Incidence Matrices of Simplicial Complex in SSreflect¹

Jónathan Heras and María Poza

University of La Rioja

September 27, 2010

 $^{^1 {\}rm Supported}$ by European Commission FP7, STREP project ForMath

- Simplicial Complexes
- Incidence Matrices of Simplicial Complexes
- Concrete problem to solve

Simplicial Complexes ncidence Matrices of Simplicial Complexes Concrete problem to solve

From "General" Topology to Homological Algebra

Topological Space

Simplicial Complexes ncidence Matrices of Simplicial Complexes Concrete problem to solve

From "General" Topology to Homological Algebra

J. Heras and M. Poza Incidence Matrices of Simplicial Complex in SSreflect

Simplicial Complexes Incidence Matrices of Simplicial Complexes Concrete problem to solve

From "General" Topology to Homological Algebra

Simplicial Complexes Incidence Matrices of Simplicial Complexes Concrete problem to solve

From "General" Topology to Homological Algebra

Topological Space

Topological Space

O-simplices: vertices (4 vertices)Simplicial Complex:1-simplices: edges (6 edges)2-simplices: triangles (4 triangles)

Definition:

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V.

Definition:

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V.

Definition:

Let α and β be simplices over V, we say α *is a face of* β if α is a subset of β .

Definition:

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V.

Definition:

Let α and β be simplices over V, we say α *is a face of* β if α is a subset of β .

Definition:

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

$$\forall \alpha \in \mathcal{C}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{C}$$

Simplicial Complexes Incidence Matrices of Simplicial Complexes Concrete problem to solve

Simplicial Complexes

Definition:

The *facets* of a simplicial complex C are the maximal simplices of the simplicial complex.

The facets are: $\{\{1,3\},\{3,4\},\{0,3\},\{2,3\},\{0,1,2\},\{4,5,6\}\}$

Incidence Matrices

Definition

Let X and Y be two enumerated finite sets and r be a relationship between the elements of X and the elements of Y, we call incidence matrix

	Y[1]		Y[n]
X[1]	$(a_{1,1})$		$a_{1,n}$
M — ·			.
	1 :	۰.	:
X[m]	$a_{m,1}$		a _{m,n})

where

$$a_{i,j} = \begin{cases} 1 & \text{si } X[i] \text{ is related to } Y[j] \\ 0 & \text{si } X[i] \text{ is not related to } Y[j] \end{cases}$$

Definition

Let C be a simplicial complex, A the set of n-simplices of C and B the set of (n-1)-simplices of C. We call *incidence matrix* of dimension n $(n \ge 1)$, M_n of the simplicial complex C, to a matrix $p \times q$ where

$$p = \sharp |B| \land q = \sharp |A|$$
 $M_{i,j} = egin{cases} 1 & \mathrm{si} \; B_i \subset A_j \ 0 & \mathrm{si} \; B_i
ot \subset A_j \end{cases}$

	$\{0, 1\}$	$\{0, 2\}$	{0,3}	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$	$\{3, 4\}$	$\{4, 5\}$	$\{4, 6\}$	$\{5, 6\}$
{0}	/ 1	1	1	0	0	0	0	0	0	0 \
$\{1\}$	1	0	0	1	1	0	0	0	0	0
{2}	0	1	0	1	0	1	0	0	0	0
{3}	0	0	1	0	1	1	1	0	0	0
{4}	0	0	0	0	0	0	1	1	1	0
{5}	0	0	0	0	0	0	0	1	0	1
{6}	\ 0	0	0	0	0	0	0	0	1	1 /

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

 $\mathsf{Facets} \to \mathsf{Simplicial} \ \mathsf{Complex} \to \mathsf{Incidence} \ \mathsf{Matrix} \to \mathsf{Homology}$

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

Facets → Simplicial Complex → Incidence Matrix → Homology

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

 $\mathsf{Facets} \to \mathsf{Simplicial} \ \mathsf{Complex} \to \mathsf{Incidence} \ \mathsf{Matrix} \to \mathsf{Homology}$

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

 $\mathsf{Facets} \to \mathsf{Simplicial} \ \mathsf{Complex} \to \mathsf{Incidence} \ \mathsf{Matrix} \to \mathsf{Homology}$

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_2

Let C be a simplicial complex and n a number natural such that $n \ge 2$, then the product of the incidence matrix of dimension n-1, denoted by M_{n-1} , and the incidence matrix of dimension n, denoted by M_n , is equal to the null matrix.

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_2

Let C be a simplicial complex and n a number natural such that $n \ge 2$, then the product of the incidence matrix of dimension n-1, denoted by M_{n-1} , and the incidence matrix of dimension n, denoted by M_n , is equal to the null matrix.

Sketch of the proof.

