).

3. Modeling a hierarchy of algebraic structures in ACL2

In this section, a framework to deal with both mathematical structures and morphisms
between them is presented. Namely, we have developed a methodology to model the
hierarchy depicted in Figure 1, where boxes represent types of structures. Moreover, our
methodology is flexible enough to extend this hierarchy without any special hindrance.

Let us present some remarks about our hierarchy; the concrete details will be provided
throughout this section.

We have depicted the mathematical structures of our hierarchy ranging from setoids
to R-modules in the left side of Figure 1. A mathematical structure can be encoded
by means of a record with several components of a functional nature, satisfying the
definitional axioms of the intended mathematical structure.

A continuous arrow with an open triangle as tip represents an inheritance relationship
modeling that the source mathematical structure is-a target mathematical structure, e.g.
an Abelian group is a group with some additional properties. Whereas a continuous arrow
with a normal tip describes a use relationship in the sense that the target mathematical
structure is used to define the source one.

The morphisms included in our hierarchy are presented in the right side of Figure 1.
It is worth noting that a morphism always consists of a source structure A, a target
structure B of the same type as A, and a map between them.

4

http://www.computing.dundee.ac.uk/staff/jheras/ahomsia/
http://www.computing.dundee.ac.uk/staff/jheras/ahomsia/


Now, let us present how we implement the hierarchy in ACL2. We start by introducing
in detail the implementation of setoids Bishop (1967) – the simplest algebraic structure,
which in addition is the basis for the rest of the structures of our hierarchy. Subsequently,
we extrapolate the methodology to the rest of mathematical structures and morphisms.

3.1. Modeling setoids in ACL2

A setoid X = (X,∼X) is a set X together with an equivalence relation ∼X on it. Se-
toids are commonly used in the mechanical development of algebraic structures, see Geu-
vers et al. (2002); Spitters and van der Weegen (2011), and the reason is twofold. From a
mathematical point of view, we can form the quotient of a set by changing its equivalence
relation; we will provide an example of this fact in Section 4. Moreover, the representation
of a set in a computer needs the encoding of the equality of the set.

A setoid can be represented by means of two functions: the characteristic function of
the underlying set (the invariant) and a binary function encoding the equivalence relation.
Therefore, if we are interested in modeling, for instance, the setoid whose underlying set is
the integers and the equivalence relation is that which makes integers with same absolute
value equivalent, we could use the ACL2 integerp function as invariant (integerp is
a recognizer for integer numbers, it returns true if its argument is an integer, and nil

otherwise), and the eq-abs function as equivalence relation.

(defun eq-abs (a b)

(equal (abs a) (abs b)))

Moreover, it is necessary to prove the events (functions whose successful evaluation
extends the ACL2 logic) ensuring that eq-abs is an equivalence relation on the set
characterized by integerp.

(implies (integerp x) ;; Reflexive
(eq-abs x x))

(implies (and (integerp x) (integerp y) (eq-abs x y)) ;; Symmetry
(eq-abs y x))

(implies (and (integerp x) (integerp y) (integerp z) ;; Transitive
(eq-abs x y) (eq-abs y z))

(eq-abs x z))

ACL2 provides a way to define equivalence rules Greve (2006), but those equivalence
rules must be total (i.e. they must be equivalence rules on the whole universe of ACL2
terms); so, we cannot use them since we are restricting the domain of our equivalence
rules to a concrete set.

As we have seen, concrete setoids can be modeled in ACL2. However, this is not enough
to work with setoids compared to standard mathematical textbooks where, for example,
universal properties about setoids are proved. In order to tackle this problem, we should
use the encapsulate mechanism Kaufmann et al. (2000b). This tool allows us to define a
generic setoid, namely we can define two generic functions X-inv (the invariant function)
and X-eq (the equivalence relation) assuming the properties of setoids. In the following

5



encapsulate, we have not included the witness functions since the concrete functions
are not relevant at this point; however, they are necessary.

(encapsulate

; Signature
(((X-inv *) => *)

((X-eq * *) => *))

; Witness functions
...

; Assumptions
(defthm X-reflexive

(implies (X-inv x)

(X-eq x x))

(defthm X-symmetry

(implies (and (X-inv x) (X-inv y) (X-eq x y))

(X-eq y x))

(defthm X-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z)

(X-eq x y) (X-eq y z))

(X-eq x z))

)

The definition of a generic setoid can be seen as an algebraic specification of this mathe-
matical structure using equational axioms. It is worth mentioning that the signatures of
the functions defined within an encapsulate do not include type information since ACL2
is an untyped system, but do include arities.

Now, using the functions which define the generic setoid, we could prove universal
properties which, afterwards, could be instantiated for concrete setoids using the func-
tional instantiation mechanism Kaufmann et al. (2000b). For example, we could prove
the following property:

(defthm symmetry-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z)

(X-eq y x) (X-eq y z))

(X-eq x z)))

and subsequently instantiate it for the concrete setoid defined previously.
Then, this from-scratch approach can be applied to deal with setoids in ACL2; never-

theless, from our point of view, several enhancements can be introduced to improve the
use of this mathematical structure in ACL2.

First of all, it is worth noting that the use of a structure which gathers the functions
encoding the invariant and the equivalence relation of a setoid would model the setoid

6



more accurately than having the functions separately. This can be carried out in ACL2
by means of a record, implemented with the defstructure macro Brock (1997), with
two fields (inv and eq) which store respectively the names of the invariant function and
the intended equivalence relation (in addition, those functions must have been intro-
duced previously). The following defstructure construction is used to define the setoid
structure.

(defstructure setoid

inv eq)

It is worth remarking that as ACL2 is an untyped system, then there is no need to
attach types to the field names of the structures. Now, using this representation, the
setoid whose underlying set is the set of integer numbers having the same absolute value
can be encoded as an instance of the setoid record, where the values of the inv and eq

slots are respectively the names integerp and eq-abs. Moreover this instance can be
assigned to an ACL2 constant, called *Zabs* 1 , for latter use in our development.

(defconst *Zabs* (make-setoid :inv ’integerp :eq ’eq-abs))

Let us note that, since ACL2 is not a higher-order system, the only way of treating
functions as data is to refer them by name.

In order to facilitate the statement of the event which ensures the definitional se-
toid axioms for setoid instances, the setoid-algebraic-structure function has been
defined. This function takes as argument a setoid instance and produces a “textual”
(quoted in Lisp terminology) conjunction of formulas with the definitional axioms of se-
toids for the functions of the setoid (that is, the eq component of the setoid instance
is Boolean, reflexive, symmetric and transitive on the set characterized by the inv com-
ponent of the setoid instance). This function is internally invoked by a macro called
check-setoid-p which can be used to certify that a concrete setoid instance is really
a setoid. For example, if *S* is a constant storing a setoid instance, in the invocation:

(check-setoid-p *S*)

the macro expands into a call of defthm whose name is *S*-is-a-setoid. The term
generated for the defthm is provided by the setoid-algebraic-structure function,
and, as we have said, such term states that the functions of the setoid instance *S* satisfy
the setoid definitional axioms. In this way, we have automated the creation of the event
associated with the definitional properties of setoids. The setoid-algebraic-structure
function together with the check-setoid-p can be seen as a characteristic function for
the type of setoids.

