Incidence Simplicial Matrices Formalized in Coq/SSReflect*

Jónathan Heras, María Poza, Maxime Dénès, and Laurence Rideau

University of La Rioja, Spain - INRIA Sophia Antipolis (Méditerranée)

CICM 2011, Calculemus track, July 22, 2011

*Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Cog/SSReflect

Algebraic Topology and Digital Images

Digital Image

CICM 2011

æ

▲部 ▶ ▲ 部 ▶ ▲ 事 ▶

Algebraic Topology and Digital Images

Digital Image

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

CICM 2011

æ

- A - E - M

Algebraic Topology and Digital Images

Digital Image

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

CICM 2011

Algebraic Topology and Digital Images

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

Algebraic Topology and Digital Images

CICM 2011

J. Heras, M. Poza, M. Dénès, and L. Rideau

Goal

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

CICM 2011

æ

Goal

• Implemented in the Kenzo system

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

CICM 2011

∃ >

Goal

• Implemented in the Kenzo system

Goal

• Implemented in the Kenzo system

- 2 The Theorem Formalized and its Context
- 3 Formal development
- 4 Conclusions and Further work

Table of Contents

- 2 The Theorem Formalized and its Context
- 3 Formal development
- 4 Conclusions and Further work

4 3 b

Digital Images

- 2D digital images:
 - elements are pixels

æ

Digital Images

Digital Image -

- 2D digital images:
 - elements are pixels

- 3D digital images:
 - elements are voxels

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

< ロ > < 同 > < 三 > < 三 > 、

CICM 2011

æ

	Simplicial Complex	← Chain Complex ───	→ Homology		
Definition					
Let V be an orde	ered set, called the vertex	set.			
A simplex over V	' is any finite subset of V				

æ

- ∢ ≣ ▶

Simplicial Complex	← Chain Complex ───	→ Homology

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V

Definition

Let α and β be simplices over V, we say α is a face of β if α is a subset of β

(人間) (人) (人) (人) (人) (人)

	Simplicial Complex	Chain Complex	— → Homology
--	--------------------	---------------	--------------

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V

Definition

Let α and β be simplices over V, we say α is a face of β if α is a subset of β

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V satisfying the property:

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

Let K be a simplicial complex. Then the set $S_n(K)$ of n-simplices of K is the set made of the simplices of cardinality n + 1

J. Heras, M. Poza, M. Dénès, and L. Rideau

(日) (同) (三) (三)

complex

The facets are: $\{(0,3), (1,3), (2,3), (3,4), (0,1,2), (4,5,6)\}$

- 4 同 6 4 日 6 4 日 6

Chain Complexes

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is an *R*-module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_q is a module morphism $d_q : C_q \to C_{q-1}$, the differential map

• For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

イロト イポト イヨト イヨト

Homology

Homology

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker d_q \subseteq C_q$ is the (sub)module of q-cycles

Given a chain complex $C_* = (C_a, d_a)_{a \in \mathbb{Z}}$:

- $d_{q-1} \circ d_q = 0 \Rightarrow B_q \subseteq Z_q$
- Every boundary is a cycle
- The converse is not generally true

イロト イポト イヨト イヨト

Homology

Digital Image — Simplicial Complex Homology

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker d_q \subseteq C_q$ is the (sub)module of q-cycles

Given a chain complex $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$:

- $d_{q-1} \circ d_q = 0 \Rightarrow B_q \subseteq Z_q$
- Every boundary is a cycle
- The converse is not generally true

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

From a digital image to a simplicial complex

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

æ

From Simplicial Complexes to Chain Complexes

Digital Image _____►Simplicial Complex____►Chain Complex _____►Homolo

Definition

Let \mathcal{K} be an (ordered abstract) simplicial complex. Let $n \ge 1$ and $0 \le i \le n$ be two integers n and i. Then the face operator ∂_i^n is the linear map $\partial_i^n : S_n(\mathcal{K}) \to S_{n-1}(\mathcal{K})$ defined by:

 $\partial_i^n((v_0,\ldots,v_n))=(v_0,\ldots,v_{i-1},v_{i+1},\ldots,v_n).$

The *i*-th vertex of the simplex is removed, so that an (n-1)-simplex is obtained

