Incidence Matrices of Simplicial Complex in SSreflect ${ }^{1}$

Jónathan Heras and María Poza

University of La Rioja

September 27, 2010
${ }^{1}$ Supported by European Commission FP7, STREP project ForMath

Índice

(1) Explanation of the problem

- Simplicial Complexes
- Incidence Matrices of Simplicial Complexes
- Concrete problem to solve

From "General" Topology to Homological Algebra

Topological Space

From "General" Topology to Homological Algebra

From "General" Topology to Homological Algebra

From "General" Topology to Homological Algebra

An example

Topological Space

An example

Topological Space

$$
p \simeq
$$

0 -simplices: vertices (4 vertices)
Simplicial Complex: 1 -simplices: edges (6 edges) 2-simplices: triangles (4 triangles)

An example

Topological Space

Homology groups

$$
H_{0}=\mathbb{Z}
$$

$$
H_{1}=0
$$

$$
H_{2}=\mathbb{Z}
$$

$$
H_{3}=0
$$

$$
\ldots
$$

0 -simplices: vertices (4 vertices)
Simplicial Complex: 1 -simplices: edges (6 edges)
2-simplices: triangles (4 triangles)

An example

Topological Space

Homology groups

$$
\begin{aligned}
H_{0} & =\mathbb{Z} \\
H_{1} & =0 \\
H_{2} & =\mathbb{Z} \\
H_{3} & =0 \\
\ldots &
\end{aligned}
$$

0 -simplices: vertices (4 vertices)
Simplicial Complex: 1 -simplices: edges (6 edges)
2-simplices: triangles (4 triangles)

Simplicial Complexes

Definition:

Let V be a set, called the vertex set, a simplex over V is any finite subset of V.

Simplicial Complexes

Definition:

Let V be a set, called the vertex set, a simplex over V is any finite subset of V.

Definition:

Let α and β be simplices over V, we say α is a face of β if α is a subset of β.

Simplicial Complexes

Definition:

Let V be a set, called the vertex set, a simplex over V is any finite subset of V.

Definition:

Let α and β be simplices over V, we say α is a face of β if α is a subset of β.

Definition:

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

$$
\forall \alpha \in C, \text { if } \beta \subseteq \alpha \Rightarrow \beta \in C
$$

Simplicial Complexes

$$
\begin{aligned}
& C=\{\emptyset,\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}, \\
& \{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{4,5\},\{4,6\},\{5,6\}, \\
& \{0,1,2\},\{4,5,6\}\}
\end{aligned}
$$

Simplicial Complexes

Definition:

The facets of a simplicial complex C are the maximal simplices of the simplicial complex.

The facets are: $\{\{1,3\},\{3,4\},\{0,3\},\{2,3\},\{0,1,2\},\{4,5,6\}\}$

Incidence Matrices

Definition

Let X and Y be two enumerated finite sets and r be a relationship between the elements of X and the elements of Y, we call incidence matrix

$$
M=\begin{gathered}
X[1] \\
\vdots[m]
\end{gathered}\left(\begin{array}{ccc}
Y[1] & \cdots & Y[n] \\
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right)
$$

where

$$
a_{i, j}= \begin{cases}1 & \text { si } X[i] \text { is related to } Y[j] \\ 0 & \text { si } X[i] \text { is not related to } Y[j]\end{cases}
$$

Incidence Matrices of Simplicial Complexes

Definition

Let C be a simplicial complex, A the set of n-simplices of C and B the set of $(n-1)$-simplices of C.
We call incidence matrix of dimension $n(n \geq 1), M_{n}$ of the simplicial complex C, to a matrix $p \times q$ where

$$
\begin{aligned}
p & =\sharp|B| \wedge q=\sharp|A| \\
M_{i, j} & = \begin{cases}1 & \text { si } B_{i} \subset A_{j} \\
0 & \text { si } B_{i} \not \subset A_{j}\end{cases}
\end{aligned}
$$

Incidence Matrices of Simplicial Complexes

$\{0\}$

$\{0,1\}$ | 1 | $\{0,2\}$ | $\{0,3\}$ | $\{1,2\}$ | $\{1,3\}$ | $\{2,3\}$ | $\{3,4\}$ | $\{4,5\}$ | $\{4,6\}$ | $\{5,6\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\{1\}$ | | | | | | | | | |
| $\{2\}$ | | | | | | | | | |
| $\{3\}$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\{4\}$ | | | | | | | | | |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| $\{5\}$ | | | | | | | | | |
| $\{6\}$ | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $\{$ | | | | | | | | | |