The last enhancement is related to the definition of generic setoids without providing,
at least explicitly, an encapsulate. This has been achieved by means of a macro called
defgeneric-setoid which makes the creation of generic setoids easier. This macro takes
as argument a symbol, for instance X, and expands into an encapsulate which produces
the constant *X*, that stores a generic setoid, and the theorem *X*-is-a-setoid, which
ensures that *X* satisfies the setoid axioms.

1 A constant in ACL2 is a symbol beginning and ending with the character *

7



3.2. A hierarchy of algebraic structures

Following the same ideas presented for setoids, we have defined a number of algebraic
structures in ACL2. In the left side of Figure 1, we have depicted the mathematical
structures of our hierarchy with the relations among them. A detailed description of
each one of these structures can be seen, for instance, in Denecke and Wismath (2002).

The implementation of the inheritance relationship between structures is translated
into a definition of the source mathematical structure in terms of the target one; this
fact will allow us to reuse several code fragments.

We say that a B structure is defined in terms of an A structure if B is-an A structure
together with (in some cases) additional operations, op1, . . . , opn, and satisfying further
properties, P1, . . . , Pm. Then, the ACL2 representation of a B structure which is an A
structure together with operations op1, . . . , opn is:

(defstructure B

A op1 ... opn)

where the value of the A field will be an A instance, and the values of op1, . . . , opn slots
will be function symbols. For instance, a magma is a setoid with a binary operation; so,
a magma is represented as:

(defstructure magma

setoid binary-op)

This idea is extrapolated to represent all the structures of our hierarchy. Just a remark,
the representation of R-modules follows the same strategy but with a small nuance, the
use relationship between R-modules and rings is handled by means of a field in the
definition of R-module whose value will be a Ring instance.

(defstructure R-module

Abelian-group Ring external_operation)

It is worth noting that the definition of instances of our mathematical structures can
be a cumbersome task since we have a hierarchy of nested structures. Then, for instance,
in order to construct an Abelian-group it is necessary to use the definition of a group,
which in turn needs the definition of a monoid and so on. To overcome this pitfall, we
have defined a set of functions, called create-<structure>, which take as arguments the
names of the functions which are the components of the structure, and build an instance
of the structure with them. We will see an example of the usage of this functions at
the end of this section.

Now, we have to deal with the statement of the event which ensures the definitional
axioms for an instance of a structure. Let us retake the general case of a B structure
which is an A structure together with operations op1, . . . , opn and satisfying properties
P1, . . . , Pm. First, we define the functions A-algebraic-structure, P1, . . . , Pm, and

8



B-algebraic-structure. The function A-algebraic-structure generates a term with
the definitional axioms for an A structure. The functions P1, . . . , Pm produce, respectively,
the statement of properties P1, . . . , Pm. Finally, the function B-algebraic-structure

generates a term with the definitional axioms for a B structure invoking the functions
A-algebraic-structure and P1, . . . , Pm.

Therefore, the B-algebraic-structure function takes a B instance as argument and
produces a list with the B definitional axioms for that instance. In addition, this function
is invoked by a macro called check-B-p which has an analogous behavior to the one
presented for check-setoid-p but for B structures.

As an example, we can consider the magma structure, which is a setoid with a bi-
nary operation that is closed on the set characterized by the invariant function of
the setoid and compatible with the equivalence relation of the underlying setoid. It
is worth remarking that these closure and compatibility requirements, which are usu-
ally implicit in algebra, are needed here explicitly because of the untyped nature of
ACL2 logic. In this case, the magma-algebraic-structure function invokes the functions
setoid-algebraic-structure (that produces the definitional axioms for the underlying
setoid of the magma instance), closed-op (which generates the closure property for the
binary operation) and compatible-op (which produces the compatibility requirement).

The check-magma-p macro, which given a constant *M*, that stores a magma instance,
as an argument, expands into a call of defthm whose name is *M*-is-a-magma. The
term of this event states the magma definitional axioms for the components of *M*.
Analogously, this method can be applied to the rest of the structures of our hierarchy.

The last set of tools that we have defined for the mathematical structures of Fig-
ure 1 allows us to work with generic instances of them. Namely, we have defined a
number of macros called defgeneric-<structure> (where <structure> is the name
of the structure). These macros take as argument a symbol, X, and produce a con-
stant, *X*, which stores a generic instance of the structure <structure> and a theorem,
*X*-is-a-<structure>, which states the definitional axioms of <structure> for the
generic instance.

It is worth noting that the names of the components of the <structure> instance
stored in the constant produced by defgeneric-<structure> always follow the same
convention: <symbol>-<slot> where <symbol> is the symbol given in the call to the
macro defgeneric-<structure> and <slot> is the name of each one of the slots of
<structure> (these components are introduced by means of the encapsulate principle).

Using these tools we can prove universal properties about the structures of our hier-
archy. For instance, the result which says that given M = (M,∼M , ◦M ) a magma and
N a subset of M closed with respect to ◦M ; then N = (N,∼M , ◦M ) is a magma, will be
proved as follows. First, we define a generic magma using the defgeneric-magma macro
taking the symbol M as argument. Afterwards, a generic subset of M closed with respect
to ◦M is defined using the encapsulate principle, where N-inv is the invariant of that
generic subset.

Now, we can construct a magma instance where N-inv is the invariant function, M-eq
is the equivalence relation and M-binary-op is the binary operation; and store it in the
constant *N*.

(defconst *N* (create-magma ’N-inv ’M-eq ’M-binary-op))

9



We could also define *N* using:

(defconst *N* (make-magma :setoid (make-setoid :inv ’N-inv :eq ’M-eq)

:binary-op ’M-binary-op))

but the use of the function create-magma is simpler.
Finally, we can certify that *N* is really a magma using check-magma-p.

(check-magma-p *N*)

It is worth noting that ACL2 is able to find the proof of this event without any external
help and from now on, we could instantiate this result for concrete magmas. This property
about magmas is a particular case of a well known result of Universal Algebra called
Subalgebra criterion Denecke and Wismath (2002). This criterion says that given X =
(X, op1, . . . , opn) a mathematical structure where X is the underlying set of X , and Y
is a subset of X closed with respect to op1, . . . , opn; then Y = (Y, op1, . . . , opn) is of the
same type that X . This result has been proved for all the structures of our hierarchy
following the same schema presented for the magma case.

3.3. Morphisms between algebraic structures

Until now, we have presented how to model algebraic structures in ACL2; now we are
going to tackle the task of representing morphisms over those mathematical structures
as the ones presented in the right side of Figure 1.

