
Obtaining an ACL2 specification from an
Isabelle/HOL theory?

J. Aransay, J. Divasón, J. Heras, L. Lambán, V. Pascual, A.L. Rubio, and
J. Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja, Spain
jesus-maria.aransay@unirioja.es, jose.divasonm@unirioja.es,

jonathan.heras@unirioja.es, lalamban@unirioja.es, mvico@unirioja.es,

arubio@unirioja.es, julio.rubio@unirioja.es

Abstract. In this work, we present an interoperability framework that
enables the translation of specifications (signature of functions and
lemma statements) among different theorem provers. This translation
is based on a new intermediate XML language, called XLL, and is per-
formed almost automatically. As a case study, we focus on porting de-
velopments from Isabelle/HOL to ACL2. In particular, we study the
transformation to ACL2 of an Isabelle/HOL theory devoted to verify an
algorithm computing a diagonal form of an integer matrix. Moreover, we
provide a formal proof of a fragment of the obtained ACL2 specification
— this shows the suitability of our approach to reuse in ACL2 a proof
strategy imported from Isabelle/HOL.

1 Introduction

In the frame of the ForMath European project [1], several theorem provers are
used to verify mathematical algorithms, with an emphasis on Coq/SSReflect [11]
but also using intensively Isabelle/HOL [19] and ACL2 [16]. Due to this diversity
of tools, it was natural to investigate how different provers could collaborate, in
some manner, in the same formalisation effort.

Numerous contributions have been made along the years in the area of the-
orem proving interoperability. We give here just a few strokes of the brush, by
saying that translations among proof assistants can be of two kinds: deep and
shallow. In the former, deep translations, e.g. [6,12,15,18], the soundness of the
transformation is ensured, and thus, it is necessary to analyse semantics issues
(underlying logics, language expressiveness, and so on). In the latter, shallow
translations, e.g. [10,17,21], only the syntactical structure is translated from the
source formalism to the target one.

In this work, and starting from a complete formalisation in Isabelle/HOL, we
develop a set of tools that translates a proof plan to ACL2, looking for efficient

? Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842,
by European Union’s 7th Framework Programme under grant agreement nr. 243847
(ForMath), and by Universidad de La Rioja, research grant FPI-UR-12.



2 J. Aransay et al.

(but verified) executability. Since we do not have a deep Isabelle/HOL–ACL2
translator at our disposal, we try to materialise the previous observation by
writing a shallow porting mechanism. Even if we do not aim at doing a survey
of the state of the art in the field, it is worth noting that approaches abound in
the literature. The Omega system [23] has been fruitfully used through the years
to perform proof planning strategies. As far as we can determine, it is unable
to integrate with the theorems provers we are interested in. A different tool
is the Evidential tool bus [9]. Evidential’s design principle is that of semantic
neutrality ; our work here is probably not different from it, but could be seen as an
ad-hoc case study of what they call translators (in our case, from Isabelle/HOL
to ACL2). Another meaningful possibility for our development would have been
the use of the THF0 [4] language, to which several tools in TPTP are translated;
indeed, a subset of Isabelle/HOL statements can be already translated to THF0,
in order to enable the communication with external automated theorem provers.
Applying a similar idea to ACL2 seems an interesting idea, but our interest in
XML based tools, such as Ecore and OCL (see [3] for details), leads us to propose
a different approach.

Our approach translates function signatures and statements, while proofs
and function bodies are not ported. In principle, this weak process could be
considered unsafe (this criticism could be also applied to any shallow strategy).
Nevertheless, our key idea is based on the following argument: the family of
function signatures and statements in a formalisation encodes a proof scheme
that can be reused in any other system. Of course, some constraints must be
added to render sensible this claim. For instance, the target framework must be
expressive enough to receive the formulas from the source environment (at least,
in the concrete problem to be ported). Additionally, such a reuse may be not
optimal (otherwise, something as a deep translation would be accomplished),
because both the data structures and the working style of each theorem prover
can be very distant. In any case, at some convenient abstract level, the sketch of
the proof can be translated, saving a significant amount of time. At the end of
the process, when a complete proof is (re)built in the target system, the question
about the soundness of the translation is no longer relevant.

