
Computing Persistent Homology within
Coq/SSReflect?

Jónathan Heras1, Thierry Coquand2, Anders Mörtberg2, and Vincent Siles2

1 School of Computing, University of Dundee, UK
2 Department of Computer Science and Engineering, Chalmers University of

Technology and University of Gothenburg, Sweden
jonathanheras@computing.dundee.ac.uk,

{coquand,mortberg,siles}@chalmers.se

Abstract. Persistent homology is one of the most active branches of
Computational Algebraic Topology with applications in several contexts
such as optical character recognition or analysis of point cloud data. In
this paper, we report on the formal development of certified programs to
compute persistent Betti numbers, an instrumental tool of persistent ho-
mology, using the Coq proof assistant together with the SSReflect ex-
tension. To this aim it has been necessary to formalize the underlying
mathematical theory of these algorithms. This is another example show-
ing that interactive theorem provers have reached a point where they
are mature enough to tackle the formalization of nontrivial mathemati-
cal theories.

Keywords: Persistent Homology, Computational Algebraic Topology,
Formalization of Mathematics, Coq, SSReflect.

1 Introduction

Persistent homology is a branch of Algebraic Topology which appeared simulta-
neously in three works during the last five years of the 20th century, see [10,18,37].
Since that time it has become one of the central tools in the context of Compu-
tational Algebraic Topology and several applications and extensions have been
developed.

In a nutshell, persistent homology is a technique which allows one to study
the lifetime of topological attributes; this can be really useful in different con-
texts such as point cloud data [19], optical character recognition [31], sensor
networks [9] and surface reconstruction from noisy samples [11]. The main idea
of all of these applications is that relevant features will be long-lived in the sense
that they persist over a certain parameter range, on contrast with the “noise”
which will be short-lived.

? Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-
C02-01, and by the European Union’s 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).

In this work, the main notions about persistent homology have been for-
malized using the Coq proof assistant [8] together with the SSReflect ex-
tension [22]. During such a process we have proved relevant theorems like the
Fundamental Lemma of Persistent Homology [16, pp. 152]. Moreover, we have
implemented certified programs to compute persistent Betti numbers, an instru-
mental tool in the context of persistent homology.

The rest of this paper is organized as follows. The next section is devoted
to present the mathematical notions and results which will be formalized using
Coq/SSReflect in Section 3. The effective algorithms to compute persistent
homology and some experiments performed with such programs are introduced
respectively in Section 4 and Section 5. The paper ends with a section of con-
clusions and further work.

The interested reader can consult the original and complete source code which
can be found at [26].

2 Mathematical background

In this section, we briefly provide the necessary mathematical background needed
to understand the paper. We mainly focus on definitions, some of them are well
known notions of Algebraic Topology, see [32], and the rest comes from persis-
tent homology theory [17,40,16]. We start by presenting simplicial complexes, a
combinatorial object which can be understood as a generalization of graphs to
higher dimensions.

2.1 Simplicial complexes

Let V be an ordered set, called the vertex set. An (abstract) simplex over V is
any finite subset of V . An (abstract) n-simplex over V is a simplex over V whose
cardinality is equal to n+ 1. Given a simplex α over V , we call the subsets of α
faces.

Definition 1 An (ordered abstract) simplicial complex over V is a set of sim-
plices K over V such that it is closed by taking faces (subsets), that is, if α ∈ K
then all the faces of α are in K too.

Let K be a simplicial complex, the set Sn(K) of n-simplices of K is the set
made of the simplices of cardinality n+ 1.

Example 1. Let us consider V = (0, 1, 2, 3, 4, 5). The small simplicial complex
drawn in Figure 1 is mathematically defined as the object:

K =

{
(0), (1), (2), (3), (4), (5), (0, 1), (0, 2), (1, 2), (2, 3)
(3, 4), (3, 5), (4, 5), (0, 1, 2)

}
.

0

1

2 3

4

5

Fig. 1. “Diabolo” Complex

Definition 2 Let K be a simplicial complex over V . Let n and i be two integers
such that n ≥ 1 and 0 ≤ i ≤ n. Then the face operator ∂ni is the map ∂ni :
Sn(K)→ Sn−1(K) defined by:

∂ni ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn)

where the i-th vertex of the simplex is removed, so that a (n − 1)-simplex is
obtained.

2.2 Chain complexes

Now, we introduce a central notion in Algebraic Topology. Notions like rings,
modules over a ring and module morphisms (see [30] for details) are assumed to
be known.

Definition 3 A chain complex C∗ is a pair of sequences (Cn, dn)n∈Z where for
every n ∈ Z, Cn is a R-module (with R a ring) and dn : Cn → Cn−1 is a module
morphism, called the differential map, such that the composition dndn+1 is null
(this is known as nilpotency condition).
The module Cn is called the module of n-chains. The image Bn = im dn+1 ⊆
Cn is the (sub)module of n-boundaries. The kernel Zn = ker dn ⊆ Cn is the
(sub)module of n-cycles.

Once we have defined the notions of simplicial complexes and chain com-
plexes, we can define the link between them considering Z2 as the ground ring.
As Z2 is a field the chain groups are vector spaces.

Definition 4 Let K be a simplicial complex over V . Then the chain complex
C∗(K) canonically associated with K is defined as follows. The chain group
Cn(K) is the free Z2-module generated by the n-simplices of K. In addition,
let (v0, . . . , vn) be a n-simplex of K, the differential of this simplex is defined as:

dn :=

n∑
i=0

∂ni .