- Let C_n be the set of *n*-simplices of C
- Let C_{n-1} be the set of (n-1)-simplices of C
- Let C_{n-2} be the set of (n-2)-simplices of C

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_2

Let C be a simplicial complex and n a number natural such that $n \ge 2$, then the product of the incidence matrix of dimension n-1, denoted by M_{n-1} , and the incidence matrix of dimension n, denoted by M_n , is equal to the null matrix.

Sketch of the proof.

- Let C_n be the set of *n*-simplices of C
- Let C_{n-1} be the set of (n-1)-simplices of C
- Let C_{n-2} be the set of (n-2)-simplices of C

$$M_{n-1} \times M_n = \begin{pmatrix} c_{1,1} & \cdots & c_{1,r3} \\ \vdots & \ddots & \vdots \\ c_{r2,1} & \cdots & c_{r2,r3} \end{pmatrix}$$

where

$$c_{i, j} = \sum_{1 \leqslant j 0 \leqslant r 1} a_{i, j 0} \times b_{j 0, j}$$

$$M_{n-1} \times M_n = \begin{pmatrix} c_{1,1} & \cdots & c_{1,r3} \\ \vdots & \ddots & \vdots \\ c_{r2,1} & \cdots & c_{r2,r3} \end{pmatrix}$$

where

$$c_{i, j} = \sum_{1 \leqslant j 0 \leqslant r 1} a_{i, j 0} \times b_{j 0, j}$$

we need to prove that

$$\forall i, j, c_{i, j} = 0$$

in order to prove that $M_{n-1} \times M_n = 0$

Lemma

Under the previous conditions, $\forall i, j, c_{i, j} = 0$

Lemma

Under the previous conditions, $\forall i, j, c_{i,j} = 0$

Proof.

$$\sum_{1 \leqslant j0 \leqslant r1} a_{i, j0} \times b_{j0, j} = \sum_{\substack{j0 \mid M_{n-2}[i] \subset M_{n-1}[j0] \land M_{n-1}[j0] \subset M_{n}[j] \\ j0 \mid M_{n-2}[i] \not \subseteq M_{n-1}[j0] \land M_{n-1}[j0] \subset M_{n}[j]}} \sum_{\substack{i, j0 \times b_{j0, j} + i \\ j0 \mid M_{n-2}[i] \subset M_{n-1}[j0] \land M_{n-1}[j0] \not \subseteq M_{n}[j]}} a_{i, j0} \times b_{j0, j} + i \\ \sum_{\substack{j0 \mid M_{n-2}[i] \not \subseteq M_{n-1}[j0] \land M_{n-1}[j0] \not \subseteq M_{n}[j]}} a_{i, j0} \times b_{j0, j}$$

Lemma

Under the previous conditions, $\forall i, j, c_{i, j} = 0$

Proof.

$$\sum_{1 \leq j0 \leq r1} a_{i, j0} \times b_{j0, j} = \left(\sum_{j0 \mid M_{n-2}[i] \subset M_{n-1}[j0] \land M_{n-1}[j0] \subset M_n[j]} 1\right) + 0 + 0 + 0$$
$$= \# |\{j0 \mid M_{n-2}[i] \subset M_{n-1}[j0] \land M_{n-1}[j0] \subset M_n[j]\}|$$

Lemma

Under the previous conditions, let $T \in C_n$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$\sharp|\{y\in C_{n-1}|(x\subset y)\wedge (y\subset T)\}|=2$$

Lemma

Under the previous conditions, let $T \in C_n$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$\sharp|\{y \in C_{n-1}|(x \subset y) \land (y \subset T)\}| = 2$$

Sketch of the proof.

•
$$T \in C_n \Rightarrow T = \{a_0, \ldots, a_n\}$$

• $x \in C_{n-2} \land x \subset T \Rightarrow x = \{a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n\}$
• $y \in C_{n-1} \land y \subset T \Rightarrow y = \{a_0, \ldots, \widehat{a_r}, \ldots, a_n\}$
• $y \in C_{n-1} \land y \subset T \land x \subset y \Rightarrow y = \{a_0, \ldots, \widehat{a_r}, \ldots, a_n\}$ with $r=\{i,j\}$

Lemma

Under the previous conditions, let $T \in C_n$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$\sharp|\{y\in C_{n-1}|(x\subset y)\wedge (y\subset T)\}|=2$$

Sketch of the proof.

•
$$T \in C_n \Rightarrow T = \{a_0, \dots, a_n\}$$

• $x \in C_{n-2} \land x \subset T \Rightarrow x = \{a_0, \dots, \widehat{a_i}, \dots, \widehat{a_j}, \dots, a_n\}$
• $y \in C_{n-1} \land y \subset T \Rightarrow y = \{a_0, \dots, \widehat{a_r}, \dots, a_n\}$
• $y \in C_{n-1} \land y \subset T \land x \subset y \Rightarrow y = \{a_0, \dots, \widehat{a_r}, \dots, a_n\}$ with $r=\{i,j\}$

Then

$$\sharp|\{y \in C_{n-1}|(x \subset y) \land (y \subset T)\}| = 2$$