In order to deal with morphisms, we follow the same strategy presented for mathemat-
ical structures. First, we define a record to represent the morphism. It is worth remarking
that a morphism consists of: the source structure, S, the target structure, T , and a map
f : S → T (where S and T are objects of the same type). Therefore, all the morphisms of
our hierarchy, unlike what happened in the case of algebraic structures, can be encoded
with the pattern:

(defstructure <structure>-morphism

source target map)

where <structure> is the name of one of the mathematical structures of our hierarchy,
the value of both source and target slots will be <structure> instances, and the value
of map will be a function symbol. So, for instance, the identity setoid morphism on *Zabs*

is defined as:

(defconst *id-Zabs*

(make-setoid-morphism :source *Zabs* :target *Zabs* :map ’id))

where id is the identity function.
Following the same schema as in the case of structures, we have defined a function,

called <structure>-morphism, in charge of creating the event which ensures the ax-
ioms of a morphism between <structure>s. Furthermore, we have also introduce a
macro called check-<structure>-morphism-p, which internally invokes the function

10



<structure>-algebraic-structure, whose behavior is analogous to the one presented
for the macro check-<structure>-p explained in the previous subsection.

We also have a macro, called defgeneric-<structure>-morphism, to define generic
morphism instances between <structure>s.

To summarize this section, we have defined several tools which facilitate the use of
mathematical structures and morphisms in ACL2. First of all, the representation of both
structures and morphisms is improved with respect to a scratch approach thanks to the
records which allow us to define the hierarchy of Figure 1 accurately. In addition, the
verification that an object fulfills the definitional axioms of a structure or morphism
has been enhanced. The reason is twofold: the generation of the necessary events is
automated with a set of macros (which can be seen as the characteristic functions for
each type of structure), and even if ACL2 is not able to find the proof of the event
generated by these macros in the first attempt, the user only has to focus on the trickiest
properties since the trivial ones are automatically proved. Finally, the definition of generic
instances of structures and morphisms is reduced to a macro call, making the use of
generic theories (developments related to functions which are only partially specified
using the encapsulate mechanism) about those structures and morphisms easier.

4. Application: Homological Algebra

In this section we present an example of the application of our tools to the context of
Homological Algebra, an introduction to this mathematical subject can be seen in Weibel
(1994). In particular, we are going to work with homology groups, an important concept
in the Homological Algebra setting.

Definition 1. Let f : G1 → G2 and g : G2 → G3 be Abelian group morphisms such that
∀x ∈ G1, gf(x) ∼G3

0G3
(where 0G3

is the neutral element of G3), then the homology
group of (f, g), denoted by H(f,g), is the Abelian group H(f,g) = ker(g)/im(f).

The condition ∀x ∈ G1, gf(x) ∼G3 0G3 , known as nilpotency condition, makes the
above definition meaningful, since im(f) ⊆ ker(g). It is worth noting that this definition
involves several constructions of Universal Algebra such as subalgebras, morphisms or
quotients; for an introduction to Universal Algebra see Denecke and Wismath (2002).

Given f : G1 → G2 and g : G2 → G3 Abelian group morphisms such that ∀x ∈
G1, gf(x) ∼G3

0G3
; let us present how we can use our framework to define H(f,g) and

prove that it is an Abelian group.
First of all, we define three generic Abelian groups (*G1*, *G2* and *G3*) using the

defgeneric-Abelian-group macro.

(defgeneric-Abelian-group G1)

(defgeneric-Abelian-group G2)

(defgeneric-Abelian-group G3)

The components of these generic Abelian groups are: G<i>-inv, the invariant func-
tion of the underlying setoid of the group, G<i>-eq, the equivalence relation of the
group, G<i>-binary-op, the binary operation, G<i>-id-elem, the identity element, and
G<i>-inverse, the inverse function, with <i>=1,2,3.

11



Now, using the encapsulate principle we define two generic Abelian group mor-
phisms f : G1 → G2 and g : G2 → G3 such that the nilpotency condition is satis-
fied, in this case the Abelian group morphism definitional axioms are stated with the
check-Abelian-group-morphism-p macro.

(encapsulate

; Signatures
(((f *) => *)

((g *) => *))

; Generic Abelian Group Morphisms Definition
(defconst *f*

(make-Abelian-group-morphism :source *G1* :target *G2* :map ’f))

(defconst *g*

(make-Abelian-group-morphism :source *G2* :target *G3* :map ’g))

; Abelian Group Morphism Axioms
(check-Abelian-group-morphism-p *f*)

(check-Abelian-group-morphism-p *g*)

; Nilpotency condition
(defthm nilpotency-condition

(implies (G1-inv x)

(G3-eq (g (f x)) (G3-id-elem))))

)

The above encapsulate must be read as follows. First of all, we provide the signatures
of the functions f and g, the notation (f *) => * means that the function f has an argu-
ment, which belongs to the universe of ACL2 terms, as input and returns another term as
output. Subsequently, we define the constants *f* and *g* which store the two generic
Abelian group morphisms. Afterwards, using the check-Abelian-group-morphism-p

macro we impose the axioms of Abelian group morphisms to *f* and *g*. Finally,
we additionally impose the nilpotency condition. It is worth noting that the macro
defgeneric-Abelian-group-morphism cannot be used here since we do not only want
to build generic Abelian group morphisms but also impose the nilpotency condition.

Now, let us note that the set ker(g) = {x ∈ G2 : g(x) ∼G3 0G3} (encoded in ACL2
by means of a function called ker-g-inv) is both a subset of the underlying set of G2

and closed with respect to the group operations of G2; in addition, we have proved the
Subalgebra criterion for Abelian groups (in a similar way to the one presented for the
magma case at the end of Subsection 3.2). Therefore, we can instantiate this criterion
for our concrete case and define the Abelian group ker(g).

(defconst *ker-g*

(create-Abelian-group ’ker-g-inv ’G2-eq ’G2-binary-op ’G2-id-elem

’G2-inverse))

12



Now, we define im(f) = {x ∈ G2 : ∃y ∈ G1, f(y) ∼G2
x} as a subgroup of G2 using the

same idea presented for ker(g). The existential quantifier in the definition of the invariant

function of im(f) is introduced using defun-sk, which is the way ACL2 provides support

for first-order quantification.

(defun-sk im-f-inv (x)

(exists (y)

(and (G2-inv x) (G1-inv y) (G2-eq (f y) x))))

Then, using im-f-inv and the operations of *G2*, we construct an Abelian-group in-

stance which encodes the Abelian group im(f).

Afterwards, we can tackle the task of defining the homology group H(f,g) as the

quotient ker(g)/im(f). Quotienting a structure of our hierarchy is achieved by changing

the equivalence relation of the underlying setoid of the structure with another equivalence

relation compatible with the operations of the structure. This result has been proved for

each one of the structures of our hierarchy following a similar process to the one presented

to prove the Subalgebra criterion. In addition, we have proved that if im(f) is a subgroup

of ker(g), then im(f) induces an equivalence relation on ker(g) which is given in ACL2

by the following definition.

Equivalence Relation: ∀x, y ∈ ker(g), x ∼im(f) y ⇔ xy−1 ∈ im(f)

(defun im-f-eq (x y)

(im-f-inv (G2-binary-op x (G2-inverse y))))

Therefore, H(f,g) is defined using ker-g-inv as invariant, im-f-eq as equivalence

relation, G2-binary-op as binary operation, G2-id-elem as the identity element, and

G2-inverse as the inverse operation.