Incidence Matrices of Simplicial Complexes

$\left.\begin{array}{ccc} & \{0,1,2\} & \{4,5,6\} \\ \{0,1\} \\ \{0,2\} \\ \{0,3\} \\ \{1,2\} \\ \{1,3\} \\ \{2,3\} \\ \{3,4\} \\ \{4,5\} \\ \{4,6\} \\ \{5,6\}\end{array} \quad \begin{array}{cc}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right)$

Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

Facets \rightarrow Simplicial Complex \rightarrow Incidence Matrix \rightarrow Homology

Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

Facets \rightarrow Simplicial Complex \rightarrow Incidence Matrix \rightarrow Homology

Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

Facets \rightarrow Simplicial Complex \rightarrow Incidence Matrix \rightarrow Homology

Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.

The incidence matrices of simplicial complexes are used to compute the homology of the simplicial complex

Objective

Facets \rightarrow Simplicial Complex \rightarrow Incidence Matrix \rightarrow Homology

Problem

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_{2}
Let C be a simplicial complex and n a number natural such that $n \geq 2$, then the product of the incidence matrix of dimension $n-1$, denoted by M_{n-1}, and the incidence matrix of dimension n, denoted by M_{n}, is equal to the null matrix.

Problem

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_{2}
Let C be a simplicial complex and n a number natural such that $n \geq 2$, then the product of the incidence matrix of dimension
$n-1$, denoted by M_{n-1}, and the incidence matrix of dimension n, denoted by M_{n}, is equal to the null matrix.

Sketch of the proof.

- Let C_{n} be the set of n-simplices of C
- Let C_{n-1} be the set of $(n-1)$-simplices of C
- Let C_{n-2} be the set of $(n-2)$-simplices of C

Problem

Theorem: Product of two consecutive incidence matrices in \mathbb{Z}_{2}

Let C be a simplicial complex and n a number natural such that $n \geq 2$, then the product of the incidence matrix of dimension $n-1$, denoted by M_{n-1}, and the incidence matrix of dimension n, denoted by M_{n}, is equal to the null matrix.

Sketch of the proof.

- Let C_{n} be the set of n-simplices of C
- Let C_{n-1} be the set of $(n-1)$-simplices of C
- Let C_{n-2} be the set of $(n-2)$-simplices of C

$$
M_{n-1}=\begin{gathered}
\\
C_{n-2}[1] \\
\vdots \\
C_{n-2}[r 2]
\end{gathered}\left(\begin{array}{ccc}
C_{n-1}[1] & \cdots & C_{n-1}[r 1] \\
a_{1,1} & \cdots & a_{1, r 1} \\
\vdots & \ddots & \vdots \\
a_{r 2,1} & \cdots & a_{r 2, r 1}
\end{array}\right) \quad M_{n}=\begin{array}{ccc}
C_{n-1}[1] \\
\vdots \\
C_{n-1}[r 1]
\end{array}\left(\begin{array}{ccc}
C_{n}[1] & \cdots & C_{n}[r 3] \\
b_{1,1} & \cdots & b_{1, r 1} \\
\vdots & \ddots & \vdots \\
b_{r 1,1} & \cdots & b_{r 1, r 3}
\end{array}\right)
$$

Problem

$$
M_{n-1} \times M_{n}=\left(\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, r 3} \\
\vdots & \ddots & \vdots \\
c_{r 2,1} & \cdots & c_{r 2, r 3}
\end{array}\right)
$$

where

$$
c_{i, j}=\sum_{1 \leqslant j 0 \leqslant r 1} a_{i, j 0} \times b_{j 0, j}
$$

Problem

$$
M_{n-1} \times M_{n}=\left(\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, r 3} \\
\vdots & \ddots & \vdots \\
c_{r 2,1} & \cdots & c_{r 2, r 3}
\end{array}\right)
$$

where

$$
c_{i, j}=\sum_{1 \leqslant j 0 \leqslant r 1} a_{i, j 0} \times b_{j 0, j}
$$

we need to prove that

$$
\forall i, j, c_{i, j}=0
$$

in order to prove that $M_{n-1} \times M_{n}=0$

Problem

Lemma

Under the previous conditions, $\forall i, j, c_{i, j}=0$

Problem

Lemma

Under the previous conditions, $\forall i, j, c_{i, j}=0$

Proof.