Cn(K) is a free module and the n-simplices form the standard basis of it.
Therefore, for all n we can represent dn : Cn(K) → Cn−1(K) relative to the
standard basis of the chain groups as a Z2 matrix. Such a matrix is called the
n-th incidence matrix of a simplicial complex.

Let us present an example in order to clarify the notion of chain complex
canonically associated with a simplicial complex.

Example 2. Let K be the simplicial complex defined in Figure 1. The chain
complex C∗(K) canonically associated with K is:

· · · → 0→ C2(K)
d2−→ C1(K)

d1−→ C0(K)→ 0→ · · ·

where the 3 associated chain groups are:

• C0(K), the free Z2-module on the set of 0-simplices (vertices)
{(0), (1), (2), (3), (4), (5)}.
• C1(K), the free Z2-module on the set of 1-simplices (edges)
{(0, 1), (0, 2), (1, 2), (2, 3), (3, 4), (3, 5), (4, 5)}.
• C2(K), the free Z2-module on the set of 2-simplices (triangles)
{(0, 1, 2)}.

and the first incidence matrix, d1, is:

(0, 1) (0, 2) (1, 2) (2, 3) (3, 4) (3, 5) (4, 5)

(0) 1 1 0 0 0 0 0
(1) 1 0 1 0 0 0 0
(2) 0 1 1 1 0 0 0
(3) 0 0 0 1 1 1 0
(4) 0 0 0 0 1 0 1
(5) 0 0 0 0 0 1 1

Finally, we introduce one of the most important notions in the context of

Computational Algebraic Topology. Given a chain complex C∗ = (Cn, dn)n∈Z,
the identities dn−1 ◦ dn = 0 mean that the inclusion relations Bn ⊆ Zn hold,
that is, every boundary is a cycle (the converse is generally not true). Thus the
next definition makes sense.

Definition 5 The n-th homology group of C∗, denoted by Hn(C∗), is defined as
the quotient Hn(C∗) = Zn/Bn. The elements of Hn(C∗) are called n-dimensional
homology classes of C∗.

The n-th Betti number of C∗, denoted by βn(C∗), is the rank of the n-th
homology group of C∗.

In an intuitive sense, the n-th Betti number of an object X measures the
number of n holes of X; to be more concrete, β0 measures the number of con-
nected components, and the Betti numbers βn, with n > 0, measure higher
dimensional connectedness. For instance, β0 and β1 of the simplicial complex of
Figure 1 are equal to 1 (1 connected component and 1 hole), and its βn with
n > 1 are equal to 0 since it is a 2D object. As another example, we can con-
sider the sphere whose β0, β1 and β2 are respectively 1, 0, and 1 (1 connected
component, 0 holes and 1 cavity).

The homology groups of a simplicial complex K are the ones associated with
the chain complex C∗(K). Moreover, Betti numbers of a simplicial complex can
be easily computed considering the representation of the differential maps as
matrices using the formula:

βn(C∗(K)) = ns− rank(dn)− rank(dn+1) (1)

where ns is the number of n-simplices.

2.3 Persistent Homology

We end this section by introducing the instrumental notions in persistent homol-
ogy theory. A more detailed description of this theory can be found in [17,40,16].

Definition 6 Let K be a simplicial complex, a subcomplex of K is a subset
L ⊆ K that is also a simplicial complex. A filtration of K is a nested subsequence
of complexes:

K0 ⊆ K1 ⊆ . . . ⊆ Km = K

An example of a filtration can be seen in Figure 2 taking the diabolo complex
of Figure 1 as K.

K0 K1 K2

K3 K4 K5 = K

0

1

2 3

4

5

0

1

2 3

4

5

0

1

2 3

4

5

0

1

2 3

4

5

0

1

2 3

4

5

0

1

2 3

4

5

Fig. 2. Filtration of the diabolo simplicial complex

Given a filtration of a simplicial complex and the j-th component of the
filtration, let us say Kj , we will denote Cn(Kj), Zn(Kj) and Bn(Kj) by Cj

n, Z
j
n

and Bj
n respectively. Therefore, we can represent the chain complexes associated

with a filtration using the following diagram.

...

d0
3

��

...

d1
3

��

...

d2
3

��
C0

2
� � i02 //

d0
2

��

C1
2

� � i12 //

d1
2

��

C2
2

� � i22 //

d2
2

��

. . .

C0
1

� � i01 //

d0
1

��

C1
1

� � i11 //

d1
1

��

C2
1

� � i21 //

d2
1

��

. . .

C0
0

� � i00 // C1
0

� � i10 // C2
0

� � i20 // . . .

where ijn is the map induced by the inclusion between the n-simplices of Kj and
the ones of Kj+1. Moreover, for j < p we will use ij,pn to denote the map induced
by the inclusion between the n-simplices of Kj and the ones of Kp. Now, we can
introduce the notion of persistent homology groups.

Definition 7 The p-persistent n-th homology group of Kj , denoted by Hj,p
n , is

defined as the quotient Hj,p
n = ij,pn (Zj

n)/(Bp
n ∩ ij,pn (Zj

n)).
The p-persistent n-th Betti number of Kj , denoted by βj,p

n , is defined as the
rank of Hj,p

n .

The elements of Hj,p
n are the n-dimensional homology classes of Kj which

are still alive at Kp. Hence βj,p
n measures the number of n-dimensional classes

of Kj which are still alive at Kp. For instance, β2,3
0 of the filtration depicted in

Figure 2 is equal to 2, this means that there are two connected components, the
triangle (0, 1, 2) and the vertex (3), of K2 which are still alive at K3.

