Incidence Simplicial Matrices Formalized in Coq/SSReflect*

Jónathan Heras, María Poza, Maxime Dénès, and Laurence Rideau
University of La Rioja, Spain - INRIA Sophia Antipolis (Méditerranée)

CICM 2011, Calculemus track, July 22, 2011

[^0]
Algebraic Topology and Digital Images

Digital Image

Algebraic Topology and Digital Images

Digital Image

Simplicial complex

Algebraic Topology and Digital Images

Digital Image

$$
\begin{aligned}
& C_{0}=\mathbb{Z}[\text { vertices }] \\
& C_{1}=\mathbb{Z}[\text { edges }] \\
& C_{2}=\mathbb{Z}[\text { triangles }]
\end{aligned}
$$

Simplicial complex
Chain complex

Algebraic Topology and Digital Images

Digital Image

Simplicial complex

Homology groups

$$
\begin{aligned}
& H_{0}=\mathbb{Z} \oplus \mathbb{Z} \\
& H_{1}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& C_{0}=\mathbb{Z}[\text { vertices }] \\
& C_{1}=\mathbb{Z}[\text { edges }] \\
& C_{2}=\mathbb{Z}[\text { triangles }]
\end{aligned}
$$

Chain complex

Algebraic Topology and Digital Images

Digital Image

$$
\begin{aligned}
& H_{0}=\mathbb{Z} \oplus \mathbb{Z} \\
& H_{1}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

Homology groups

$$
\begin{aligned}
& C_{0}=\mathbb{Z}[\text { vertices }] \\
& C_{1}=\mathbb{Z}[\text { edges }] \\
& C_{2}=\mathbb{Z}[\text { triangles }]
\end{aligned}
$$

Simplicial complex
Chain complex

Goal

Goal

- Implemented in the Kenzo system

Goal

- Implemented in the Kenzo system

General Goal

Formalizing the computation of homology groups of digital images

Goal

- Implemented in the Kenzo system

General Goal

Formalizing the computation of homology groups of digital images

Table of Contents

(1) Mathematical concepts
(2) The Theorem Formalized and its Context
(3) Formal development
4. Conclusions and Further work

Table of Contents

(1) Mathematical concepts

2 The Theorem Formalized and its Context

3 Formal development
4. Conclusions and Further work

Digital Images

Digital Image Simplicial Complex \longrightarrow Chain Complex \longrightarrow Homology

- 2D digital images:
- elements are pixels

Digital Images

Digital Image

- 2D digital images:
- elements are pixels

- 3D digital images:
- elements are voxels

Simplicial Complexes

Digital Image \longrightarrow Simplicial Complex \square

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V

Simplicial Complexes

Digital Image \longrightarrow Simplicial Complex
\longrightarrow Chain Complex \longrightarrow Homology

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V

Definition

Let α and β be simplices over V, we say α is a face of β if α is a subset of β

Simplicial Complexes

Digital Image \longrightarrow Simplicial Complex \longrightarrow Chain Complex \longrightarrow Homology

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V

Definition

Let α and β be simplices over V, we say α is a face of β if α is a subset of β

Definition

An ordered (abstract) simplicial complex over V is a set of simplices \mathcal{K} over V satisfying the property:

$$
\forall \alpha \in \mathcal{K}, \text { if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}
$$

Let \mathcal{K} be a simplicial complex. Then the set $S_{n}(\mathcal{K})$ of n-simplices of \mathcal{K} is the set made of the simplices of cardinality $n+1$

Simplicial Complexes

$$
\begin{aligned}
& V=(0,1,2,3,4,5,6) \\
& \mathcal{K}=\{\emptyset,(0),(1),(2),(3),(4),(5),(6), \\
& (0,1),(0,2),(0,3),(1,2),(1,3),(2,3),(3,4),(4,5),(4,6),(5,6), \\
& (0,1,2),(4,5,6)\}
\end{aligned}
$$

Simplicial Complexes

Digital Image

Definition

The facets of a simplicial complex \mathcal{K} are the maximal simplices of the simplicial complex