(defconst *homology-fg*

(create-Abelian-group ’ker-g-inv ’im-f-eq ’G2-binary-op ’G2-id-elem

’G2-inverse))

The last step consists in certifying that *homology-fg* satisfies the definitional axioms

of an Abelian group, to this aim the check-Abelian-group-p macro, taking as argument

*homology-fg*, is invoked.

(check-Abelian-group-p *homology-fg*)

ACL2 is not able to find the proof of the event generated by the call to this macro in

the first attempt and some previous lemmas, suggested by the failed proof, are necessary.

The way of facing those lemmas is the usual when trying to prove a result with ACL2:

inspect the failed proof attempt and provide the necessary lemmas and hints, this is

known in ACL2 as “the Method” Kaufmann et al. (2000b).

In this way, we have defined the homology group H(f,g) and proved that it is an

Abelian group.

13



5. Dealing with complex mathematical structures

The framework that we have presented in the previous sections can be enriched with
more complex mathematical structures than the ones introduced up to now. It is in
those cases when the profit of using our tools is most remarkable with respect to an
ad-hoc approach. Let us illustrate this fact with an example coming from Algebraic
Topology Maunder (1996); to that end, it is necessary to introduce how we deal with
indexed families of structures in our context.

5.1. Indexed families of structures

In Algebraic Topology, we do not usually work with just an object of a structure, but
with a family of objects of that structure indexed on a set, called the index set. This can
be seen, for instance, in the definition of two instrumental notions in Algebraic Topology.

Definition 2. A chain complex, C∗, is a family C∗ = (Cn, dCn)n∈Z where (Cn)n∈Z
is a family of R-modules indexed on the integers and (dCn)n∈Z (the differential map)
is a family of R-module endomorphisms of degree −1 (dCn : Cn → Cn−1) such that
dCn−1dCn = 0 (this property is known as nilpotency condition).

Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be two chain complexes, a chain
complex morphism from C∗ to D∗ is a family of R-module morphisms f = (fn)n∈Z such
that dDnfn = fn−1dCn for each n ∈ Z.

The approach that we have followed to represent indexed families of structures in our
framework is based on the one presented in Lambán et al. (2003). Roughly speaking,
the representation of a graded structure indexed on a set is achieved thanks to the
introduction of an additional parameter, which ranges the elements of the index set, in
each one of the operations of the structure.

Then, in order to deal with families of structures in our context, we have created a
hierarchy of graded structures which is mirrored to the one presented in the left side of
Figure 1. The basic object of this hierarchy is graded setoid which is defined using the
defstructure construction with three fields: inv, eq and index-sets. When, we are
working with a graded setoid, the value of inv and eq will be respectively a function
symbol, whose arity is 2, representing the underlying graded set of the setoid and a
function symbol, whose arity is 3, encoding the intended equivalence relation; and, the
value of index-sets will be a list with a sole element which is a function name that
represents the characteristic function of the index set of the graded setoid.

It is worth noting that we can deal with n-graded setoids (that is to say, a family
of setoids indexed on n sets) using the same record structure. In the general case, the
arities of inv and eq functions will be n + 1 and n + 2 respectively; and, the value of
the index-sets slot will be a list whose elements are n function names encoding the n
characteristic functions of the n sets. Let us note that if the value of index-sets is an
empty list, we have an object “equivalent” to a setoid instance as we have presented it
in Subsection 3.1.

The ideas presented in Subsection 3.2 to define structures in terms of others can also
be applied in the case of graded structures; that is to say, if B is a graded structure
defined in terms of an A graded structure, B is an A graded structure together with
additional operations and satisfying further properties. Then, the index-sets slot will

14



be inherited from the graded-setoid structure to the rest of the graded structures of
the hierarchy.

In addition to the tools in charge of representing graded structures, we have also
defined the functions which generate the events that provide the definitional axioms of
the graded structures. Namely, those functions have been defined in order to produce
a term depending on the length of the list stored in index-sets. Therefore, there are
available check-graded-<structure>-p macros which behave as check-<structure>-p
macros but for graded structures.

Furthermore, we also have defgeneric-graded-<structure> macros in order to de-
fine generic indexed families of structures. The definition of these macros includes a
keyword parameter called index-sets whose value will be a list of function names en-
coding the characteristic functions of the underlying index sets of the generic indexed
family of structures.

Now, we can tackle the task of working with chain complexes in our environment. To
this aim, the instrumental notion is the one of graded R-module; this graded structure is-a
graded Abelian group that uses a ring as part of its definition; so both the graded hierar-
chy and the one depicted in Figure 1 are necessary to define graded R-modules. From this
graded structure, we can represent chain complexes using the following defstructure

construction.

(defstructure chain-complex

graded-R-module diff)

The value of graded-R-module will be a graded-R-module instance, let us call it C,
indexed on the set of integer numbers, and diff will be a function symbol whose arity is
2 encoding the differential map, whose mathematical signature is diff: Z× C → C; that
is, the differential map is uncurried (the subscript of the differential map is now one of the
inputs). The macro check-chain-complex-p, which has been defined following the ideas
presented in Section 3, is in charge of verifying that given a chain-complex instance, its
graded-R-module component is really a graded R-module, and diff is a family of R-
module endomorphism of degree −1 satisfying the nilpotency condition. We have defined
the macro defgeneric-chain-complex which produces generic chain complex instances.

Finally, we can focus on the second notion included in Definition 2, chain complex
morphisms. The record structure to represent chain complex morphisms is

(defstructure chain-complex-morphism

source target map)

where the value of both source and target slots will be a chain-complex instance, and
the value of map will be a function symbol whose arity is 2 (as in the case of the differential
map in chain complexes, the map of the chain complex morphism is uncurried).

As in the rest of structures and morphisms presented in this paper, we have introduced
a macro to certify that chain-complex-morphism instances are really chain complex
morphisms, check-chain-complex-morphism-p, and another one to generate generic
chain complex morphisms, defgeneric-chain-complex-morphism.

In the next subsection, we are going to present several examples of the usage of the
tools related to chain complexes and chain complexes morphisms and the great profit of
using them.

15



5.2. Benefits of our approach

Once that we have introduced how we model chain complexes and chain complex
morphisms; let us present the advantages of using our tools in the context of Algebraic
Topology by means of the Cone construction.

Definition 3. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be two chain complexes
and φ : D∗ → C∗ be a chain complex morphism. Then the cone of φ, denoted by
Cone(φ) = (An, dAn)n∈Z, is defined as: An := Cn+1 ⊕Dn (an element x ∈ An is a pair
such that its first component belongs to Cn+1 and the second one to Dn); and

dAn : Cn+1 ⊕Dn → Cn ⊕Dn−1

(cn+1, dn) 7→ (dCn+1(cn+1) + φ(dn),−dDn(dn)).

A more detailed description of this construction can be seen in Rubio and Sergeraert
(2006). The task that we are going to tackle consists in verifying that given a chain
complex morphism φ, then Cone(φ) is a chain complex.

Using the tools that have been presented previously, we can define a generic chain
complex morphism φ.

(defgeneric-chain-complex-morphism PHI)

As the rest of this kind of macros, the above macro call produces the constant *PHI*

which stores a generic chain complex morphism; and the theorem which ensures that the
components of *PHI* satisfy the chain complex morphism axioms.