The above proposal is instantiated in this paper in a particular case study,
where we go from Isabelle/HOL to ACL2, transforming a complete proof in
Isabelle/HOL (related to integer matrices manipulation) into an (incomplete)
ACL2 specification. The essence of the proof is captured in this transformation,
showing the adequacy of our contribution.

The organization of the paper is as follows. Our general framework to inter-
operate is briefly described in Section 2. Section 3 is devoted to comment on
the Isabelle/HOL theory developed and the translation process, while Section 4
deals with the completion of the ACL2 specification until a proof of a fragment
of the theory is obtained. The paper ends with conclusions, further work and the
bibliography. The paper is backed with a report [3] in which we have thoroughly
described the architecture of the tool, two case studies, and the steps which can
be applied to produce new translations.



Obtaining an ACL2 specification from an Isabelle/HOL theory 3

2 A (minimal) framework to interoperate

The framework presented in [3] — from now on called I2EA (Isabelle/HOL to
Ecore and ACL2) — allows the transformation of Isabelle/HOL specifications
to both Ecore models [2] and ACL2 specifications; the role of Ecore is presented
in [3]. In this paper, we only focus on proving the following concept: the I2EA
framework can be used to translate Isabelle/HOL specifications to ACL2, and to
reuse a proof scheme in ACL2 imported from Isabelle/HOL. To this aim, we just
use the components of the I2EA framework shown in Figure 1. We describe the
components of that diagram in the following subsections.

Isabelle/HOL XLL ACL2

Fig. 1. (Reduced) Architecture of the I2EA framework.

2.1 Isabelle

Isabelle [19] is a generic interactive proof assistant, on top of which different
logics can be implemented; the most explored of this variety of logics is higher-
order logic (or HOL), and it is also the logic where a greater number of tools
(code generation, automatic proof procedures) are available.

The HOL type system is rather simple; it is based on non-empty types, func-
tion types (⇒) and type constructors κ that can be applied to already existing
types (nat, bool) or type variables (α, β). Types can be also introduced by enu-
meration (bool) or by induction, as lists (by means of the datatype command).
Additionally, new types can be also defined as non-empty subsets of already ex-
isting types by means of the typedef command; the command takes a set defined
by comprehension over a given type {x :: α. P x}, and defines a new type σ,
as well as Rep and Abs morphisms between the types. Type annotations can
be made explicit to the prover, by means of the notation x :: α, and can solve
situations where types remain ambiguous even after type inference.

Isabelle also introduces type classes in a similar fashion to Haskell; a type
class is defined by a collection of operators (over a single type variable) and
premises over them. For instance, the library has type classes representing arith-
metic operators (like sum or unary minus). Concrete types (int, real, set, and so
on) are proved to be instances of those type classes. The expression (x :: α :: plus)
imposes that the type variable α poses the structure and properties stated in
the plus type class, and can be later replaced exclusively by types which are in-
stances of such a type class. Type classes provide operator overloading, enabling
to reuse symbols for different types (0 :: nat and 0 :: int).



4 J. Aransay et al.

2.2 ACL2

ACL2 [16] stands for “A Computational Logic for Applicative Common Lisp”.
Roughly speaking, ACL2 is a programming language, a logic and a theorem
prover. Its programming language is an extension of an applicative subset of
Common Lisp [24]. The ACL2 logic describes the programming language, with a
formal syntax, axioms and rules of inference: the applicative subset of Common
Lisp is a model of the ACL2 logic. Finally, the theorem prover provides support
for mechanised reasoning in the logic. Thus, the system constitutes an environ-
ment in which programs can be defined and executed, and their properties can
be formally specified and proved with the assistance of a theorem prover. The
logic is a first-order logic with equality including axioms for propositional logic
and for a number of primitive Common Lisp functions and data types.