$$
\begin{aligned}
& \begin{array}{l}
\sum_{j 0 \mid M_{n-2}[i] \subset M_{n-1}[j 0] \wedge M_{n-1}[j 0] \subset M_{n}[j]} a_{i, j 0 \times b_{j 0, j}+} a_{i, j 0 \times b_{j 0, j}+}+\quad .
\end{array} \\
& \sum_{1 \leqslant j 0 \leqslant r 1} a_{i, j 0} \times b_{j 0, j}=j 0 \mid M_{n-2}[i] \not \subset M_{n-1}[j 0] \wedge M_{n-1}[j 0] \subset M_{n}[j] a_{i, j 0} \times b_{j 0, j}+ \\
& j 0 \mid M_{n-2}[i] \subset M_{n-1} \sum[j 0] \wedge M_{n-1}[j 0] \not \subset M_{n}[j] \\
& j 0 \mid M_{n-2}[i] \not \subset M_{n-1}[j 0] \wedge M_{n-1}[j 0] \not \subset M_{n}[j] \quad a_{i, j 0} \times b_{j 0, j}
\end{aligned}
$$

Problem

Lemma

Under the previous conditions, $\forall i, j, c_{i, j}=0$

Proof.

$$
\begin{aligned}
\sum_{1 \leqslant j 0 \leqslant r 1} a_{i}, j 0 \times b_{j 0, j} & =\left(\sum_{j 0 \mid M_{n-2}[i] \subset M_{n-1}[j 0] \wedge M_{n-1}[j 0] \subset M_{n}[j]} 1\right)+0+0+0 \\
& =\sharp\left|\left\{j 0 \mid M_{n-2}[i] \subset M_{n-1}[j 0] \wedge M_{n-1}[j 0] \subset M_{n}[j]\right\}\right|
\end{aligned}
$$

Problem

Lemma

Under the previous conditions, let $T \in C_{n}$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$
\sharp\left|\left\{y \in C_{n-1} \mid(x \subset y) \wedge(y \subset T)\right\}\right|=2
$$

Problem

Lemma

Under the previous conditions, let $T \in C_{n}$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$
\sharp\left|\left\{y \in C_{n-1} \mid(x \subset y) \wedge(y \subset T)\right\}\right|=2
$$

Sketch of the proof.

- $T \in C_{n} \Rightarrow T=\left\{a_{0}, \ldots, a_{n}\right\}$
- $x \in C_{n-2} \wedge x \subset T \Rightarrow x=\left\{a_{0}, \ldots, \widehat{a}_{i}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right\}$
- $y \in C_{n-1} \wedge y \subset T \Rightarrow y=\left\{a_{0}, \ldots, \widehat{a}_{r}, \ldots, a_{n}\right\}$
- $y \in C_{n-1} \wedge y \subset T \wedge x \subset y \Rightarrow y=\left\{a_{0}, \ldots, \widehat{a}_{r}, \ldots, a_{n}\right\}$ with $r=\{i, j\}$

Problem

Lemma

Under the previous conditions, let $T \in C_{n}$ and $x \in C_{n-2}$ if $x \subset T$ then,

$$
\sharp\left|\left\{y \in C_{n-1} \mid(x \subset y) \wedge(y \subset T)\right\}\right|=2
$$

Sketch of the proof.

- $T \in C_{n} \Rightarrow T=\left\{a_{0}, \ldots, a_{n}\right\}$
- $x \in C_{n-2} \wedge x \subset T \Rightarrow x=\left\{a_{0}, \ldots, \widehat{a}_{i}, \ldots, \widehat{a}_{j}, \ldots, a_{n}\right\}$
- $y \in C_{n-1} \wedge y \subset T \Rightarrow y=\left\{a_{0}, \ldots, \widehat{a}_{r}, \ldots, a_{n}\right\}$
- $y \in C_{n-1} \wedge y \subset T \wedge x \subset y \Rightarrow y=\left\{a_{0}, \ldots, \widehat{a}_{r}, \ldots, a_{n}\right\}$ with $r=\{i, j\}$
Then

$$
\sharp\left|\left\{y \in C_{n-1} \mid(x \subset y) \wedge(y \subset T)\right\}\right|=2
$$