Afterwards, we introduce the chain complex operations (9 operations are necessary
to define a chain complex) associated with the cone construction from the components
of *PHI*. From them, we create a chain-complex instance which is assigned to a new
constant, called *Cone-PHI*, for latter use.

Subsequently, we use the check-chain-complex-p macro with *Cone-PHI* as argu-
ment to prove an event which ensures the chain complex axioms for the functions of this
chain-complex instance.

(check-chain-complex-p *Cone-PHI*)

The system is not able to find the proof of the event generated by this macro in the
first attempt. Namely, the event consists of the 49 chain complex definitional axioms, 40
of which are automatically proved by ACL2, and the rest, the trickiest ones, need some
auxiliary lemmas suggested by the failed proof.

Finally, in order to make the instantiation of the cone construction for concrete chain
complex morphisms easier, we have used the generic instantiation tool Mart́ın-Mateos
et al. (2002) – a procedure which allows us to instantiate generic theories in a simple
way.

In the above development we have taken advantage of the tools presented throughout
this paper. However, the same formalization could be performed from scratch, but not
without difficulty, as we will see as follows.

First of all, to define the generic chain complex morphism φ, the encapsulate mech-
anism should be employed. The definition of this generic object involves 19 function

16



Definition of generic Definition of Proof of the correctness

chain complex morphism cone construction of the construction

from scratch 19 function symbols 9 definitions 49 theorems

19 witnesses 34 auxiliary lemmas

84 axioms

half-way 19 function symbols 9 definitions 1 macro call

19 witnesses 1 chain-complex 34 auxiliary lemmas

84 axioms

hierarchical 1 macro call 9 definitions 1 macro call

1 chain-complex 34 auxiliary lemmas

Table 1. Comparison between the different approaches.

symbols, which define the operations of the chain complex morphism, the correspond-
ing 19 witnesses and 84 axioms which ensures that the 19 function symbols fulfill the
properties which characterize the chain complex morphism operations.

Afterwards, from the function symbols of the generic chain complex morphism, we
introduce the operations which define the chain complex associated with the cone con-
struction; as we said previously, this means 9 new definitions.

Finally, we could state the 49 events which claim that the 9 operations introduced in
the previous step satisfy the axioms which characterize the chain complex operations.
The non trivial events are the same as before; so in 9 of them, some auxiliary lemmas
are necessary.

In this way, we can prove that given a chain complex morphism the cone construction
produces a chain complex; however, in spite of being able to carry out this task, this
way of working is, from our point of view, worse than the one presented using our tools.
First of all, in the from scratch approach, there is a considerable amount of definitions
and theorems, both in the definition of the generic chain complex morphism and in the
certification of the correctness of the cone construction; so, it is likely that some of them
can be forgotten causing unexpected problems. In addition, the functions which represent
the operations of the structure are not gathered in any way, then, the structure is not
explicitly given as is done when working with pencil and paper or using other theorem
provers such as Coq or Isabelle.

Table 1 shows a comparison between the two approaches (the one which uses our tools
will be called hierarchical) considering the cone construction. In addition, we also consider
a half-way method presented in Heras (2011) where the macros in charge of certifying
that an object satisfies the axioms which characterize an algebraic structure were defined,
but not the functionality to generate generic instances of concrete structures.

As can be noticed, there are some figures which are the same in all the cases (the
number of definitions of the cone construction and the auxiliary lemmas), this is due to
the fact that the result that we are proving is always the same; so, ACL2 always needs
help in the same places. However, the use of the tools presented in this paper means a
great improvement with respect to the other approaches. First, the amount of definitions
and theorems is considerably reduced; then, both the number of lines of our development

17



and the chance of forgetting some results decrease. Related to the previous fact, it is also
worth noting that the developments are more readable thanks to the use of macros, an
important issue when we are documenting our work. Besides, the use of the hierarchical
methodology presented in this paper makes the work of the user easier because he only
has to focus on the difficult parts of the proofs.

As a final remark, we can say that the certification of the cone construction (and other
similar ones where the same methodology has been applied Heras (2011)) is interesting
not only from the point of view of the formalization of a theoretical result but also in the
context of program verification. Kenzo Dousson et al. (1998) is a Common Lisp system
devoted to Algebraic Topology which was developed by Francis Sergeraert. The Kenzo
system has obtained some results not confirmed nor refuted by neither theoretical or
computational means. Therefore, a wide project was launched several years ago to prove
the correctness of Kenzo using different theorem proving tools, see Aransay et al. (2008);
Domı́nguez and Rubio (2011); Lambán et al. (2011). In the next section, we comment
the previous efforts to formalize the Kenzo system, followed by why we think that the
work presented in this paper is beneficial to that task.

6. Related work

In this section we are going to discuss previous work considering three different points
of view: the formalization of algebraic structures, its use to verify the correctness of
Computer Algebra systems, and the verification of the Kenzo system using different
theorem provers.

6.1. Algebraic Hierarchies and Theorem Provers

As we have commented in the introduction of this paper, the formalization of algebraic
structures within formal proof systems has been broadly studied in the literature.

Coq is probably the most prolific system in this sense. Up to the best of our knowl-
edge, 4 different approaches have been considered in this system to formalize algebraic
structures. An algebraic hierarchy which tries to imitate the one of the Axiom Computer
Algebra system Jenks and Sutor (1992) was implemented in Pottier (2001). The formal-
ization of the Fundamental Theorem of Algebra, see Geuvers et al. (2000), employed
the hierarchy presented in Geuvers et al. (2002). The SSReflect hierarchy, introduced
in Garillot et al. (2009), has played a key role in the formalization of the Feit Thompson
theorem Mathematical components team (2012). Moreover, a new hierarchy was devel-
oped in Spitters and van der Weegen (2011) having as a final goal the formalization of
practical exact real arithmetic.

Two Ph.D. theses have been devoted, at least partially, to this topic. A hierarchy for
the Nuprl system appeared in the thesis of Jackson, see Jackson (1995), and was the
basis for proving some results about abstract algebra. Bailey implemented in his Ph.D.
thesis Bailey (1999) an algebraic hierarchy in Lego which was used to formalize part of
Galois theory.

There are also different approaches in the family of HOL theorem provers. A basic
theory of groups was developed in HOL using the hierarchy presented in Gunter (1989).
As can be seen in Ballarin et al. (2012), the Isabelle/HOL systems provides a library
to formalize abstract algebra which has been successfully used to prove, for instance,

18



Sylow theorems. In addition, there is also a hierarchy for relation and Kleene algebras in
Isabelle, see Foster et al. (2011).

We can find a classical set-theoretic treatment of algebra in Mizar. The different struc-
tures, like group, ring and field are defined in several articles by various authors Journal
of Formalized Mathematics (1990–present). A report about some formalization issues
faced during these developments can be seen in Rudnicki et al. (2001). Abstract algebra
has been also formalized in constructive set theory using the MetaPRL system Yu and
Hickey (2003).