New function definitions (using defun) are admitted as axioms only if there
exists an ordinal measure in which the arguments of each recursive call (if any)
decrease, thus proving its termination and ensuring that no inconsistencies are
introduced. The operator defun-sk introduces new functions that represent ex-
istential quantifiers, following the idea of Skolemization.

The ACL2 theorem prover is an integrated system of ad-hoc proof techniques,
including simplification and induction among them. Simplification is a process
combining term rewriting with some decision procedures (linear arithmetic, type
set reasoner, and so on). Sophisticated heuristics for discovering an (often suit-
able) induction scheme is one of the key features in ACL2. The command defthm

starts a proof attempt, and, if it succeeds, the theorem is stored as a rule (in
most cases, a conditional rewriting rule). The theorem prover is automatic in
the sense that, once defthm is submitted, the user can no longer interact with
the system. However, in some sense, it is interactive. Often, non-trivial results
cannot be proved on a first attempt, and then the role of the user is important:
she has to guide the prover by providing a suitable collection of definitions and
lemmas, used in subsequent proofs as rewrite rules. These lemmas are suggested
by a preconceived “hand” proof (at a higher level) or by inspection of failed
proofs (at a lower level). This kind of interaction is called “the Method” [16].

2.3 XLL

XLL, for Xmall Logical Language, is an XML-based specification language. Its
definition is done through an XML schema [3, Appendix 6.7] which consists of
two parts:

1. A specification of data types (or classes), including for each data type a name
plus a family of operators (or methods).

2. A set of logical statements, expressing some properties of the data types
involved.

The first part defines a dictionary for the operations that can appear in the
second one. In the second part, XLL defines essentially a typed first-order logic



Obtaining an ACL2 specification from an Isabelle/HOL theory 5

language. The propositional connectives are grouped in the first part of the XLL
schema, the one referring to data types, and will be translated literally to any
other specification language (for example, ACL2) as primitive operations.

With respect to the types in the logical expressions, they can be user-defined
classes or elementary data types which can be easily inferred from the context.
Only in cases of implicit coercion, some additional type annotations are neces-
sary. For instance, in integer matrix manipulation, the constant 1 can denote
either an entry of a matrix or an index for a row or column. In the former case,
1 should be considered as an integer; on the contrary, in the latter, it must be
considered as a natural number. These disambiguation annotations are encoded
inside the very logical expression, by using enriched arguments like:

<constant> <name>1</name> <type>Nat</type> </constant>

Additionally, the schema checks that the statements of the properties contain
operations that exclusively appear in the XLL file itself (in the specification
part); the XLL schema ensures that the properties stated in the file are referred
to a certain context (a set of data types and operations).

We have not specified a formal semantics of XLL; it is a simple language in
which types, operations and logical statements over them (in a typed first-order
logical language) can be expressed. The language is enough to cover both the
expressiveness of ACL2, and a first-order fragment of Isabelle/HOL.

In the case study presented in Section 3, XLL documents (that is to say, XML
documents compliant with our XLL schema) are generated from Isabelle/HOL
formalisations. As an intermediary step, we use a set of libraries generating
XML documents from Isabelle specifications, part of the Isabelle standard dis-
tribution. Namely, we generate a collection of XML files from an Isabelle/HOL
theory, which are subsequently transformed into an XLL file. Furthermore, from
that XLL document an ACL2 set of statements can be also generated, essentially
forgetting the data types part, because ACL2 is an environment without explicit
static typing; nevertheless, the type annotations in the logical expressions are
used to generate predicates checking dynamically ACL2 types, as we will ex-
plain later. From the XLL document, we are able to produce an Isabelle theory,
and automatically prove (in Isabelle!) the behavioural equivalence between the
generated Isabelle theory (from the XLL document) and the original Isabelle
theory — see [3] for an example. However, it is not possible to reconstruct the
Isabelle theory from the produced ACL2 specification, because, having ACL2 a
weaker type system than Isabelle/HOL, we irretrievably lost information in the
translation.

