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Introduction

Introduction

Goals of our research

1 To ease the communication between data type representations.

2 To reuse proofs carried out for a datatype representation to different
representations of that datatype.

Some facts

The Isabelle/HOL Library offers:

At least three different representations of univariate polynomials.

At least two different representations of matrices (used in the proof of
the Kepler conjecture).

Two different representations of algebraic structures, by means of
records + locales and by means of type classes.

At least two different representations of natural numbers (with binary
representation and the usual inductive one).
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Motivation of the problem

Our original problem

Abstract Matrices

In our experiments for code generation of the Basic Perturbation Lemma
(BPL) in Isabelle, matrices had to be proved an instance of an algebraic
structure appearing in the BPL statement.
The type definition that we (successfully) used was

{f : N× N→ α| finite (nonzero positions f )}

Sparse Matrices

Direct code generation from such abstract matrices is not possible (with
the current Isabelle/HOL technology). Computations with matrices were
unfeasible. A different representation of matrices had to be figured out,
fitting in the scope of the code generation facility. For instance:

α spvec = (nat ∗ α) list
α spmat = (α spvec) spvec
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Motivation of the problem

How are both representations communicated?

A collection of lemmas proving that operations over the abstract
representation +, . . . are equal to some operations over the sparse one has
to be provided:

lemma (sparse_row_matrix A) + (sparse_row_matrix B) =

sparse_row_matrix (add_spmat (A, B))

Nevertheless, the properties proved over abstract matrices have not been
proved over sparse matrices.
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Related work and useful ideas

Some ideas on proof reusing and datatype representation

Proof reusing has been already dealt with in Isabelle (Johnsen and
Lüth), based on signature morphisms. Some of their ideas will be
useful, even if they heavily rely on identifying data type constructors
of the different representations.

Locale interpretation (Ballarin) is also a way to transfer theorems
between the different interpretations of an abstract structure.

Theory morphisms (mappings between the domains and the
operations) will be also helpful.
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Building a morphism between representations

Abstract polynomials (over a given ring R)

definition up :: (α, β) ring_scheme ⇒ (nat ⇒ α) set

where up R ≡ {f. f ∈ UNIV → carrier R & (EX n. bound 0R n f )}

Features

Uniqueness of representation (w.r.t. the extensional equality) (λx .0R).

Natural definition of operations p + q = (λn. p n + q n).

Code generation not possible.

Sparse polynomials

types α pair = (α::ring * nat)

types α sppol = α pair list

Features

Not uniqueness of representation
[(1 :: int, 1)] = [(0 :: int, 0), (1, 1)] = [(0 :: int, 2), (1, 1)].

Direct code generation.
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Building a morphism between representations

Definition of the invariants

The invariant in the abstract representation will be every function
(with finite domain).

The invariant in the sparse representation will be:
definition canonical:: (α::ring) sppol ⇒ bool

where canonical ms ≡ sparse ms ∧ ssorted ms

Definition of the representation and abstraction functions

fun abstr :: α::ring sppol ⇒ α up where
abstr_Nil: abstr [] = 0

| abstr_Cons: abstr((i, c) # ms) = monom i c + abstr ms

definition repr :: (α::ring) up ⇒ α sppol where
repr p = (THE ms. canonical ms ∧ (∀ c::nat. coeff_sppol ms c

= coeff p c))

The only requirement that must be satisfied by both representations is a
coefficient operation (coeff or coeff sppol), a constructor monom over the
abstract representation, and an inductive definition over the sparse one.
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Building a morphism between representations

Define operations (add sppol, mult sppol, . . . ) over the sparse
representation for addition, multiplication, . . .

These operations have to be proved closed over the invariant.

They have to be proved equal to the abstract ones.

a, b ∈ Can ⊂ sparse
add sppol -

add sppol(a, b) ∈ Can ⊂ sparse

abstr a, abstr b ∈ Abs

abstr

?

+ - abstr a + abstr b
eqv
= abstr(add sppol(a, b))

abstr

?

Prove the following lemma:
lemma id_ra: assumes canonical a shows repr (abstr a) = a

J. Aransay (UR) Representations of datatypes 9 / 14



Building a morphism between representations

Define operations (add sppol, mult sppol, . . . ) over the sparse
representation for addition, multiplication, . . .

These operations have to be proved closed over the invariant.

They have to be proved equal to the abstract ones.

a, b ∈ Can ⊂ sparse
add sppol - add sppol(a, b) ∈ Can ⊂ sparse

abstr a, abstr b ∈ Abs

abstr

?