Our ACL2 algebraic hierarchy shares some features with the hierarchies developed in
all these systems. First of all, all the hierarchies have a top structure which is embedded
in every lower level one. We can classify the hierarchies depending on this top level
structure. The hierarchies presented in Rudnicki et al. (2001); Yu and Hickey (2003) are
set based, the ones introduced in Gunter (1989); Pottier (2001); Bailey (1999); Geuvers
et al. (2002); Spitters and van der Weegen (2011); Ballarin et al. (2012) are setoid based,
and the SSReflect hierarchy Garillot et al. (2009) uses a choice structure as top level
object. The hierarchy presented in this paper is setoid based, this is quite common in
the rest of hierarchies since, using this approach, we just need to change the equivalence
relation of the underlying setoid to construct the quotient of a structure, see the example
presented in Section 4. In addition, the algebraic structures which have been modeled
in our hierarchy are the same that appears in the rest of the formalizations. The only
important structure which is missed in our hierarchy is the one of field, mainly because we
did not need it; however it can be included without any special hindrance. Finally, in all
the cases algebraic structures are defined using a record (called locale in Isabelle, Class
or Record in Coq, struct in Mizar and so on) where the operations of the structure are
packed. In some cases, as in Isabelle or Coq, such records also include the axioms about
the operations; the situation in ACL2 is similar to the one of Mizar where the axioms
about the operations are external to the record.

It is worth noting that our approach has some limitations when we compare it with
the other ones. The first drawback is the ACL2 inheritance mechanism which produces
nested record structures; this makes tiresome the task of accessing some components
of the structure. This issue is solved in other systems using subtyping mechanisms and
automatic inference of coercions, see Geuvers et al. (2002); Garillot et al. (2009). Another
pitfall is the lack of existential quantification over algebraic structures, however we can
universally quantify over them using the defgeneric-<structure> macros. Moreover,
the definition of families of structures can seem a bit strange since we cannot define a
function which returns a structure as output, this is the common method in the rest of
theorem provers. Nevertheless, the introduction of the index set as a parameter in the
operations of a structure is a well-known technique to represent families using first order
logic, see Lambán et al. (1999). The last disadvantage is that we always need to state
and prove that the operations of the algebraic structures are closed on the underlying
set characterized by the invariant function, nevertheless most of these properties are
automatically proved by ACL2 without any external guidance. This last issue is not
relevant in other systems because the operations can be defined in the desired domain,
but this is not possible in ACL2 since it is an untyped system.

On the other hand, there are some advantages if we compare our approach with the
other ones, specially if we focus on the final aim of our hierarchy: the verification of
Computer Algebra systems.

19



6.2. Formal Algebraic Hierarchies and Computer Algebra systems

Algebraic structures are instrumental in Computer Algebra systems since they are the
basis for several constructions. Therefore, it makes sense to use Theorem Prover tools in
order to increase the consistency of those algebraic structures.

Axiom is a general purpose Computer Algebra system whose hierarchy of algebraic
structures has been formalized both in Coq Pottier (2001) and Isabelle Ballarin (2007).
The Nuprl hierarchy presented in Jackson (1995) had as final aim the connection with the
Weyl system Zippel (1993). The correctness of Maple has been studied with the systems
PVS Adams et al. (2001), Isabelle Ballarin et al. (1995) and HOL Harrison and Théry
(1998). There is also a development to create a Computer Algebra system on top of the
HOL system, see Kaliszyk and Wiedijk (2007).

A different approach is the one of the FoCaLize system Pessaux et al. (2010) where
an environment to develop certified programs for symbolic computation has been con-
structed. The FoCaLize environment contains a classical algebraic hierarchy. A similar
project is the one of Analytica Bauer et al. (1998), a theorem prover which runs on top
of Mathematica and can be used to verify programs of this system.

However, we cannot consider any of these approaches fully satisfactory. The drawback
of the approaches which formalize Computer Algebra systems using proof assistant is
that the code which is verified is far from the actual code. Building the Computer Alge-
bra system on top of the theorem prover seems a solution to this problem, but it has as
disadvantage one of the weak points of proof assistants: inefficiency. The problem of sys-
tems like FoCaLize or Analytica is that they are ad hoc systems; so, both the community
of users and the libraries of results are small.

These problems does not appear with our ACL2 hierarchy of algebraic structures.
First of all, Common Lisp is the language of several Computer Algebra systems such as
Axiom Jenks and Sutor (1992), Maxima Maxima, a Computer Algebra system (2012),
Reduce Hearn et al. (2009), Weyl Zippel (1993) and Kenzo Dousson et al. (1998); then,
we can verify actual code of these systems using ACL2. In addition, the ACL2 community
is one of the biggest in the context of Theorem Proving tools; so, the great amount of
libraries previously developed by other users can be used in our work.

Let us present now the benefits of our approach in the particular case of Kenzo; a
system whose correctness has been studied with three Theorem Provers: Isabelle, Coq
and ACL2.

6.3. Verification of the Kenzo system

The Kenzo system has been able to compute some unknown results Sergeraert (1992),
and also has been used to refute some computations obtained by theoretical means,
see Romero and Rubio (2012). This implies that increasing user’s trust in the system is
relevant.

One feature of Kenzo is its use of higher order functional programming to handle
spaces of infinite dimension. Thus, the first attempts to apply theorem proving assistants
in the analysis of Kenzo were oriented towards higher order logic tools. Concretely, the
Isabelle/HOL proof assistant was used to verify in Aransay et al. (2008) a very important
algorithm in Homological Algebra: the Basic Perturbation Lemma Rubio and Sergeraert
(2006); the algebraic hierarchy used in this development was the one presented in Bal-
larin et al. (2012). In the same line, we can find the work of Domı́nguez and Rubio

20



(2011) where the Effective Homology of the Bicomplexes (another important result in
Homological Algebra) was formalized in Coq extending the algebraic hierarchy of Geu-
vers et al. (2002). Let us note that these formalizations were related to algorithms and
not to the real programs implemented in Kenzo. The problem of extracting programs
from the Isabelle/HOL proofs has been dealt with in Aransay et al. (2010), but even
there the programs are generated in ML, far from Kenzo.

Since both Kenzo and ACL2 are Common Lisp programs, we can undertake the task
of verifying real Kenzo code in ACL2. For instance, ACL2 has been successfully used
to study some critical fragments of Kenzo in Mart́ın-Mateos et al. (2009); Andrés et al.
(2007), but algebraic structures were not involved in any of these two formalizations.
However, ACL2 can also be used to formalize results about the algebraic structures im-
plemented in the Kenzo system. This can be seen in Lambán et al. (2012a) and Lambán
et al. (2012b), where the Normalization theorem and the Eilenberg-Zilberg theorem Ru-
bio and Sergeraert (2006) (two instrumental results in the Kenzo system involving con-
structions about chain complexes) have been respectively formalized. The formalization
of those two theorems was undertaken from scratch; so, the problems presented in Sub-
section 5.2 appeared during their development. Hence, the use of our methodology can
mean a great benefit when dealing with this kind of works.