Definition

Let \mathcal{K} be a simplicial complex. Then the chain complex $C_*(\mathcal{K})$ canonically associated with \mathcal{K} is defined as follows. The chain group $C_n(\mathcal{K})$ is the free \mathbb{Z} module generated by the n-simplices of \mathcal{K} . In addition, let (v_0, \ldots, v_{n-1}) be a n-simplex of \mathcal{K} , the differential of this simplex is defined as:

$$d_n := \sum_{i=0}^n (-1)^i \partial_i^n$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

Computing

• Computing Homology groups:

- From a Chain Complex $(C_n, d_n)_{n \in \mathbb{Z}}$:
 - *d_n* can be expressed as matrices
 - Homology groups are obtained from a diagonalization process

イロト イポト イヨト イヨト

Computing

• Computing Homology groups:

- From a Chain Complex $(C_n, d_n)_{n \in \mathbb{Z}}$:
 - *d_n* can be expressed as matrices
 - Homology groups are obtained from a diagonalization process
- Directly from the Simplicial Complex:
 - Incidence simplicial matrices
 - Homology groups are obtained from a diagonalization process

Computing

• Computing Homology groups:

- From a Chain Complex $(C_n, d_n)_{n \in \mathbb{Z}}$:
 - *d_n* can be expressed as matrices
 - Homology groups are obtained from a diagonalization process
- Directly from the Simplicial Complex:
 - Incidence simplicial matrices
 - Homology groups are obtained from a diagonalization process

CICM 2011

Table of Contents

Mathematical concepts

2 The Theorem Formalized and its Context

3 Formal development

4 Conclusions and Further work

A 3 b

From Simplicial Complexes to Homology

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a matrix $m \times n$ where

$$m = \sharp |X| \land n = \sharp |Y|$$

. . . .

$$a_{i,j} = \begin{cases} 1 & if \ X[i] \text{ is a face of } Y[j] \\ 0 & if \ X[i] \text{ is not a face of } Y[j] \end{cases}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

æ

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order between its elements and B the set of (n-1)-simplices of C with an order between its elements.

We call incidence matrix of dimension $n \ (n \ge 1)$, to a matrix $p \times q$ where

$$p = \sharp |B| \land q = \sharp |A|$$

$$M_{i,j} = \begin{cases} 1 & if B[i] \text{ is a face of } A[j] \\ 0 & if B[i] \text{ is not a face of } A[j] \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Incidence Matrices of Simplicial Complexes

	(0, 1)	(0, 2)	(0, 3)	(1, 2)	(1, 3)	(2, 3)	(3, 4)	(4, 5)	(4,6)	(5, 6)
(0)	1	1	1	1	0	0	0	0	0	0	0 \
(1)	1	1	0	0	1	1	0	0	0	0	0
(2)		0	1	0	1	0	1	0	0	0	0
(3)		0	0	1	0	1	1	1	0	0	0
(4)		0	0	0	0	0	0	1	1	1	0
(5)		0	0	0	0	0	0	0	1	0	1
(6)		0	0	0	0	0	0	0	0	1	1 /

Incidence Matrices of Simplicial Complexes

J. Heras, M. Poza, M. Dénès, and L. Rideau

Product of two consecutive incidence matrices

Theorem (Product of two consecutive incidence matrices)

Let \mathcal{K} be a finite simplicial complex over V with an order between the simplices of the same dimension and let $n \ge 1$ be a natural number n, then the product of the n-th incidence matrix of K and the (n + 1)-incidence matrix of K over the ring $\mathbb{Z}/2\mathbb{Z}$ is equal to the null matrix

Sketch of the proof

- Let S_{n+1} be the set of (n + 1)-simplices of \mathcal{K} with an order between its elements
- Let S_n be the set of *n*-simplices of \mathcal{K} with an order between its elements
- Let S_{n-1} be the set of (n-1)-simplices of \mathcal{K} with an order between its elements