The facets are: $\{(0,3),(1,3),(2,3),(3,4),(0,1,2),(4,5,6)\}$

Chain Complexes

Digital Image \longrightarrow Simplicial Complex \longrightarrow Chain Complex

Definition

A chain complex C_{*} is a pair of sequences $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_{q} is an R-module, the chain group of degree q
- For every $q \in \mathbb{Z}$, the component d_{q} is a module morphism $d_{q}: C_{q} \rightarrow C_{q-1}$, the differential map
- For every $q \in \mathbb{Z}$, the composition $d_{q} d_{q+1}$ is null: $d_{q} d_{q+1}=0$

Homology

Definition

$$
\text { If } C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}} \text { is a chain complex: }
$$

- The image $B_{q}=\operatorname{im} d_{q+1} \subseteq C_{q}$ is the (sub)module of q-boundaries
- The kernel $Z_{q}=$ ker $d_{q} \subseteq C_{q}$ is the (sub)module of q-cycles

Given a chain complex $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$:

- $d_{q-1} \circ d_{q}=0 \Rightarrow B_{q} \subseteq Z_{q}$
- Every boundary is a cycle
- The converse is not generally true

Homology

Definition

If $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_{q}=\operatorname{im} d_{q+1} \subseteq C_{q}$ is the (sub)module of q-boundaries
- The kernel $Z_{q}=$ ker $d_{q} \subseteq C_{q}$ is the (sub)module of q-cycles

Given a chain complex $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$:

- $d_{q-1} \circ d_{q}=0 \Rightarrow B_{q} \subseteq Z_{q}$
- Every boundary is a cycle
- The converse is not generally true

Definition

Let $C_{*}=\left(C_{q}, d_{q}\right)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_{*} is defined as the quotient module

$$
H_{n}\left(C_{*}\right)=\frac{Z_{n}}{B_{n}}
$$

From a digital image to a simplicial complex

Digital Image \longrightarrow Simplicial Complex \longrightarrow Chain Complex \longrightarrow Homology

From Simplicial Complexes to Chain Complexes

Digital Image \longrightarrow Simplicial Complex Chain Complex \longrightarrow Homolog)

Definition

Let \mathcal{K} be an (ordered abstract) simplicial complex. Let $n \geq 1$ and $0 \leq i \leq n$ be two integers n and i. Then the face operator ∂_{i}^{n} is the linear map $\partial_{i}^{n}: S_{n}(\mathcal{K}) \rightarrow S_{n-1}(\mathcal{K})$ defined by:

$$
\partial_{i}^{n}\left(\left(v_{0}, \ldots, v_{n}\right)\right)=\left(v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right) .
$$

The i-th vertex of the simplex is removed, so that an ($n-1$)-simplex is obtained

Definition

Let \mathcal{K} be a simplicial complex. Then the chain complex $C_{*}(\mathcal{K})$ canonically associated with \mathcal{K} is defined as follows. The chain group $C_{n}(\mathcal{K})$ is the free \mathbb{Z} module generated by the n-simplices of \mathcal{K}. In addition, let $\left(v_{0}, \ldots, v_{n-1}\right)$ be a n-simplex of \mathcal{K}, the differential of this simplex is defined as:

$$
d_{n}:=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{n}
$$

Computing

- Computing Homology groups:
- From a Chain Complex $\left(C_{n}, d_{n}\right)_{n \in \mathbb{Z}}$:
- d_{n} can be expressed as matrices
- Homology groups are obtained from a diagonalization process

Computing

- Computing Homology groups:
- From a Chain Complex $\left(C_{n}, d_{n}\right)_{n \in \mathbb{Z}}$:
- d_{n} can be expressed as matrices
- Homology groups are obtained from a diagonalization process
- Directly from the Simplicial Complex:
- Incidence simplicial matrices
- Homology groups are obtained from a diagonalization process

Computing

- Computing Homology groups:
- From a Chain Complex $\left(C_{n}, d_{n}\right)_{n \in \mathbb{Z}}$:
- d_{n} can be expressed as matrices
- Homology groups are obtained from a diagonalization process
- Directly from the Simplicial Complex:
- Incidence simplicial matrices
- Homology groups are obtained from a diagonalization process