As a final point, we can compare the formalization in ACL2 and Coq of the cone
construction, the Coq proof of this result was presented in Domı́nguez and Rubio (2010).
As we previously said, the gap between the ACL2 formalization and the Kenzo code is
much smaller than the one between Coq and Kenzo. In addition, there are several parts
of the proof which are automated by ACL2 and, therefore, the user only has to focus on
the difficult parts; on the contrary, in the Coq formalization all the steps must be given
by the user. In particular, we need to prove 10 theorems using Coq in order to formalized
the cone construction; on the contrary, ACL2 only needs help in 5 of those theorems and
the rest of them are proved automatically. In addition, even in the cases where ACL2
is not able to finish the proof on its own, the user receives feedback from the system, a
valuable information which can help him to complete the proof.

7. Conclusions and Further work

In this paper, we have presented an ACL2 infrastructure to deal with algebraic struc-
tures and morphisms between them. Namely, we have provided several tools which make
the handling of this kind of objects easier. As a result, an ACL2 hierarchy of the most
common algebraic structures has been provided; a task, that as far as we are aware, had
not been undertaken up to now for this system.

The feasibility of using our framework has been illustrated with the example of the ho-
mology group of two Abelian group morphisms satisfying the nilpotency condition. This
example involves several common constructions in Universal Algebra such as subalgebras,
morphisms or quotients.

In addition, we have presented the benefits of using our approach when dealing with
complex mathematical structures instead of working from scratch. In these kind of prob-
lems the development effort is considerably reduced using our tools. This is important
when we are facing the final aim of our work: the formalization of Computer Algebra
systems. As we have seen in the related work section, this issue is better undertaken with

21



our hierarchy of algebraic structures than using the ones developed in other Theorem
Provers.

With the acquired experience, the method presented in this paper could be extrap-
olated to other algebraic structures, for instance to the case of Tarski Kleene Algebras
which was previously studied in Isabelle Foster et al. (2011). We may also formalize the
generic theory of Universal Algebra, see Capretta (1999); Spitters and van der Weegen
(2011).

In addition, as we have seen in Section 3, the definition of morphism between struc-
tures always follows the same pattern; so, it would be desirable to have a tool able
to automatize, at least part of, the process to generate the tools related to morphisms
between structures.

Nevertheless, our main research line for the future is the application of the tools
that we have presented here to verify actual Computer Algebra systems. We are mainly
interested in the Kenzo system, where an environment like the one presented in this
paper is desirable when dealing with its mathematical structures. Moreover, we are also
keen on the formalization of other Lisp-based systems such as Axiom or Maxima.

References

Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S., 2001. Com-
puter algebra meets automated theorem proving: Integrating Maple and PVS. In: Pro-
ceedings of the 14th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2001). Vol. 2152 of Lecture Notes in Computer Science. pp. 27–42.

Andrés, M., Lambán, L., Rubio, J., Ruiz-Reina, J. L., 2007. Formalizing Simplicial Topol-
ogy in ACL2. In: Proceedings of ACL2 Workshop 2007. pp. 34–39.

Aransay, J., Ballarin, C., Rubio, J., 2008. A mechanized proof of the Basic Perturbation
Lemma. Journal of Automated Reasoning 40 (4), 271–292.

Aransay, J., Ballarin, C., Rubio, J., 2010. Generating certified code from formal proofs:
a case study in homological algebra. Formal Aspects of Computing 22 (2), 193–213.

Bailey, A., 1999. The machine-checked literate formalisation of algebra in type theory.
Ph.D. thesis, Manchester University.

Ballarin, C., 2007. Algebraic structures in Axiom and Isabelle: attempt at a compari-
son. In: Proceedings Programming Languages for Mechanized Mathematics (PLMMS
2007). No. 07-10 in RISC-Linz Report Series. pp. 75–80.

Ballarin, C., Aransay, J., Hohe, S., Kammller, F., Paulson, L., 2012. The Isabelle/HOL
Algebra Library.

Ballarin, C., Homann, K., Calmet, J., 1995. Theorems and algorithms: an interface be-
tween Isabelle and Maple. In: Proceedings of the International Symposium on Symbolic
and Algebraic Computation (ISSAC 1995). pp. 150–157.

Bauer, A., Clarke, E. M., Zhao, X., 1998. Analytica - an experiment in combining theorem
proving and symbolic computation. Journal of Automated Reasoning 21 (3), 295–325.

Bishop, E. A., 1967. Foundations of constructive analysis. McGraw-Hill Publishing Com-
pany, Ltd.

Brock, B., 1997. defstructure for ACL2 version 2.0. Tech. rep., Computational Logic,
Inc.

Capretta, V., 1999. Universal Algebra in Type Theory. In: Proceedings 12th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 1999). Vol. 1690 of
Lecture Notes in Computer Science. pp. 131–148.

22



Denecke, K., Wismath, S. L., 2002. Universal Algebra and Applications in Theoretical
Computer Science. Chapman Hall/CRC.

Domı́nguez, C., Rubio, J., 2010. Computing in Coq with Infinite Algebraic Data Struc-
tures. In: Proceedings 17th Symposium on the Integration of Symbolic Computation
and Mechanised Reasoning (Calculemus 2010). Vol. 6167 of Lectures Notes in Artificial
Intelligence. Springer-Verlag, pp. 204–218.

Domı́nguez, C., Rubio, J., 2011. Effective Homology of Bicomplexes, formalized in Coq.
Theoretical Computer Science 412, 962–970.

Dousson, X., Rubio, J., Sergeraert, F., Siret, Y., 1998. The Kenzo program. Institut
Fourier, Grenoble.
URL http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

Foster, S., Struth, G., Weber, T., 2011. Automated Engineering of Relational and Alge-
braic Methods in Isabelle/HOL - (Invited Tutorial). In: Proceedings of 12th Interna-
tional Conference Relational and Algebraic Methods in Computer Science (RAMICS
2011). pp. 52–67.

Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L., 2009. Packaging mathematical
structures. In: Proceedings 22nd International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2009). Vol. 5674 of Lecture Notes in Computer Sci-
ence. pp. 327–342.

Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J., 2002. A constructive algebraic
hierarchy in Coq. Journal of Symbolic Computation 34 (4), 271–286.

Geuvers, H., Wiedijk, F., Zwanenburg, J., Pollack, R., Barendregt, H., 2000. The “Fun-
damental Theorem of Algebra” Project. Tech. rep.
URL http://www.cs.kun.nl/gi/projects/fta

Greve, D., 2006. Parameterized Congruences in ACL2. In: Proceedings of the Sixth In-
ternational Workshop on the ACL2 Theorem Prover and its Applications. pp. 28–34.

Gunter, E., 1989. Doing algebra in simple type theory. Tech. Rep. MS-CIS-89-38, Depart-
ment of Computer and Information Science, Moore School of Engineering, University
of Pennsylvania.

Hardin, D. (Ed.), 2010. Design and Verification of Microprocessor Systems for High-
Assurance Applications. Springer.

Harrison, J., Théry, L., 1998. A skeptic’s approach to combining HOL and Maple. Journal
of Automated Reasoning 21 (3), 279–294.