Each one of the previous steps is automatic, except the initial choice of the
types, operations and lemmas which are of interest for our development (types
and operations dependencies are also solved by the tool). The user is in charge
of choosing the definitions (and lemmas) that will be exported, and she has to
decide what is the correct level of granularity to export a set of functions (and
lemmas) detailed-enough to be useful for the proof-scheme, but also abstract-
enough to give a proof-scheme independent from the concrete representation of



6 J. Aransay et al.

the source theorem prover. This is why we have labelled the whole generation
process as almost automatic.

3 Transforming an Isabelle/HOL formal development to
ACL2: a diagonal matrix form

In this section, we apply the previously defined interoperability setting to an
Isabelle/HOL formalisation of some well-known results about integer matrices. It
is important to highlight that, even if the theory is written in HOL, the problem is
essentially of a first-order nature, and therefore the information that is lost when
going from Isabelle/HOL to XLL (and then to ACL2) does not prevent us from
getting a sensible specification. Thus, we consider an Isabelle/HOL development
(described in [3]) which defines a verified method to reduce a given matrix to a
diagonal form, i.e. a method to compute a diagonal matrix which is equivalent
to the initial one — two matrices A and B are equivalent if there exist two
invertible matrices P and Q such that B = PAQ.

Then, the corresponding Isabelle/HOL formalisation includes the basic ma-
trix operations (addition and multiplication) and properties of the ring of integer
matrices. The main result of this Isabelle/HOL theory can be expressed as fol-
lows:

Lemma 1. Given an integer matrix A, there exist three integer matrices P , Q
and B such that:

– B = PAQ;
– P and Q are invertible matrices;
– B is a diagonal matrix.

The diagonal matrix presented in the previous lemma is usually computed
in many algorithms as an intermediary step in the computation of the Smith
Normal Form (see [5, 7]); indeed, this particular matrix has its own interesting
properties.1

3.1 An Isabelle/HOL formalisation of Lemma 1

Let us briefly describe the Isabelle/HOL formalisation that leads us to prove
Lemma 1 (the interested reader can find a more complete description in [3]).

One of the most relevant decisions in the initial steps of a formalisation is the
choice of a suitable representation for the objects involved in the development;
in this particular case, integer matrices. In our Isabelle/HOL theory, the family

1 In spite of the fact that the calculation on the Smith Normal Form is a more renowned
result than the one presented in Lemma 1, the diagonal form is enough in many
calculations. For example, the homology of a chain complex over a ring can be
obtained using the diagonal form of the differential maps represented as matrices.
This situation is usual in some programs for Symbolic Computation in Algebraic
Topology; thus, the presented result has its own interest in that area.



Obtaining an ACL2 specification from an Isabelle/HOL theory 7

of matrices is represented as the set of functions with two arguments of type
nat and finitely many non-zero positions. This functional representation eases
the definition of operations over matrices and the proof of properties (it has
been introduced in Isabelle, and successfully used, as a part of the Flyspeck
project [20]). The formal definition is:

type_synonym ’a infmatrix = "nat => nat => ’a"

definition nonzero_positions ::

"(’a::zero) infmatrix ⇒ (nat x nat) set" where

"nonzero_positions A = {pos. A (fst pos) (snd pos) ~= 0}"

definition "matrix = {(f::(nat ⇒ nat ⇒ ’a::zero)).

finite (nonzero_positions f)}"

typedef ’a matrix = "matrix :: (nat ⇒ nat ⇒ ’a::zero) set"

The library offers several definitions and properties over this data type;
in particular, operations nrows and ncols that, making use of the Hilbert’s
ε operator, return the maximum row and column which contain nonzero el-
ements. We had to define elementary operations on matrices; in particular,
there are two basic operations for our development (interchange rows matrix
and row add matrix ) that exchange two rows of a matrix, and replace a row by
the sum of itself and another row multiplied by an integer respectively (the corre-
sponding operations acting on columns are also defined). We introduce here the
definition of interchange rows matrix, as well as the definition of its functional
behaviour over the underlying representation of matrices presented previously
(in this case, functions):

definition interchange_rows_infmatrix ::