Table of Contents

(1) Mathematical concepts

(2) The Theorem Formalized and its Context

3 Formal development
4. Conclusions and Further work

From Simplicial Complexes to Homology

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a matrix $m \times n$ where

$$
\begin{aligned}
& m=\sharp|X| \wedge n=\sharp|Y| \\
& M=\begin{array}{c}
X[1] \\
X[m]
\end{array}\left(\begin{array}{ccc}
Y[1] & \cdots & Y[n] \\
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right) \\
& a_{i, j}= \begin{cases}1 & \text { if } X[i] \text { is a face of } Y[j] \\
0 & \text { if } X[i] \text { is not a face of } Y[j]\end{cases}
\end{aligned}
$$

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order between its elements and B the set of $(n-1)$-simplices of C with an order between its elements.
We call incidence matrix of dimension $n(n \geq 1)$, to a matrix $p \times q$ where

$$
\begin{gathered}
p=\sharp|B| \wedge q=\sharp|A| \\
M_{i, j}= \begin{cases}1 & \text { if } B[i] \text { is a face of } A[j] \\
0 & \text { if } B[i] \text { is not a face of } A[j]\end{cases}
\end{gathered}
$$

Incidence Matrices of Simplicial Complexes

	$(0,1)$	$(0,2)$	$(0,3)$	$(1,2)$	$(1,3)$	$(2,3)$	$(3,4)$	$(4,5)$	$(4,6)$	$(5,6)$
(0)	(1	1	1	0	0	0	0	0	0	0
(1)	1	0	0	1	1	0	0	0	0	0
(2)	0	1	0	1	0	1	0	0	0	0
(3)	0	0	1	0	1	1	1	0	0	0
(4)	0	0	0	0	0	0	1	1	1	0
(5)	0	0	0	0	0	0	0	1	0	1
(6)	(0	0	0	0	0	0	0	0	1	$1)$

Incidence Matrices of Simplicial Complexes

	$(0,1,2)$	$(4,5,6)$
$(0,1)$		
$(0,2)$		
$(0,3)$		
$(1,2)$		
$(1,3)$		
$(2,3)$		
$(3,4)$		
$(4,5)$		
$(4,6)$		
$(5,6)$		

1 \& 0

0 \& 0

1 \& 0

0 \& 0

0 \& 0

0 \& 0

0 \& 1

0 \& 1

0 \& 1\end{array}\right)\)

Product of two consecutive incidence matrices

Theorem (Product of two consecutive incidence matrices)
Let \mathcal{K} be a finite simplicial complex over V with an order between the simplices of the same dimension and let $n \geq 1$ be a natural number n, then the product of the n-th incidence matrix of \mathcal{K} and the $(n+1)$-incidence matrix of \mathcal{K} over the ring $\mathbb{Z} / 2 \mathbb{Z}$ is equal to the null matrix

Sketch of the proof

- Let S_{n+1} be the set of $(n+1)$-simplices of \mathcal{K} with an order between its elements
- Let S_{n} be the set of n-simplices of \mathcal{K} with an order between its elements
- Let S_{n-1} be the set of $(n-1)$-simplices of \mathcal{K} with an order between its elements

Sketch of the proof

- Let S_{n+1} be the set of $(n+1)$-simplices of \mathcal{K} with an order between its elements
- Let S_{n} be the set of n-simplices of \mathcal{K} with an order between its elements
- Let S_{n-1} be the set of $(n-1)$-simplices of \mathcal{K} with an order between its elements