In order to shed light on the meaning of persistent homology, we introduce the
usual way of visualizing persistence. The lifetime of a n-dimensional homology
class can be represented as an interval; namely, a homology class which is born
at level Ki of the filtration and dies entering Kj (with i < j) is represented as
the interval [i, j), and if it is born at level Ki but never dies we use the interval
[i,∞). A barcode is defined to be the set of resulting intervals of a filtration.

Example 8 The barcodes in degree 0 and 1 associated with the filtration of
Figure 2 are the ones depicted in Figure 3. In the case of the β0 barcode, the
vertex (0) is a connected component which is born at level 0 of the filtration
and lives forever; on the contrary, for example, the vertex (3) is born at level 2
of the filtrations and dies entering the level 4 when it is merged with another
connected component. In the case of the β1 barcode (where holes are the 1-
homology classes), a hole appears at level 1 of the filtration between the edges
(0, 1), (0, 2), (1, 2) and dies entering the last level of the filtration when it is filled
with the triangle (0, 1, 2); on the other hand, the hole which appears at level 3
of the filtration never dies.

β0

K0 K1 K2 K3 K4 K5

(0)

(1)

(2)

(3)

(4)

(5)

β1

K0 K1 K2 K3 K4 K5

(0) − (1) − (2)

(3) − (4) − (5)

Fig. 3. Barcodes of the diabolo filtration

If we are interested in computing the n-dimensional homology classes which
are born at Kj and die entering Kp, we have the following formula:

µj,p
n = (βj,p−1

n − βj,p
n)− (βj−1,p−1

n − βj−1,p
n). (2)

The first difference on the right hand side of the above formula measures the
number of n-dimensional classes which are born at or before Kj and die entering
Kp, and the second one counts the number of n-dimensional classes which are
born at or before Kj−1 and die entering Kp. Now, we can state the Fundamental
Lemma of Persistent Homology.

Theorem 9 (Fundamental Lemma of Persistent Homology) Let K0 ⊆
K1 ⊆ . . . ⊆ Km = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ m and
every dimension n, the l-persistent n-th Betti number of Kk is

βk,l
n =

∑
0≤i≤k

∑
l<j≤m

µi,j
n + βk,m

n .

The importance of the Fundamental Lemma of Persistent Homology lies in
the fact that it says that the barcodes encode all the information about persistent
homology groups.

This version of the Fundamental Lemma of Persistent Homology is stated
slightly different from the one presented in Edelsbrunner and Harer [16, pp.152];
however both of them are equivalent. There are two differences between the
statements: The former is related to the definition of µj,p

n which is defined for
the case p ∈ N and has to be extended for p =∞. In particular for such a case,
we have the following formula:

µj,∞
n = βj,∞

n − βj−1,∞
n

where βj,∞
n is defined as the n-dimensional classes which are born at or before

Kj and never die (in other words, dies in the ∞). It is worth noting that βj,∞
n

is equal to βj,m
n (where m is the last level of the filtration).

The latter difference is a consequence of the former one and is related to
the inner sum of the theorem which will be an infinite sum. In particular, the
Edelsbrunner and Harer’s Fundamental Lemma of Persistent Homology is stated
as follows.

Theorem 10 (Fundamental Lemma of Persistent Homology) [16, pp.152]
Let K0 ⊆ K1 ⊆ . . . ⊆ Km = K be a filtration. For every pair of indices
0 ≤ k ≤ l ≤ m and every dimension n, the l-persistent n-th Betti number of Kk

is
βk,l
n =

∑
0≤i≤k

∑
l<j

µi,j
n .

As we have said previously, both formulations of the theorems are equivalent;
however, the one presented in Theorem 9 is more suitable to be formalized since
we do not need to handle infinite sums in the Coq/SSReflect theorem prover.

3 An abstract formalization using Coq/SSReflect

Let us now introduce an abstract formalization of the notions presented in the
previous section using Coq together with the SSReflect extension.

3.1 Simplicial Complexes and Homology

In previous work, see [28,27], we have formalized the notions presented in sub-
sections 2.1 and 2.2. However, for the sake of clarity of the exposition we include
the main definitions and results which have been developed previously.

We begin with the notions related to simplicial complexes. The set of vertices
is represented by a finite type V (i.e. a type with finitely many elements which
in addition has a canonical order associated with it). A simplex is defined as a
finite set of vertices. Using this, the definition of a simplicial complex as a set of
simplices closed under inclusion is straightforward:

Variable V : finType.

Definition simplex := {set V}.

Definition simplicial_complex (c : {set simplex}) :=

forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.

The definition of the n-th incidence matrix of a simplicial complex, which
is called incidence_mx_n, takes two arguments: a set of simplices c and the
dimension n, and returns a SSReflect matrix. Moreover, we have proved the
nilpotency condition (see Definition 3) for two consecutive incidence matrices
encoded with incidence_mx_n.

Theorem incidence_matrices_sc_product:

forall (V:finType) (n:nat) (sc: {set (simplex V)}),

simplicial_complex sc ->

(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

The notion of homology is defined in Coq as follows. Let F be a field,
V 1, V 2, V 3 vector spaces on F , and f : V 1 → V 2, g : V 2 → V 3 linear maps
such that g ◦ f = 0; then, the Homology of f and g is the quotient between the
kernel of g and the image of f . This can be defined in Coq in the following way.