"int infmatrix ⇒ nat ⇒ nat ⇒ int infmatrix"

where "interchange_rows_infmatrix A n m ==

(λi j. if i=n then A m j else if i=m then A n j else A i j)"

definition interchange_rows_matrix ::

"int matrix ⇒ nat ⇒ nat ⇒ int matrix"

where "interchange_rows_matrix A n m==

Abs_matrix (interchange_rows_infmatrix (Rep_matrix A) n m)"

The previous definition relies on the type morphisms Abs matrix and
Rep matrix, which perform the conversion between the type (matrix) and the
underlying type (infmatrix, an abbreviation of the functional representation
of matrices). It makes use of the function interchange rows infmatrix, which
represents the functional behaviour of the elementary operation.

Using these functions (and their column counterparts), we can define several
auxiliary results and finally state and prove Lemma 1 in Isabelle/HOL.



8 J. Aransay et al.

lemma Diagonalize_theorem:

shows "∃P Q B. is_invertible P ∧ is_invertible Q ∧ B = P*A*Q

∧ is_square P (nrows (A::int matrix)) ∧ is_square Q (ncols A)

∧ Diagonalize_p B (max (nrows A) (ncols A))"

The proof of this result (from a conceptual point of view) is constructive;
that is, the witnesses (P , Q and B in this case) for the existential expression
(it applies the existential quantifier to P , Q and B) are explicit and could be
algorithmically produced. Roughly speaking, the procedure used in the proof
to compute the equivalent diagonal matrix is analogous to the Gauss-Jordan
elimination method [8, Section 28.3].

The fact that the essence of the proof is constructive would allow us to obtain
executable programs from it. However, it is not possible to directly execute the
corresponding expressions inside Isabelle due to the representation of matrices
(based on the abstract type matrix ). It is well-known that, in such a situation,
we could refine the data structure representation (by taking, for instance, lists
of lists to represent matrices), in order to get executable code from Isabelle. Our
approach is however different: we look for a proof in a different theorem prover
(ACL2), where executability will be guaranteed.

3.2 From the Isabelle/HOL theory to XLL

As a first step in the translation of the Isabelle/HOL theory to ACL2, the corre-
sponding XLL document — an XML instance compliant with the XLL schema
— is generated through a series of automatic steps, as presented in [3]. The XLL
description of the theory consists of two different components: data types and
logical statements.

The former contains the specification of the data types appearing in the
source Isabelle/HOL theory (their names and the collection of functions where
the types appear as parameters, which are selected by the tool). This informa-
tion is automatically organized in a class, an XLL structure which is used to
represent each type and its operations (and that in our Ecore experiments is
later assigned to a UML class), whose XLL description (for the type matrix)
appears in Figure 2 (we only include elementary operations over matrices).

The second component of the resulting XLL document consists of a set
of statements establishing the properties of the entities (data and methods)
involved in the theory. To illustrate this component, we include in Figure 3
(Page 10) the XLL description of the lemma which states in Isabelle/HOL the
idempotence property of interchange_rows_matrix — the square of this func-
tion is the identity.

lemma interchange_rows_matrix_id:

shows

"interchange_rows_matrix (interchange_rows_matrix A n m) n m = A"



Obtaining an ACL2 specification from an Isabelle/HOL theory 9

<Class name="Matrix.matrix">

<Class_Parameters>

<Parameter name="alpha">

<Type name="Int.int"/>

</Parameter>

</Class_Parameters>

...

<method name="Diagonal_form.interchange_rows_matrix">

<Type name="Matrix.matrix"/>

<Input name="n"><Type name="Nat.nat"/></Input>

<Input name="m"><Type name="Nat.nat"/></Input>

</method>

...

</Class>

Fig. 2. XLL for the generated matrix class.