$$
M_{n}(\mathcal{K})=\begin{gathered}
S_{n-1}[1] \\
\vdots \\
S_{n-1}[r 2]
\end{gathered}\left(\begin{array}{ccc}
S_{n}[1] & \cdots & S_{n}[r 1] \\
a_{1,1} & \cdots & a_{1, r 1} \\
\vdots & \ddots & \vdots \\
a_{r 2,1} & \cdots & a_{r 2, r 1}
\end{array}\right), M_{n+1}(\mathcal{K})=\begin{array}{ccc}
S_{n}[1] \\
S_{n+1}[1] & \cdots & S_{n+1}[r 3] \\
S_{n}[r 1]
\end{array}\left(\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, r 1} \\
\vdots & \ddots & \vdots \\
b_{r 1,1} & \cdots & b_{r 1, r 3}
\end{array}\right)
$$

where $r 1=\sharp\left|S_{n}\right|, r 2=\sharp\left|S_{n-1}\right|$ and $r 3=\sharp\left|S_{n+1}\right|$

Sketch of the proof

$$
M_{n}(\mathcal{K}) \times M_{n+1}(\mathcal{K})=\left(\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, r 3} \\
\vdots & \ddots & \vdots \\
c_{r 2,1} & \cdots & c_{r 2, r 3}
\end{array}\right)
$$

where

$$
c_{i, j}=\sum_{1 \leq k \leq r 1} a_{i, k} \times b_{k, j}
$$

Sketch of the proof

$$
M_{n}(\mathcal{K}) \times M_{n+1}(\mathcal{K})=\left(\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, r 3} \\
\vdots & \ddots & \vdots \\
c_{r 2,1} & \cdots & c_{r 2, r 3}
\end{array}\right)
$$

where

$$
c_{i, j}=\sum_{1 \leq k \leq r 1} a_{i, k} \times b_{k, j}
$$

we need to prove that

$$
\forall i, j, c_{i, j}=0
$$

in order to prove that $M_{n} \times M_{n+1}=0$

Sketch of the proof

$$
M_{n}(\mathcal{K}) \times M_{n+1}(\mathcal{K})=\left(\begin{array}{ccc}
c_{1,1} & \cdots & c_{1, r 3} \\
\vdots & \ddots & \vdots \\
c_{r 2,1} & \cdots & c_{r 2, r 3}
\end{array}\right)
$$

where

$$
c_{i, j}=\sum_{1 \leq k \leq r 1} a_{i, k} \times b_{k, j}
$$

we need to prove that

$$
\forall i, j, c_{i, j}=0
$$

in order to prove that $M_{n} \times M_{n+1}=0$
Since k enumerates the indices of elements of S_{n} :

$$
c_{i, j}=\sum_{X \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right) \text { with } F(Y, Z)= \begin{cases}1 & \text { if } Y \in d Z \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
d Z=\{Z \backslash\{x\} \mid x \in Z\}
$$

Sketch of the proof

$$
c_{i, j}=\sum_{X \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right)
$$

Sketch of the proof

$$
\begin{aligned}
c_{i, j}= & \sum_{X \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right) \\
= & \sum_{X \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 1 \\
& +\sum_{X \in S_{n} \mid X \notin \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 0 \\
= & \sum_{X \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
c_{i, j} & = & \sum_{X \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right) \\
& = & \sum_{x \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 1 \\
& & +\sum_{x \in S_{n} \mid X \notin \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 0 \\
& = & \sum_{X \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \\
& = & \sum_{x \in S_{n+1}[j]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
& c_{i, j}=\sum_{X \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right) \\
& =\sum_{X \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 1 \\
& +\sum_{X \in S_{n} \mid X \notin \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 0 \\
& =\quad \sum_{X \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \\
& =\quad \sum_{x \in S_{n+1}[j]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right) \\
& =\sum_{x \in S_{n+1}[j] \mid x \in S_{n-1}[i]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)+ \\
& \sum_{x \in S_{n+1}[j] \mid x \notin S_{n-1}[i]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{array}{rlrl}
c_{i, j} & = & \sum_{x \in S_{n}} F\left(S_{n-1}[i], X\right) \times F\left(X, S_{n+1}[j]\right) \\
= & \sum_{x \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 1 \\
& & & \sum_{x \in S_{n} \mid X \notin \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \times 0 \\
= & \sum_{x \in S_{n} \mid X \in \partial S_{n+1}[j]} F\left(S_{n-1}[i], X\right) \\
= & \sum_{x \in S_{n+1}[j]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right) \\
& & & x \in S_{n+1}[j] \mid x \in S_{n-1}[i] \\
& & \sum_{x \in S_{n+1}[j] \mid x \notin S_{n-1}[i]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)+ \\
& & \sum_{x \in S_{n+1}[j] \mid x \notin S_{n-1}[i]} F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)
\end{array}
$$