Variables (F : fieldType) (V1 V2 V3 : vectType F)

(f : ’Hom(V1,V2)) (g : ’Hom(V2,V3)).

Definition Homology := ((lker g) :\: (limg f)).

Definition Betti := \dim Homology.

Finally, this definition of homology can be instantiated for the homology in
degree n of a simplicial complex sc using the linear maps associated with the
incidence matrices in dimension n+ 1 and n. Given a matrix M, the instruction
Vector.Hom(M) builds the linear map associated with M. It is necessary to trans-
pose the incidence matrices to obtain the correct definition of homology groups
associated with them.

Definition Homology_sc_n (sc : {set simplex V}) (n : nat) :=

Homology (Vector.Hom (incidence_mx_n sc n.+1)^T)

(Vector.Hom (incidence_mx_n sc n)^T).

Analogously, we can define the n-th Betti number of a simplicial complex sc
instantiating the Betti definition.

Definition Betti_sc_n (sc : {set simplex V}) (n : nat) :=

Betti (Vector.Hom (incidence_mx_n sc n.+1)^T)

(Vector.Hom (incidence_mx_n sc n)^T).

3.2 Persistent homology

In this section, we formalize the results presented in Subsection 2.3. First of all,
we define a more generic notion than the one of the persistent homology group
Hj,p

n associated with a filtration. Such a notion involves the elements presented
in the following diagram.

V3

g

��
V1

i //

f

��

V4

V2

where V1, V2, V3 and V4 are vector spaces over a field F , f : V1 → V2 and
g : V3 → V4 are linear maps and i : V1 → V3 is an injective linear map. Using this
we can define the vector space Pf,g,i, called PHomology in Coq, as the quotient
i(ker(f))/(im(g) ∩ i(ker(f))). We use the vector library of SSReflect [21] in
order to define this notion.

Variables (F : fieldType) (V1 V2 V3 V4 : vectType F)

(f : ’Hom(V1,V2)) (g : ’Hom(V3,V4)) (i : ’Hom(V1,V4)).

Hypothesis (i_inj : injective i).

Definition PHomology :=

(i @: (lker f)) :\: ((limg g) :&: (i @: (lker f))).

As i is an injective linear map and (im(g) ∩ i(ker(f))) is a subspace of
i(ker(f)), the dimension of Pf,g,i is equal to the dimension of ker(f) (which
in turn is equal to the dimension of V1 minus the dimension of im(f)) minus the
dimension of im(g)∩ i(ker(f)). This definition and its correctness are introduced
in Coq as follows:

Definition PBetti := \dim PHomology.

Lemma PBettiE : PBetti = Vector.dim V1 - \dim (limg f) -

\dim ((limg g) :&: (i @: (lker f))).

We omit the formal correctness proof for readability, we refer the interested
reader to look at the actual formalization [26].

Let us now present how we instantiate these definitions for the persistent
homology group Hj,p

n associated with a filtration. A filtration is defined as a
sequence of sets of simplices satisfying both that every element of the sequence
is a simplicial complex and that the elements form a nested increasing sequence
of sets.

Definition filtration (f : seq {set simplex V}) :=

(forall x, x \in f -> simplicial_complex x) /\

(forall i j, i <= j -> j < size f ->

(nth set0 f i) \subset (nth set0 f j)).

In order to define the inclusion matrix ij,pn of a filtration, we first introduce
the more generic notion of inclusion matrix of two sequences of simplices. This
inclusion matrix will be indexed by two sequences of simplices called Left and
Top.

We can access to the elements of Left and Top using the function nth. A
coefficient aij of the inclusion matrix will be 1 if the i-th simplex of Left is
equal to the j-th simplex of Top and 0 otherwise.

Therefore, we can define the inclusion matrix of two sequences of simplices
as follows.

Variables Left Top : seq(simplex).

Variables m n : nat.

Definition inclusionMatrix :=

\matrix_(i < m, j < n)

if (nth set0 Left i == nth set0 Top j) then 1 else 0:’F_2.

The type annotation 0:’F_2 indicates that the 0 and 1 appearing as coeffi-
cients of the matrix are the two elements of F_2, that is, Z2 as a field. The values
of m and n will be latter assigned to define a concrete inclusionMatrix.

We now define the inclusion matrix ij,pn of a filtration f by instantiating Left

and Top to the set of n-simplices of the j and, respectively, p component of f. It is
worth mentioning that, in SSReflect, finite sets are equipped with a canonical
enumeration, and can be transformed to sequences using the enum function.

Variable f : (seq {set (simplex V)}).

Variables n j p : nat.

Definition n_simplices (c : {set (simplex V)}):=

[set x \in c | #|x|==n.+1].

Definition n_simplices_k (k : nat) :=

n_simplices (nth set0 f k) n.

Definition inclusion_mx := inclusionMatrix

(enum (n_k_simplices j)) (enum (n_k_simplices p)).

We have proved that the linear map associated with inclusion_mx is injec-
tive.

Lemma injective_LinearApp_inclusion_mx :

injective (Vector.Hom (inclusion_mx)).

Now we have all of the necessary ingredients to define the persistent homol-
ogy group Hj,p

n and the persistent Betti number βj,p
n just instantiating P_fgi

and PBetti with the linear maps associated with the matrices djn, dpn+1 and
ij,pn . These matrices are encoded as (incidence_mx_n (nth set0 f j) n), (
incidence_mx_n (nth set0 f p) n.+1) and (inclusion_mx f n j p) respec-
tively.