3.3 From XLL to ACL2

From the XLL description of the Isabelle/HOL theory, and only applying XSLT
transformations [25], we can obtain an ACL2 specification. For instance, the
ACL2 function obtained from the XLL file of Figure 2 is:

(defun Diagonal_form.interchange_rows_matrix (A n m)

(declare (ignore A n m)) nil)

The body of this function is empty (in fact, the value nil is returned by
default to allow the compilation of the function) since data types are very linked
to the way of working in each proof assistant. Therefore, it is unlikely that the
Isabelle/HOL representation of matrices will be the most useful one to work in
ACL2. Then, we delegate the task of defining a suitable representation of the
data types to a further step in the development process (see Section 4).

In the same way, theorems like the one presented in Figure 3 are also trans-
lated to ACL2.

(defthm interchange_rows_id

(implies

(and (matrix_integerp A) (natp n) (natp m))

(equal (Diagonal_form.interchange_rows_matrix

(Diagonal_form.interchange_rows_matrix A n m) n m) A)))

Using this procedure, we translate the whole Isabelle/HOL development into
ACL2. The ACL2 version of Lemma 1 is stated as follows.

(defun-sk exists_Diagonalize_theorem (A)

(exists (P Q B)

(and (Diagonal_form.is_invertible P)



10 J. Aransay et al.

<Theorem>

<name>interchange_rows_id</name>

<forall>

<param> <name>A</name> <type>Int.int Matrix.matrix</type> </param>

<body>

<forall>

<param> <name>n</name> <type>Nat.nat</type> </param>

<body>

<forall>

<param> <name>m</name> <type>Nat.nat</type> </param>

<body>

<operation>

<name>HOL.eq</name>

<operation>

<name>Diagonal_form.interchange_rows_matrix</name>

<operation>

<name>Diagonal_form.interchange_rows_matrix</name>

<constant> <name>A</name> </constant>

<constant> <name>n</name> </constant>

<constant> <name>m</name> </constant>

</operation>

<constant> <name>n</name> </constant>

<constant> <name>m</name> </constant>

</operation>

<constant> <name>A</name> </constant>

</operation>

</body>

</forall>

</body>

</forall>

</body>

</forall>

</Theorem>

Fig. 3. XLL for the interchange rows id theorem.

(and (Diagonal_form.is_invertible Q)

(and (equal B (Groups.times_class.times

(Groups.times_class.times P A) Q))

(and (Diagonal_form.is_square P (Matrix.nrows A))

(and (Diagonal_form.is_square Q (Matrix.ncols A))

(Diagonal_form.Diagonalize_p B

(max (Matrix.nrows A) (Matrix.ncols A))))))))))

(defthm Diagonalize_theorem

(implies (matrix_integerp A)

(exists_Diagonalize_theorem A)))



Obtaining an ACL2 specification from an Isabelle/HOL theory 11

We claim that the previous statements, transferred from the Isabelle/HOL
formal development, can be used as a guideline to achieve a similar formalisation
in ACL2. The following section includes a small example illustrating this fact.

4 An experiment in reusing (schemes of) proofs

As a driving example to translate proof schemes, we consider a small theory
about the basic operations over matrices described in Section 3. In particular,
we are interested in proving that the elementary matrices Pi,j (identity matrices
where the i-th and j-th rows are swapped) are invertible. The actual statement
of the lemma explains that the square of a Pi,j (encoded using the function P ij)
matrix is the identity matrix.

lemma P_ij_invertible:

assumes n: "n < a" and m: "m < a"

shows "(P_ij a n m) * (P_ij a n m) = one_matrix (a)"

The main components of the theory required to prove the above lemma are
the functions:

– interchange rows matrix, that exchanges two rows of a matrix;
– P ij, that defines the elementary matrix Pij in dimension a.

definition P_ij :: "nat ⇒ nat ⇒ nat ⇒ int matrix"

where "P_ij a n m ==

interchange_rows_matrix (one_matrix a) n m"

and the lemmas:

– interchange_rows_matrix_id, which states the idempotency of the func-
tion interchange_rows_matrix (see the end of Subsection 3.2).