Sketch of the proof

- $S_{n-1}[i] \not \subset S_{n+1}[j]$
- $S_{n-1}[i] \subset S_{n+1}[j]$

Sketch of the proof

- $S_{n-1}[i] \not \subset S_{n+1}[j]$
$\forall x \in S_{n-1}[i], F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)=0$
- $S_{n-1}[i] \subset S_{n+1}[j]$

Sketch of the proof

- $S_{n-1}[i] \not \subset S_{n+1}[j]$
$\forall x \in S_{n-1}[i], F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)=0$
- $S_{n-1}[i] \subset S_{n+1}[j]$
$F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)=1$

$$
\begin{array}{rlc}
c_{i, j} & = & \sum_{x \in S_{n+1}[j] \mid x \notin S_{n-1}[i]} 1 \\
& = & \sharp\left|S_{n+1}[j] \backslash S_{n-1}[i]\right| \\
& = & n+2-n=2=0 \bmod 2
\end{array}
$$

Sketch of the proof

- $S_{n-1}[i] \not \subset S_{n+1}[j]$
$\forall x \in S_{n-1}[i], F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)=0$
- $S_{n-1}[i] \subset S_{n+1}[j]$
$F\left(S_{n-1}[i], S_{n+1}[j] \backslash\{x\}\right)=1$

$$
\begin{array}{rlc}
c_{i, j} & = & \sum_{x \in S_{n+1}[j] \mid x \notin S_{n-1}[i]} 1 \\
& = & \sharp\left|S_{n+1}[j] \backslash S_{n-1}[i]\right| \\
& = & n+2-n=2=0 \bmod 2
\end{array}
$$

Table of Contents

(1) Mathematical concepts

(2) The Theorem Formalized and its Context
(3) Formal development

4. Conclusions and Further work

SSREFLECT

- SSReflect:
- Extension of Coq
- Developed while formalizing the Four Color Theorem
- Provides new libraries:

SSReflect

- SSReflect:
- Extension of Coq
- Developed while formalizing the Four Color Theorem
- Provides new libraries:
- matrix.v: matrix theory
- finset.v and fintype.v: finite set theory and finite types
- bigop.v: indexed "big" operations, like $\sum_{i=0}^{n} f(i)$ or $\bigcup_{i \in I} f(i)$
- zmodp.v: additive group and ring \mathbb{Z}_{p}

Representation of Simplicial Complexes in SSREFLECT

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite subset of V

Variable V : finType.
Definition simplex := \{set V $\}$.

Representation of Simplicial Complexes in SSREFLECT

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite subset of V

Definition

A finite ordered (abstract) simplicial complex over V is a finite set of simplices \mathcal{K} over \checkmark satisfying the property:

$$
\forall \alpha \in \mathcal{K}, \text { if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}
$$

```
Variable V : finType.
Definition simplex \(:=\{\) set \(V\}\).
Definition simplicial_complex (c : \{set simplex\}) :=
    forall \(x\), \(x\) in \(c->\) forall \(y\) : simplex, \(y \backslash\) subset \(x->y\) in \(c\).
```


Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a matrix $m \times n$ where

$$
\begin{gathered}
m=\sharp|X| \wedge n=\sharp|Y| \\
M=\begin{array}{c}
Y[1] \\
x_{[1]} \\
\vdots \\
X[m]
\end{array}\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right) \\
a_{i, j}=\left\{\begin{array}{cc}
1 & \text { if } X[i] \text { is a face of } Y[j] \\
0 & \text { if } X[i] \text { is not a face of } Y[j]
\end{array}\right.
\end{gathered}
$$