Sketch of the proof

- Let S_{n+1} be the set of (n + 1)-simplices of \mathcal{K} with an order between its elements
- Let S_n be the set of *n*-simplices of \mathcal{K} with an order between its elements
- Let S_{n-1} be the set of (n-1)-simplices of \mathcal{K} with an order between its elements

$$\begin{array}{cccc} S_{n}[1] & \cdots & S_{n}[r1] & & S_{n+1}[1] & \cdots & S_{n+1}[r3] \\ S_{n-1}[1] & & \\ M_{n}(\mathcal{K}) = \underbrace{:}_{\begin{array}{c} \vdots \\ S_{n-1}[r2] \end{array}} \begin{pmatrix} a_{1,1} & \cdots & a_{1,r1} \\ \vdots & \ddots & \vdots \\ a_{r2,1} & \cdots & a_{r2,r1} \end{pmatrix}, \\ M_{n+1}(\mathcal{K}) = \underbrace{:}_{\begin{array}{c} S_{n}[r1] \end{array}} \begin{pmatrix} b_{1,1} & \cdots & b_{1,r1} \\ \vdots & \ddots & \vdots \\ b_{r1,1} & \cdots & b_{r1,r3} \end{pmatrix}$$

where $r1 = \sharp |S_n|$, $r2 = \sharp |S_{n-1}|$ and $r3 = \sharp |S_{n+1}|$

$$M_n(\mathcal{K}) \times M_{n+1}(\mathcal{K}) = \begin{pmatrix} c_{1,1} & \cdots & c_{1,r_3} \\ \vdots & \ddots & \vdots \\ c_{r_2,1} & \cdots & c_{r_2,r_3} \end{pmatrix}$$

where

$$c_{i,j} = \sum_{1 \le k \le r1} a_{i,k} \times b_{k,j}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau In

CICM 2011

æ

同 ト イヨ ト イヨ ト

$$M_n(\mathcal{K}) \times M_{n+1}(\mathcal{K}) = \begin{pmatrix} c_{1,1} & \cdots & c_{1,r3} \\ \vdots & \ddots & \vdots \\ c_{r2,1} & \cdots & c_{r2,r3} \end{pmatrix}$$

where

$$c_{i,j} = \sum_{1 \le k \le r1} a_{i,k} imes b_{k,j}$$

we need to prove that

$$\forall i, j, c_{i,j} = 0$$

in order to prove that $M_n \times M_{n+1} = 0$

CICM 2011

æ

同 ト イヨ ト イヨ ト

$$M_n(\mathcal{K}) \times M_{n+1}(\mathcal{K}) = \begin{pmatrix} c_{1,1} & \cdots & c_{1,r3} \\ \vdots & \ddots & \vdots \\ c_{r2,1} & \cdots & c_{r2,r3} \end{pmatrix}$$

where

$$c_{i,j} = \sum_{1 \le k \le r1} a_{i,k} imes b_{k,j}$$

we need to prove that

$$\forall i, j, c_{i,j} = 0$$

in order to prove that $M_n \times M_{n+1} = 0$ Since k enumerates the indices of elements of S_n :

$$c_{i,j} = \sum_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j]) \text{ with } F(Y, Z) = \begin{cases} 1 & \text{if } Y \in dZ \\ 0 & \text{otherwise} \end{cases}$$

where

$$dZ = \{Z \setminus \{x\} \mid x \in Z\}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

æ

伺 と く ヨ と く ヨ と

$$c_{i,j} = \sum_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j])$$

CICM 2011

æ

< ∃ →

- ∢ ≣ ▶

$$c_{i,j} = \sum_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j])$$

$$= \sum_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 1$$

$$+ \sum_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 0$$

$$= \sum_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X)$$

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence

(a)

CICM 2011

æ

$$c_{i,j} = \sum_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j]) \\ = \sum_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 1 \\ + \sum_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 0 \\ = \sum_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X) \\ = \sum_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\})$$

CICM 2011

æ

(*) *) *) *)

P.

$$\begin{array}{ll} c_{i,j} &=& \sum\limits_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j]) \\ &=& \sum\limits_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 1 \\ &+ \sum\limits_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 0 \\ &=& \sum\limits_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \\ &=& \sum\limits_{X \in S_{n+1}[j]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \\ &=& \sum\limits_{X \in S_{n+1}[j] | x \notin S_{n-1}[i]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) + \\ &\sum\limits_{X \in S_{n+1}[j] | x \notin S_{n-1}[i]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \end{array}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