– PA_interchange_rows, that relates the interchange rows matrix opera-
tion to the left product by the P ij matrices.

lemma PA_interchange_rows:

assumes n:"n < nrows A" and m: "m < nrows A"

and na: "nrows A <= a"

shows "interchange_rows_matrix (A::int matrix) n m =

(P_ij a n m) * A"

This specification can be considered as a suitable strategy to prove lemma
P_ij_invertible in Isabelle/HOL and, as we will show, the same strategy can
be replicated in ACL2 to prove the same result.

We omit the XLL instance provided by this source Isabelle/HOL theory (the
interested reader can extract it from [3]) to directly present the ACL2 specifica-
tion which is automatically produced by the I2EA framework. The file generated



12 J. Aransay et al.

by the I2EA framework consists of two parts: the headers of the functions and
the lemmas.

In the function section, we find not only the specification of the functions
defined in the Isabelle/HOL theory, but also all the functions involved in the
theorems of such a theory which are defined in other libraries (for instance,
the definition of the identity matrix Matrix.one_matrix), and also predicate
recognisers (in this case, the matrix_integerp function is the recogniser for
integer matrices), which replace in ACL2 some Isabelle typing information:

(defun matrix_integerp (x) (declare (ignore x)) nil)

(defun Diagonal_form.interchange_rows_matrix (x1 x2 x3)

(declare (ignore x1 x2 x3 )) nil)

(defun Matrix.nrows (x1)

(declare (ignore x1)) nil)

(defun Groups.times_class.times (x1 x2)

(declare (ignore x1 x2)) nil)

(defun Diagonal_form.P_ij (x1 x2 x3)

(declare (ignore x1 x2 x3)) nil)

(defun Matrix.one_matrix (x1)

(declare (ignore x1)) nil)

Using the headers of these functions as a guideline, we must provide a con-
crete representation for integer matrices and define the rest of the functions
— we re-use an ACL2 matrix library presented in [13], where matrices are en-
coded as lists of vectors, and several background lemmas are provided; in ad-
dition, ACL2’s pre-defined functions are used to define the body of some func-
tions (e.g. the “*” ACL2’s function is used to define the body of the function
Groups.times class.times).

Once this task is carried out, we can focus on the lemmas generated by the
I2EA framework.

(defthm interchange_rows_id

(implies (and (matrix_integerp A) (natp n) (natp m))

(equal (Diagonal_form.interchange_rows_matrix

(Diagonal_form.interchange_rows_matrix A n m)

n m) A)))

(defthm PA_interchange_rows

(implies (and (natp n) (matrix_integerp A) (natp m) (natp a)

(< n (Matrix.nrows A)) (< m (Matrix.nrows A))

(<= (Matrix.nrows A) a))



Obtaining an ACL2 specification from an Isabelle/HOL theory 13

(equal (Diagonal_form.interchange_rows_matrix A n m)

(Groups.times_class.times

(Diagonal_form.P_ij a n m) A))))

(defthm P_ij_invertible

(implies (and (natp n) (natp a) (natp m) (< n a) (< m a))

(equal (Groups.times_class.times

(Diagonal_form.P_ij a n m)

(Diagonal_form.P_ij a n m))

(Matrix.one_matrix a))))

ACL2 is able to find the proof of the first two lemmas without any external
help; however, it gets stuck when proving lemma P_ij_invertible. We can sug-
gest ACL2 to use the lemmas PA_interchange_rows and interchange_rows_id

to finish the proof, but the system is not able to use them. Inspecting ACL2’s
proof attempt, we realise that ACL2 needs a lemma which states that the func-
tion Diagonal_form.P_ij generates an integer matrix.

(defthm P_ij_matrix_integerp

(implies (and (natp a) (natp n) (natp m))

(matrix_integerp (Diagonal_form.P_ij a n m))))

Once this lemma is introduced in the system, ACL2 finishes the proof of
P_ij_invertible. Let us note that P_ij_matrix_integerp is taken for granted
in Isabelle/HOL, since this type information is already provided in the definition
of P_ij.