Variable (V:finType) (f: (seq {set (simplex V)})) (n j p:nat).

Hypothesis f_is_filtration : filtration f.

Hypothesis j_is_in_filtration : j < size f.

Hypothesis j_leq_p_is_in_filtration : j <= p < size f.

Definition p_persistent_n_homology_K_j :=

PHomology (Vector.Hom (incidence_mx_n (nth set0 f j) n)))

(Vector.Hom (incidence_mx_n (nth set0 f p) n.+1))

(Vector.Hom (inclusion_mx f n j p)).

Definition p_persistent_n_betti_K_j :=

PBetti (Vector.Hom (incidence_mx_n (nth set0 f j) n))

(Vector.Hom (incidence_mx_n (nth set0 f p) n.+1))

(Vector.Hom (inclusion_mx f n j p)).

Finally, we can define µj,p
n (see Formula 2) and prove our version of the

Fundamental Lemma of Persistent Homology (Theorem 9).

Theorem fundamental_lemma_persistent_homology (k l : nat) (H : l

<= size f):

\sum_(0<=j<k.+1) (\sum_(l.+1 <= p < (size f).+1) (mu n j p)) =

(p_persistent_n_betti_K_j f n k l) -

(p_persistent_n_betti_K_j f n k (size f)).

The bigop library of SSReflect, see [5], has played a key role in the proof
of the above theorem. This library is devoted to generic indexed big operations,

like
n∑

i=0

f(i) or
⋂
i∈I

f(i), and their properties. Again, the interested reader can

consult the whole development of the formal proof of the Fundamental Lemma
of Persistent Homology in [26].

4 An effective certified implementation

One of the goals of this work was the development of certified programs to com-
pute both Betti and persistent Betti numbers. In the previous section we have
provided the definitions of such notions given in terms of linear maps of vec-
tor spaces. However, we do not usually work with linear maps when computing
Betti and persistent Betti numbers but with the matrices representing those
linear maps.

Equation 1 provides the explicit formula to compute Betti numbers from two
matrices. So we can use it to define this new notion using SSReflect matrices
(where ’M[K]_(m,n) is a m× n matrix over K) and prove that this new notion
is equivalent to the one given by the Betti definition.

Definition Betti_rank (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Lemma Betti_rankE (mxf:’M[K]_(v1,v2))

(mxg:’M[K]_(v2,v3)), mxf *m mxg = 0 ->

Betti_rank mxf mxg = Betti (Vector.Hom mxf) (Vector.Hom mxg).

Similarly, we can define persistent Betti numbers in terms of matrices and
prove the equivalence between such a definition and the one given in PBetti

definition.

Definition PBetti_rank (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v3,v4))

(mxi:’M[K]_(v1,v4)) :=

(v1 - \rank mxf - (\rank mxg + (v1 - \rank mxf) -

\rank (col_mx mxg (kermx mxf) *m mxi)))%N.

Lemma PBetti_rankE : forall (mxf:’M[K]_(v1,v2))

(mxg:’M[K]_(v3,v4)) (mxi:’M[K]_(v1,v4)),

injective (Vector.Hom mxi) ->

PBetti_rank mxf mxg mxi =

PBetti (Vector.Hom mxf) (Vector.Hom mxg) (Vector.Hom mxi).

However the use of SSReflect libraries may trigger heavy computations
during deduction steps, that would not terminate within a reasonable amount
of time. To handle this issue some definitions, like matrices, are locked in a way
that do not allow direct computations.

To overcome this pitfall, we use the methodology presented in [15] whose
key idea is the one of refinements. Roughly speaking, the correctness of math-
ematical algorithms are proved using all the high-level theory available in the
SSReflect libraries and then the algorithms are refined to an implementation
on simpler data structures that will be the ones running on the machine. In our
particular case of matrices we use lists of lists as the low level data type for
representing them.

The methodology presented in [15] has been implemented as a new library,
built on top of SSReflect libraries, which is called CoqEAL [14]. This library
includes the refinements of almost all the algorithms involved in the computation
of Betti and persistent Betti numbers. To be more concrete, the only algorithm
which has been necessary to refine is the one in charge of computing the row
kernel of a matrix.

The kermx function is already available in the SSReflect library and im-
plements the row kernel of a matrix. This algorithm has been refined into an
efficient version, called ker, which works with abstract matrices. The equivalence
between both algorithms has been proved in the following lemma.

Lemma eqmx_ker m n (M : ’M[K]_(m,n)) : ker M :=: kermx M.

Linear subspaces are represented in SSReflect by means of matrices which
means that the same linear subspace may have multiple representations. The
notation :=: checks whether the two matrices represent the same subspace. The
reason that we cannot prove ker M = kermx M is that it is simply not true,
the reason for this is that the kermx algorithm of SSReflect is implemented
by picking an arbitrary nonzero pivot element using the choice mechanism of
SSReflect [22]. However for the concrete implementation we cannot just pick
an arbitrary nonzero pivot but we need to take one in an efficient manner and
hence the output matrix may not be exactly equal to the one of kermx but only
a matrix representing the same subspace.

After defining the ker algorithm, we have translated it to the low level data
type, list of lists, as the function ker_seqmx – in the rest of the paper, the
*_seqmx functions are refined versions of matrix functions. Finally we have en-
sured that ker_seqmx perform the same operation as its high-level counterpart
ker by proving:

Lemma ker_seqmxE : forall m n (M : ’M[K]_(m,n)),

seqmx_of_mx _ (ker M) = ker_seqmx m n (seqmx_of_mx _ M).