æ

御 と く ヨ と く ヨ と

$$\begin{array}{ll} c_{i,j} &=& \sum\limits_{X \in S_n} F(S_{n-1}[i], X) \times F(X, S_{n+1}[j]) \\ &=& \sum\limits_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 1 \\ &+& \sum\limits_{X \in S_n | X \notin \partial S_{n+1}[j]} F(S_{n-1}[i], X) \times 0 \\ &=& \sum\limits_{X \in S_n | X \in \partial S_{n+1}[j]} F(S_{n-1}[i], X) \\ &=& \sum\limits_{X \in S_{n+1}[j]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \\ &=& \sum\limits_{X \in S_{n+1}[j] | x \notin S_{n-1}[i]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \\ &=& \sum\limits_{X \in S_{n+1}[j] | x \notin S_{n-1}[i]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \\ &=& \sum\limits_{X \in S_{n+1}[j] | x \notin S_{n-1}[i]} F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) \end{array}$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

æ

御 と く ヨ と く ヨ と

CICM 2011

æ

< ∃ →

- ∢ ≣ ▶

• $S_{n-1}[i] \not\subset S_{n+1}[j]$ $\forall x \in S_{n-1}[i], F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) = 0$ • $S_{n-1}[i] \subset S_{n+1}[j]$

- ∢ ≣ ▶

•
$$S_{n-1}[i] \not\subset S_{n+1}[j]$$

 $\forall x \in S_{n-1}[i], F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) = 0$

• $S_{n-1}[i] \subset S_{n+1}[j]$ $F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) = 1$

$$c_{i,j} = \sum_{\substack{x \in S_{n+1}[j] | x \notin S_{n-1}[i] \\ = \\ \# |S_{n+1}[j] \setminus S_{n-1}[i]| \\ = \\ n+2-n=2 = 0 \mod 2$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

- **→** → **→**

- ₹ 🖬 🕨

æ

•
$$S_{n-1}[i] \not\subset S_{n+1}[j]$$

 $\forall x \in S_{n-1}[i], F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) = 0$

• $S_{n-1}[i] \subset S_{n+1}[j]$ $F(S_{n-1}[i], S_{n+1}[j] \setminus \{x\}) = 1$

$$c_{i,j} = \sum_{\substack{x \in S_{n+1}[j] | x \notin S_{n-1}[i] \\ = \\ \# |S_{n+1}[j] \setminus S_{n-1}[i]| \\ = \\ n+2-n=2 = 0 \mod 2$$

J. Heras, M. Poza, M. Dénès, and L. Rideau

CICM 2011

э

Table of Contents

2 The Theorem Formalized and its Context

3 Formal development

4 Conclusions and Further work

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Cog/SSReflect

SSReflect

• SSReflect:

- $\bullet~\mathsf{Extension}$ of Coq
- Developed while formalizing the Four Color Theorem
- Provides new libraries:

< ∃ >

SSReflect

• SSReflect:

- $\bullet~\mathsf{Extension}$ of Coq
- Developed while formalizing the Four Color Theorem
- Provides new libraries:
 - matrix.v: matrix theory
 - finset.v and fintype.v: finite set theory and finite types
 - bigop.v: indexed "big" operations, like $\sum_{i=0}^{n} f(i)$ or $\bigcup_{i \in I} f(i)$
 - zmodp.v: additive group and ring \mathbb{Z}_p

Representation of Simplicial Complexes in $\mathrm{SSReflect}$

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite subset of V

Variable V : finType. Definition simplex := {set V}.

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

CICM 2011

伺 ト イ ヨ ト イ ヨ ト

Representation of Simplicial Complexes in $\operatorname{SSReflect}$

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite subset of V

Definition

A finite ordered (abstract) simplicial complex over V is a finite set of simplices K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

```
Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.
```

- 4 同 6 4 日 6 4 日 6

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a matrix $m \times n$ where

$$m = \sharp |X| \land n = \sharp |Y|$$

$$Y[1] \cdots Y[n]$$

$$X[1]$$

$$X[1] \begin{pmatrix} a_{1,1} \cdots a_{1,n} \\ \vdots & \vdots \\ a_{m,1} \cdots & a_{m,n} \end{pmatrix}$$

$$a_{i,j} = \begin{cases} 1 & if \ X[i] \text{ is a face of } Y[j] \\ 0 & if \ X[i] \text{ is not a face of } Y[j] \end{cases}$$

Definition face_op (S : simplex) (x : V) := S :\ x. Definition boundary (S : simplex) := (face_op S) @: S.

```
Variables Left Top : {set simplex}.
Definition incidenceMatrix :=
   \matrix_(i < #|Left|, j < #|Top|)
    if enum_val i \in boundary (enum_val j) then 1 else 0:'F_2.</pre>
```

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order between its elements and B the set of (n-1)-simplices of C with an order between its elements.