Definition face_op (S: simplex) (x:V) := S : $\backslash \mathrm{x}$.
Definition boundary (S: simplex) := (face_op S) @: S.
Variables Left Top : \{set simplex\}.
Definition incidenceMatrix :=

```
    \matrix_(i < # |Left|, j < # |Top|)
    if enum_val i \in boundary (enum_val j) then 1 else 0:'F_2.
```


Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order between its elements and B the set of $(n-1)$-simplices of C with an order between its elements.
We call incidence matrix of dimension $n(n \geq 1)$, to a matrix $p \times q$ where

$$
\begin{gathered}
p=\sharp|B| \wedge q=\sharp|A| \\
M_{i, j}= \begin{cases}1 & \text { if } B[i] \text { is a face of } A[j] \\
0 & \text { if } B[i] \text { is not a face of } A[j]\end{cases}
\end{gathered}
$$

Section nth_incidence_matrix.
Variable c: \{set simplex\}.
Variable n:nat.
Definition n_1_simplices $:=[$ set $\mathrm{x} \backslash$ in $c|\#| x \mid==n]$.
Definition n_simplices $:=[$ set $x \backslash i n c|\#| x \mid==n+1]$.
Definition incidence_matrix_n :=
incidenceMatrix n_1_simplices n_simplices.
End nth_incidence_matrix.

Product of two consecutive incidence matrices in \mathbb{Z}_{2}

Theorem (Product of two consecutive incidence matrices in \mathbb{Z}_{2})

Let \mathcal{K} be a finite simplicial complex over V with an order between the simplices of the same dimension and let $n \geq 1$ be a natural number n, then the product of the n-th incidence matrix of \mathcal{K} and the $(n+1)$-incidence matrix of \mathcal{K} over the ring $\mathbb{Z} / 2 \mathbb{Z}$ is equal to the null matrix

Theorem incidence_matrices_sc_product:

```
    forall (V:finType) (n:nat) (sc: {set (simplex V)}),
        simplicial_complex sc ->
            (incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
```


Formalization in SSREFLECT of the theorem

- Summation part:

Formalization in SSREFLECT of the theorem

- Summation part:
- Lemmas from "bigop" library
- bigID: $\sum_{i \in r \mid P_{i}} F_{i}=\sum_{i \in r \mid P_{i} \wedge a_{i}} F_{i}+\sum_{i \in r \mid P_{i} \wedge \sim a_{i}} F_{i}$
- big1: $\sum_{i \in r \mid P_{i}} 0=0$

Formalization in SSREFLECT of the theorem

- Summation part:
- Lemmas from "bigop" library
- bigID: $\sum_{i \in r \mid P_{i}} F_{i}=\sum_{i \in r \mid P_{i} \wedge a_{i}} F_{i}+\sum_{i \in r \mid P_{i} \wedge \sim a_{i}} F_{i}$
- big1: $\sum_{i \in r \mid P_{i}} 0=0$
- Cardinality part:
- Auxiliary lemmas
- Lemmas from "finset" and "fintype" libraries

Table of Contents

(1) Mathematical concepts

(2) The Theorem Formalized and its Context
(3) Formal development

4 Conclusions and Further work

Conclusions and Further work

- Conclusions:
- Formalization in Coq/SSReflect:
- Simplicial complexes
- Incidence matrices
- Application of formal methods in software systems

Conclusions and Further work

- Conclusions:
- Formalization in Coq/SSReflect:
- Simplicial complexes
- Incidence matrices
- Application of formal methods in software systems
- Further work:
- Formalization:
- From digital images to simplicial complexes
- Computation Smith Normal Form
- $\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z}$
- Executability of the proofs:
- Code extraction
- Internal computations

Incidence Simplicial Matrices Formalized in Coq/SSReflect*

Jónathan Heras, María Poza, Maxime Dénès, and Laurence Rideau
University of La Rioja, Spain - INRIA Sophia Antipolis (Méditerranée)

CICM 2011, Calculemus track, July 22, 2011

[^1]
[^0]: * Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

[^1]: * Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