Hearn, A. C., et al., 2009. Reduce. http://www.reduce-algebra.com/index.htm.
Heras, J., 2011. Mathematical Knowledge Management in Algebraic Topology. Ph.D.

thesis, University of La Rioja, Ch. An ACL2 infrastructure to formalize Kenzo Higher
Order constructors, pp. 293–312, http://www.unirioja.es/servicios/sp/tesis/

22488.shtml.
Heras, J., Mart́ın-Mateos, F. J., Pascual, V., 2012. Implementing Algebraic Structures in

ACL2. Tech. rep., http://www.computing.dundee.ac.uk/staff/jheras/ahomsia/.
Jackson, P., 1995. Enhancing the Nuprl proof-development system and applying it to

computational abstract algebra. Ph.D. thesis, Cornell University.
Jenks, R., Sutor, R., 1992. AXIOM: The Scientific Computation System. Springer-Verlag.
Journal of Formalized Mathematics, 1990–present. http://www.mizar.org/JFM/.
Kaliszyk, C., Wiedijk, F., 2007. Certified computer algebra on top of an interactive

theorem prover. In: Proceedings of the 14th Symposium on the Integration of Sym-
bolic Computation and Mechanised Reasoning (Calculemus 2007). Vol. 4108 of Lecture
Notes in Computer Science. pp. 94–105.

23

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www.cs.kun.nl/gi/projects/fta
http://www.reduce-algebra.com/index.htm
http://www.unirioja.es/servicios/sp/tesis/22488.shtml
http://www.unirioja.es/servicios/sp/tesis/22488.shtml
http://www.computing.dundee.ac.uk/staff/jheras/ahomsia/
http://www.mizar.org/JFM/


Kammller, F., 1999. Modular Structures as Dependent Types in Isabelle. In: Proceedings
of the International Workshop on Types for Proofs and Programs (TYPES 1998). Vol.
1657 of Lecture Notes in Computer Science. pp. 121–133.

Kaufmann, M., Manolios, P., Moore, J S. (Eds.), 2000a. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers.

Kaufmann, M., Manolios, P., Moore, J S., 2000b. Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers.

Kaufmann, M., Moore, J S., 2001. Structured Theory Development for a Mechanized
Logic. Journal of Automated Reasoning 26 (2), 161–203.

Kaufmann, M., Moore, J S., 2012. ACL2 version 5.0.
URL http://www.cs.utexas.edu/users/moore/acl2/

Lambán, L., Mart́ın-Mateos, F. J., Rubio, J., Ruiz-Reina, J. L., 2011. Applying ACL2
to the Formalization of Algebraic Topology: Simplicial Polynomials. In: Proceedings
Interactive Theorem Proving (ITP 2011). Vol. 6898 of Lecture Notes in Computer
Science. pp. 200–215.

Lambán, L., Mart́ın-Mateos, F. J., Ruiz-Reina, J. L., Rubio, J., 2012a. Formalization of
a normalization theorem in simplicial topology. Annals of Mathematics and Artificial
Intelligence 64 (1), 1–37.

Lambán, L., Mart́ın-Mateos, F. J., Ruiz-Reina, J. L., Rubio, J., 2012b. Formalization of
Eilenberg-Zilber theorem. http://www.glc.us.es/fmartin/simplicialtopology/

acl2eztheorem.
Lambán, L., Pascual, V., Rubio, J., 1999. Specifying Implementations. In: Proceedings of

the International Symposium on Symbolic and Algebraic Computation (ISSAC 1999).
ACM Press. pp. 245–251.

Lambán, L., Pascual, V., Rubio, J., 2003. An object-oriented interpretation of the EAT
system. Applicable Algebra in Engineering, Communication and Computing 14, 187–
215.

Mart́ın-Mateos, F. J., Alonso, J. A., Hidalgo, M., Ruiz-Reina, J. L., 2002. A Generic
Instantiation Tool and a Case Study: A Generic Multiset Theory. In: Proceedings of
the third international ACL2 workshop and its applications. pp. 188–201.

Mart́ın-Mateos, F. J., Rubio, J., Ruiz-Reina, J. L., 2009. ACL2 verification of simplicial
degeneracy programs in the Kenzo system. In: Proceedings 16th Symposium on the
Integration of Symbolic Computation and Mechanised Reasoning (Calculemus 2009).
Vol. 5625 of Lectures Notes in Computer Science. pp. 106–121.

Mathematical components team, 2012. Formalization of the odd order theorem. http:
//www.msr-inria.inria.fr/Projects/math-components.

Maunder, C., 1996. Algebraic Topology. Dover.
Maxima, a Computer Algebra system, 2012. http://maxima.sourceforge.net.
Pessaux, F., Weia, P., Doligez, D., 2010. The FoCaLiZe essential. Tech. rep., http:

//focalize.inria.fr/.
Pottier, L., 2001. User contributions in Coq, Algebra. Tech. rep., http://coq.inria.
fr/contribs/Algebra.html.

Romero, A., Rubio, J., 2012. Homotopy groups of suspended classifying spaces: An ex-
perimental approach. To appear in Mathematics of Computation.

Rubio, J., Sergeraert, F., 2006. Constructive Homological Algebra and Applications,
Lecture Notes Summer School on Mathematics, Algorithms, and Proofs. University of
Genova.

24

http://www.cs.utexas.edu/users/moore/acl2/
http://www.glc.us.es/fmartin/simplicialtopology/acl2eztheorem
http://www.glc.us.es/fmartin/simplicialtopology/acl2eztheorem
http://www.msr-inria.inria.fr/Projects/math-components
http://www.msr-inria.inria.fr/Projects/math-components
http://maxima.sourceforge.net
http://focalize.inria.fr/
http://focalize.inria.fr/
http://coq.inria.fr/contribs/Algebra.html
http://coq.inria.fr/contribs/Algebra.html


URL http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/

Genova-Lecture-Notes.pdf

Rudnicki, P., Schwarzweller, C., Trybulec, A., 2001. Commutative Algebra in the Mizar
System. Journal of Symbolic Computation 32, 143–169.

Sergeraert, F., 1992. Effective homology, a survey. Tech. rep., Institut Fourier, http:
//www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf.

Spitters, B., van der Weegen, E., 2011. Type Classes for Mathematics in Type Theory.
Mathematical Structures in Computer Science 21, 795–825.

Weibel, C. A., 1994. An introduction to homological algebra. Vol. 38 of Cambridge studies
in advanced mathematics. Cambridge University Press.

Yu, X., Hickey, J., 2003. Formalizing Abstract Algebra in Constructive Set Theory. Tech.
rep.

Zippel, R., 1993. The weyl computer algebra substrate. In: Proceedings on International
Symposium on Design and Implementation of Symbolic Computation Systems (DISCO
1993). Vol. 722 of Lecture Notes in Computer Science. pp. 303–318.

25

http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf

	Introduction
	A brief introduction to ACL2
	Modeling a hierarchy of algebraic structures in ACL2
	Modeling setoids in ACL2
	A hierarchy of algebraic structures
	Morphisms between algebraic structures

	Application: Homological Algebra
	Dealing with complex mathematical structures
	Indexed families of structures
	Benefits of our approach

	Related work
	Algebraic Hierarchies and Theorem Provers
	Formal Algebraic Hierarchies and Computer Algebra systems
	Verification of the Kenzo system

	Conclusions and Further work