We call incidence matrix of dimension $n \ (n \ge 1)$, to a matrix $p \times q$ where

$$p = \sharp |B| \land q = \sharp |A|$$

$$M_{i,j} = \begin{cases} 1 & if \ B[i] \text{ is a face of } A[j] \\ 0 & if \ B[i] \text{ is not a face of } A[j] \end{cases}$$

```
Section nth_incidence_matrix.
Variable c: {set simplex}.
Variable n:nat.
Definition n_1_simplices := [set x \in c | \# |x| == n].
Definition n_simplices := [set x \in c | \# |x| == n+1].
Definition incidence_matrix_n :=
incidenceMatrix n_1_simplices n_simplices.
End nth_incidence_matrix.
```

(日) (同) (三) (三)

Product of two consecutive incidence matrices in \mathbb{Z}_2

Theorem (Product of two consecutive incidence matrices in $\mathbb{Z}_2)$

Let \mathcal{K} be a finite simplicial complex over V with an order between the simplices of the same dimension and let $n \geq 1$ be a natural number n, then the product of the n-th incidence matrix of \mathcal{K} and the (n + 1)-incidence matrix of \mathcal{K} over the ring $\mathbb{Z}/2\mathbb{Z}$ is equal to the null matrix

```
Theorem incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
    simplicial_complex sc ->
       (incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
```

J. Heras, M. Poza, M. Dénès, and L. Rideau

- 同 ト - ヨ ト - - ヨ ト

Formal development

Formalization in $\ensuremath{\operatorname{SSReFLECT}}$ of the theorem

• Summation part:

J. Heras, M. Poza, M. Dénès, and L. Rideau

Incidence Simplicial Matrices Formalized in Coq/SSReflect

Formalization in $\ensuremath{\operatorname{SSReFLECT}}$ of the theorem

• Summation part:

• Lemmas from "bigop" library • bigID: $\sum_{i \in r | P_i} F_i = \sum_{i \in r | P_i \land a_i} F_i + \sum_{i \in r | P_i \land \sim a_i} F_i$ • big1: $\sum_{i \in r | P_i} 0 = 0$

э

伺 ト イ ヨ ト イ ヨ ト

Formalization in $\ensuremath{\operatorname{SSReFLECT}}$ of the theorem

• Summation part:

- Lemmas from "bigop" library
- bigID: $\sum_{i \in r | P_i} F_i = \sum_{i \in r | P_i \land a_i} F_i + \sum_{i \in r | P_i \land \sim a_i} F_i$ • big1: $\sum_{i \in r | P_i \land a_i} O = O$

• big1:
$$\sum_{i \in r | P_i} 0 = 0$$

- Cardinality part:
 - Auxiliary lemmas
 - Lemmas from "finset" and "fintype" libraries

Table of Contents

Mathematical concepts

- 2 The Theorem Formalized and its Context
- 3 Formal development
- 4 Conclusions and Further work

< E.

Conclusions and Further work

- Conclusions:
 - Formalization in Coq/SSReflect:
 - Simplicial complexes
 - Incidence matrices
 - Application of formal methods in software systems

Conclusions and Further work

- Conclusions:
 - Formalization in Coq/SSReflect:
 - Simplicial complexes
 - Incidence matrices
 - Application of formal methods in software systems
- Further work:
 - Formalization:
 - From digital images to simplicial complexes
 - Computation Smith Normal Form
 - $\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$
 - Executability of the proofs:
 - Code extraction
 - Internal computations

Incidence Simplicial Matrices Formalized in Coq/SSReflect*

Jónathan Heras, María Poza, Maxime Dénès, and Laurence Rideau

University of La Rioja, Spain - INRIA Sophia Antipolis (Méditerranée)

CICM 2011, Calculemus track, July 22, 2011

*Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

J. Heras, M. Poza, M. Dénès, and L. Rideau