This lemma says that computing first with ker and then converting to lists
of lists (using seqmx_of_mx) give the same output as first converting and then
computing using ker_seqmx.

Now, we have all the necessary programs to define an executable version of
both Betti and persistent Betti numbers and prove the equivalence with their
high-level versions.

Definition ex_Betti_rank (mxf mxg:seqmatrix K) :=

v2 - (rank_elim_seqmx v2 v3 mxg) - (rank_elim_seqmx v1 v2 mxf).

Definition ex_PBetti_rank (mxf mxg mxi : seqmatrix K) :=

let rf := rank_elim_seqmx v1 v2 mxf in

let rg := rank_elim_seqmx v3 v4 mxg in

v1 - rf - (rg + (v1 - rf) -

rank_elim_seqmx (v3 + size (ker_seqmx v1 v2 mxf)) v4

(col_seqmx mxg (mulseqmx (ker_seqmx v1 v2 mxf) mxi))).

Lemma ex_Betti_rankE:

forall (mxf: ’M[K]_(v1,v2)) (mxg : ’M[K]_(v2,v3)),

ex_Betti_rank (seqmx_of_mx _ mxf) (seqmx_of_mx _ mxg) =

Betti_rank mxf mxg.

Lemma ex_PBetti_rank_PBetti_rank_E : forall (mxf: ’M[K]_(v1,v2))

(mxg : ’M[K]_(v3,v4)) (mxi : ’M[K]_(v1,v4)),

ex_PBetti_rank (seqmx_of_mx _ mxf) (seqmx_of_mx _ mxg)

(seqmx_of_mx _ mxi) = PBetti_rank mxf mxg mxi.

It is worth noting that the executable functions on matrices, represented as lists
of lists, usually need the size of the matrices, as can be seen for instance in the
rank_elim_seqmx function. Moreover, the function seqmx_of_mx is the one in
charge of transforming abstract matrices into lists of lists (which are encoded as
the type seqmatrix).

Following the same pattern, we have defined executable simplicial complexes
and their connection with the computation of Betti and persistent Betti numbers.
In particular, the ex_Betti_sc function takes as argument a simplicial complex
c and a natural number n and computes the n-th Betti number of c and the
ex_p_persistent_n_Betti_K_j function takes as argument a filtration f and
three natural numbers p,n,j and computes the p persistent n-th Betti number
of the j level of the filtration f. Some examples of the usage of these functions
are introduced in the following section.

5 Experimental results

In this section we try to clarify how Betti and persistent Betti numbers can be
computed within Coq. Let us start with the computation of Betti numbers of
the simplicial complex of Figure 1.

Simplicial complexes are built in Coq providing their facets. A facet of a
simplicial complex K is a maximal simplex with respect to the subset order ⊆
among the simplices of K. To construct the simplicial complex associated with a

sequence of facets, F , we generate all the faces of the simplices of F ; subsequently,
if we perform the set union of all the faces we obtain the simplicial complex
associated with F . This procedure has been implemented, and its correctness has
been proved, using Coq in [28]. In the case of the diabolo complex of Figure 1
its facets are: {(2, 3), (3, 4), (3, 5), (4, 5), (0, 1, 2)}.

The procedure to compute Betti numbers of the diabolo complex is as follows.
First, we define the list of facets:

Definition diabolo_facets : seq (seq ’I_6) :=

[::[::2%:R;3%:R];[::3%:R;4%:R];[::3%:R;5%:R];[::4%:R;5%:R];

[::0%:R;1%:R;2%:R]].

and, subsequently, we compute Betti numbers (of dimension 0 and 1) using the
instruction ex_Betti_sc which takes as arguments the facets of the simplicial
complex and the dimension.

Eval vm_compute in ex_Betti_sc diabolo_facets 0.

Eval vm_compute in ex_Betti_sc diabolo_facets 1.

obtaining in both cases 1 (this means that the diabolo complex has a connected
component and a hole) in just milliseconds. The tactic Eval vm_compute evalu-
ates the goal using the optimized call-by-value evaluation bytecode based virtual
machine of Coq.

The procedure to compute persistent Betti numbers is quite similar. First
of all, we define the filtration providing the facets of each one of the simplicial
complexes of the filtration. In the case of the diabolo filtration of Figure 2, the
representation in Coq of the filtration is the following one:

Definition diabolo_filtration : seq (seq (seq ’I_6)) :=

[::[::[::0%:R];[::1%:R];[::2%:R]];

[::[::0%:R;1%:R];[::1%:R;2%:R];[::0%:R;2%:R]];

[::[::0%:R;1%:R];[::1%:R;2%:R];[::0%:R;2%:R];

[::3%:R];[::4%:R];[::5%:R]];

[::[::0%:R;1%:R];[::1%:R;2%:R];[::0%:R;2%:R];[::3%:R;4%:R];

[::4%:R;5%:R];[::3%:R;5%:R]];

[::[::0%:R;1%:R];[::1%:R;2%:R];[::0%:R;2%:R];[::3%:R;4%:R];

[::4%:R;5%:R];[::3%:R;5%:R];[::2%:R;3%:R]];

[::[::0%:R;1%:R;2%:R];[::3%:R;4%:R];[::4%:R;5%:R];

[::3%:R;5%:R];[::2%:R;3%:R]]].