+ - abstr a + abstr b
eqv
= abstr(add sppol(a, b))

abstr

?

Prove the following lemma:
lemma id_ra: assumes canonical a shows repr (abstr a) = a

J. Aransay (UR) Representations of datatypes 9 / 14



Building a morphism between representations

Define operations (add sppol, mult sppol, . . . ) over the sparse
representation for addition, multiplication, . . .

These operations have to be proved closed over the invariant.

They have to be proved equal to the abstract ones.

a, b ∈ Can ⊂ sparse
add sppol - add sppol(a, b) ∈ Can ⊂ sparse

abstr a, abstr b ∈ Abs

abstr

?
+ - abstr a + abstr b

eqv
= abstr(add sppol(a, b))

abstr

?

Prove the following lemma:
lemma id_ra: assumes canonical a shows repr (abstr a) = a

J. Aransay (UR) Representations of datatypes 9 / 14



Building a morphism between representations

Define operations (add sppol, mult sppol, . . . ) over the sparse
representation for addition, multiplication, . . .

These operations have to be proved closed over the invariant.

They have to be proved equal to the abstract ones.

a, b ∈ Can ⊂ sparse
add sppol - add sppol(a, b) ∈ Can ⊂ sparse

abstr a, abstr b ∈ Abs

abstr

?
+ - abstr a + abstr b

eqv
= abstr(add sppol(a, b))

abstr

?

Prove the following lemma:
lemma id_ra: assumes canonical a shows repr (abstr a) = a

J. Aransay (UR) Representations of datatypes 9 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Proof development

lemma assumes canonical a and canonical b

shows add_sppol a b = add_sppol b a

proof -

have add_sppol a b = repr (abstr(add_sppol a b)) using id_ra

also have . . . = repr (abstr a + abstr b) using eqv

also have . . . = repr (abstr b + abstr a) by abstract_result

also have . . . = repr (abstr(add_sppol b a)) using eqv [symm]

also have . . . = add_sppol b a using id_ra [symm]

finally show ?thesis by simp

qed

J. Aransay (UR) Representations of datatypes 10 / 14



Building a morphism between representations

Some other use cases:

A different representation of polynomials, based on dense lists. For
instance, [0, 1, 1] represents x + x2.
definition canonical :: α::{semiring_0,ring} list ⇒ bool

where canonical ps ≡ (pnormalize p = p)

The representation of matrices that we introduced at the beginning of
the talk.
definition canonical :: α::zero spmat ⇒ bool where
canonical x ≡ sorted_sparse_matrix x ∧ mnormalized x

definition repr :: α matrix ⇒ α::{ring} spmat where
repr A ≡ (THE x. canonical x ∧ (∀ m n. coeff_spmat x m n =

coeff A m n))
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Building a morphism between representations

Results obtained

We have reused the proofs of the abstract representation for the
polynomials to prove that sparse and dense polynomials are a commutative
ring and a domain.
We have reused the proofs of the abstract representation of matrices to
prove that sparse matrices are a commutative group (w.r.t. addition) and
multiplication is associative and distributive w.r.t. addition. There is no
unit for multiplication.

Drawbacks

Operations over the executable representations must be closed w.r.t. the
invariant, which means that they can be really slow from an efficiency
point of view.
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Building a morphism between representations

The previous infrastructure can be enriched with some further ideas:

Define a minimal representation of the data type, that allows carrying
out proofs.
locale polynomials =

fixes R assumes ring R

fixes pol_equal :: β ⇒ β ⇒ bool

and zero :: β and coeff :: β⇒ nat⇒ α and bound :: β ⇒ nat

defines pol_equal ≡ (λp q. (∀ n. coeff p n = coeff q n))

assumes ∀ p n. coeff p n ∈ carrier R

and ∀ n::nat. coeff zero n = 0R

and bound zero = 0

and ∀ p. ∃ n. bound p = n

and ∀ m. bound p < m −→ coeff p m = 0R

fixes add_monom:: β ⇒ nat ⇒ α ⇒ β
assumes add_monom_coeff: ∀ n::nat. coeff (add_monom p m x) n

= (if n = m then (coeff p m ⊕R x) else coeff p n)

Embedding the abstract representation into the minimal one.

Embedding the executable representation into the abstract one.
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Conclusions and further work

Conclusions and further work

In the Isabelle/HOL type system sets are not first order citizens.
Direct code generation from them is unfeasible, as well as defining
signature morphisms based on type constructors.

Formal proofs and code generation posse different challenges, and
demand different solutions/implementations.

Proof reusing in that field can be achieved, but code efficiency also
has to be preserved.
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