Using this, we can compute persistent Betti numbers by calling the func-
tion ex_p_persistent_n_betti_K_j. Therefore, we can combine the functions
to compute Betti and persistent Betti numbers in order to obtain information
about the filtration. For instance, if we want to know how many connected
components which live at the level 0 of the filtration (this is computed by (nth

nil diabolo_filtration 0)) are still alive at level 4, we use the following
instructions:

Eval vm_compute in ex_Betti_sc (nth nil diabolo_filtration 0) 0.

Eval vm_compute in

ex_p_persistent_n_Betti_K_j diabolo_filtration 0 0 4.

obtaining as result 3 and 1 respectively. This means that there are three con-
nected components at level 0 of the filtration but just one of them is still alive
at level 4.

As a benchmark to test the efficiency of Coq programs, we have considered
several random simplicial complexes and filtrations generated from a fixed num-
ber of triangles. The results can be seen in Table 1 where we show for each
number of triangles the times (in seconds) to compute both Betti and persistent
Betti numbers.

Triangles Betti Persistent Betti

10 0.024 s 0.036 s
50 2 s 3 s
100 18 s 25 s
200 146 s 190 s
500 1856 s 2731 s

Table 1. Execution time, in seconds, for different simplicial complexes

Of course, our Coq programs take much more time to compute Betti and per-
sistent Betti numbers than special purpose software packages such as Chomp [1]
and the GAP homology package [13] for Betti numbers or JavaPlex [39] and
Dionysus [34] for persistent Betti numbers. However, it is worth remarking that
Coq is an Interative Theorem Prover and in this kind of systems, unlike Com-
puter Algebra Systems or special purpose packages, efficient computational ca-
pabilities have not been the main goal up to now.

Nevertheless, things are changing and there is an on-going effort in the im-
plementation of efficient mathematical algorithms running inside Coq. In this
line, we can highlight the works on machine integers and arrays [4], efficient real
numbers [23] or an approach which consists in internally compiling Coq terms
to the functional programming language OCaml [33].

The importance of performing computations inside Coq is twofold. First of
all, we are using algorithms whose correctness has been proved; therefore, we
can be sure that the results are correct. Moreover, computations inside Coq can
be used in proofs by reflection, which is something that cannot be done with
computations in Computer Algebra Systems.

6 Conclusions and further work

In this paper we have presented a set of formally verified programs which allows
us to effectively compute persistent Betti numbers within Coq. To carry out
this task, it has been necessary a formalization of the basic notions related to

persistent homology. Moreover, we have formalized relevant theorems like the
Fundamental Lemma of Persistent Homology. This illustrates that Interactive
Theorem Provers are mature enough to tackle the formalization of theories in
non-trivial mathematical domains. This fact can be seen also in the proof of the
Four Color Theorem [20]; in the Flyspeck project [25], devoted to the formal
proof of the Kepler conjecture [24]; or in the classification of finite groups [2].
The infrastructures developed in those projects allow one to formalize results
like the ones presented throughout this paper in reasonable time.

One of our main concerns for the future is associated with the formalization
of efficient mathematical algorithms. This is a necessary effort which has to be
carried out before undertaking other of our goals: the application of our programs
to biomedical problems.

Homological techniques have been successfully applied in the biomedical con-
text, for instance to classify brain blood vessel data [36], to analyze 2D colono-
scope images [35] and to measure the synaptic density of neurons [27]. In this
environment it is necessary to have both efficient and reliable software systems;
therefore the use of formally verified efficient algorithms seems desirable.

It is also appealing to use this work as a basis for further developments.
We can tackle the formalization of different extensions of persistent homology;
for instance, multidimensional persistence [7] or ZigZag persistence [6]. In addi-
tion, we would like to consider the approach presented in [38], where the usual
computations of persistent homology over Z2 are generalized to the case of Z.

In summary, we are working towards an efficient formal library of Computa-
tional Algebraic Topology. In this line of work we can mention the formalizations
of Effective Homology [3,12] and Discrete Morse Theory [29], however more work
is still necessary to reach our goal.

References

1. Chomp: Computational homology project. Software available at http://chomp.

rutgers.edu/software/.
2. Mathematical components team homepage. http://www.msr-inria.inria.fr/

Projects/math-components.
3. J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of the Basic Perturba-

tion Lemma. Journal of Automated Reasoning, 40(4):271–292, 2008.
4. M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending Coq with Imper-

ative Features and Its Application to SAT Verification. In Proceedings Interactive
Theorem Proving 2010 (ITP’2010), volume 6172 of Lecture Notes in Computer
Science, pages 83–98, 2010.

5. Y. Bertot, G. Gonthier, S. O. Biha, and I. Pasca. Canonical Big Operators. In
Proceedings 21st International Conference on Theorem Proving in Higher Order
Logics (TPHOLS’08), volume 5170 of Lecture Notes in Computer Science, pages
86–101, 2008.

6. G. Carlsson and V. de Silva. Zigzag persistence. CoRR, abs/0812.0197, 2008.
7. G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. In

Proceedings of the 23rd annual symposium on Computational geometry (SCG ’07),
pages 184–193. ACM, 2007.

http://chomp.rutgers.edu/software/
http://chomp.rutgers.edu/software/
http://www.msr-inria.inria.fr/Projects/math-components
http://www.msr-inria.inria.fr/Projects/math-components

8. Coq development team. The Coq Proof Assistant, version 8.4. Technical report,
2012.

9. V. de Silva and R. Ghrist. Homological sensor networks. Notices of the American
Mathematical Society, 54(1):10–17, 2007.

10. C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti num-
bers of simplicial complexes on the 3 sphere. Computer Aided Geometry Design,
12:771–784, 1995.

11. T. K. Dey and S. Goswami. Provable surface reconstruction from noisy samples.
Computational Geometry: Theory and Applications, 35(1):124–141, 2006.

12. C. Domı́nguez and J. Rubio. Effective Homology of Bicomplexes, formalized in
Coq. Theoretical Computer Science, 412:962–970, 2011.

13. J. Dumas, F. Heckenbach, B. D. Saunders, and V. Welker. Gap homology package.
Software available at http://www.linalg.org/gap.html, 2002.

14. M. Dénès, A. Mörtberg, and V. Siles. CoqEAL, the Coq Effective Algebra Library,
2012. http://www-sop.inria.fr/members/Maxime.Denes/coqeal.

15. M. Dénès, A. Mörtberg, and V. Siles. A Refinement Based Approach to Com-
putational Algebra in Coq. In Proceedings Interactive Theorem Proving 2012
(ITP’2012), volume 7406 of Lectures Notes in Computer Science, pages 83–98,
2012.

16. H. Edelsbrunner and J. L. Harer. Computational Topology: An Introduction. Amer-
ican Mathematical Society, 2010.

17. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. Discrete Computional Geometry, 28:511–533, 2002.

18. P. Frosini and C. Landi. Syze theory as a topological tool for computer vision.
Pattern Recognition and Image Analysis, 9:596–603, 1999.

19. R. Ghrist. Barcodes: the persistent topology of data. Bulletin American Mathe-
matical Society, 45:61–75, 2008.

20. G. Gonthier. Formal proof - The Four-Color Theorem, volume 55. Notices of the
American Mathematical Society, 2008.

21. G. Gonthier. Point-free, set-free concrete linear algebra. In Proceedings Interactive
Theorem Proving 2011 (ITP’2011), volume 6898 of Lecture Notes in Computer
Science, pages 103–118, 2011.

22. G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq.
Journal of Formal Reasoning, 3(2):95–152, 2010.

23. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
International Conference on Functional Programming 2002, pages 235–246. ACM
Press, 2002.

24. T. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1065–1185,
2005.

25. T. Hales. The flyspeck project fact sheet. Project description available at http:

//code.google.com/p/flyspeck/, 2005.
26. J. Heras, T. Coquand, A. Mörtberg, and V. Siles. Formalization of homology and

persistent homology, 2012. http://wiki.portal.chalmers.se/cse/pmwiki.php/

ForMath/ProofExamples#wp3ex6.
27. J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a cer-

tified computation of homology groups for digital images. In Proceedings 4th Inter-
national Workshoph on Computational Topology in Image Context (CTIC’2012),
volume 7309 of Lecture Notes in Computer Science, pages 49–57, 2012.

28. J. Heras, M. Poza, M. Dénès, and L. Rideau. Incidence simplicial matrices for-
malized in Coq/SSReflect. In Proceedings 18th Symposium on the Integration of

http://www.linalg.org/gap.html
http://www-sop.inria.fr/members/Maxime.Denes/coqeal
http://code.google.com/p/flyspeck/
http://code.google.com/p/flyspeck/
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex6
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex6

Symbolic Computation and Mechanised Reasoning (Calculemus’2011), volume 6824
of Lecture Notes in Computer Science, pages 30–44, 2011.

29. J. Heras, M. Poza, and J. Rubio. Verifying an algorithm computing Discrete Vector
Fields for digital imaging. In Proceedings 19th Symposium on the Integration of
Symbolic Computation and Mechanised Reasoning (Calculemus’2012), volume 7362
of Lecture Notes in Computer Science, pages 215–229, 2012.

30. N. Jacobson. Basic Algebra II. W. H. Freeman and Company, 2nd edition, 1989.
31. G. Kedenburg. Persistent cubical homology in pattern recognition. Diplomarbeit.

Universität Hamburg, 2010.
32. S. MacLane. Homology. Springer, 1963.
33. Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full Reduction at Full

Throttle. In Proceedings Certified Programs and Proofs, volume 7086 of Lecture
Notes in Computer Science, pages 362–377, 2011.

34. D. Morozov. Dionysus. Software available at http://www.mrzv.org/software/

dionysus/, 2012.
35. M. Mrozek et al. Homological methods for extraction and analysis of linear features

in multidimensional images. Pattern Recognition, 45(1):285–298, 2012.
36. M. Niethammer et al. Analysis of blood vessel topology by cubical homology.

Image Rochester NY, 2(2):969–972, 2002.
37. V. Robins. Towards computing homology from finite approximations. Topology

proceedings, 24:503–532, 1999.
38. A. Romero, J. Heras, J. Rubio, and F. Sergeraert. Defining and computing persis-

tent Z-homology in the general case. Technical report, 2012.
39. A. Tausz, M. Vejdemo-Johansson, and H. Adams. Javaplex: A research software

package for persistent (co)homology. Software available at http://code.google.

com/javaplex, 2011.
40. A. Zomorodian and G. Carlsson. Computing Persistent Homology. Discrete and

Computional Geometry, 33:249–274, 2005.

http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
http://code.google.com/javaplex
http://code.google.com/javaplex

	Computing Persistent Homology within Coq/SSReflect