As foreseen, the previous discussion shows that we can import the Is-
abelle/HOL proof scheme into ACL2, but some additional lemmas can be nec-
essary to complete the proof — in our experiments, those auxiliary lemmas
are always related to predicate lemmas such as P_ij_matrix_integerp. These
ACL2 lemmas containing the information encoded in the Isabelle functions tar-
get types, in the form of recognisers, will be automatically generated in future
releases of the I2EA framework. The case study on matrices has proven itself use-
ful to give us feedback on the kind of information that is represented differently
in Isabelle and ACL2, but still necessary on both tools.

5 Conclusions and future work

In this paper, we have described a facility to transform Isabelle/HOL theories
into ACL2 specifications. We have shown, through a concrete case study, that
the transferred-information is enough to reconstruct a proof in ACL2. In par-
ticular, the original Isabelle theory consists of 5952 lines of code, 222 lemmas,
and 54 definitions. Those lemmas and definitions have been filtered to extract
119 lemmas, and 32 definitions that have been translated to ACL2. Finally, the
ACL2 development consists of 58 definitions (19 of them using defun-sk) and
119 lemmas.



14 J. Aransay et al.

The drawbacks of our approach (with respect to other mainstream ap-
proaches to interoperate between theorem provers) are the following ones:

– Our proposal is not universal, in the sense that it is not proposed as a general
solution to the interoperability problem.

– Our proposal is partial, because when going from Isabelle/HOL to ACL2,
it is evident that no higher-order Isabelle theory could be translated to a,
necessarily first-order logic, ACL2 specification.

– Our proposal is incomplete (even for the fragment of Isabelle/HOL that
we are considering), since we port only function signatures and statements,
while definitions and proofs are not transferred in the process.

– Our proposal requires the expert knowledge of the user to choose the relevant
lemmas and definitions to generate a useful proof-scheme.

On the positive side, the benefits of the presented framework are:

– Our proposal was developed quickly (at least when comparing it with the
effort required to embed a system in another one); in the implementation we
used many already available XML tools, reducing the programming needs
to a minimum [3].

– Our proposal is flexible, because due to the lightweight technology used,
we have been able to modify our XLL schema to adapt it to other close
situations, without reprogramming the whole framework, see [14].

– And last, but not least, our proposal works, since we have shown how a
nontrivial formalisation (a diagonalisation algorithm for integer matrices)
has been translated profitably to ACL2, as required in our ForMath setting.

We think that the global balance is positive. More research and experiments
are needed in order to get more evidences of the interest of this kind of shallow
interoperability approach. As future work, we should translate other (first-order
like) Isabelle/HOL theories to ACL2; for instance, it would be interesting to
study algorithms for symbolic matrices presented in [22]. Moreover, we should
generalise our approach to other proof assistants. In this last line, some successful
experiences have been already made: we have used XLL as intermediary language
to port Coq statements to ACL2 in a context of Java programming verification,
see [14].

References

1. ForMath: Formalisation of Mathematics, European project. http://wiki.portal.
chalmers.se/cse/pmwiki.php/ForMath/ForMath.

2. MDT/OCL in Ecore. http://wiki.eclipse.org/MDT/OCLinEcore.
3. J. Aransay et al. A report on an experiment in porting formal theories

from Isabelle/HOL to Ecore and ACL2. Technical report, ForMath Euro-
pean project, 2013. http://wiki.portal.chalmers.se/cse/uploads/ForMath/

isabelle_acl2_report.



Obtaining an ACL2 specification from an Isabelle/HOL theory 15

4. C. Benzmüller et al. THF0 — The Core of the TPTP Language for Higher-Order
Logic. In IJCAR’08, volume 5195 of LNCS, pages 491–506, 2008.

5. G. H. Bradley. Algorithms for Hermite and Smith Normal Matrices and Linear
Diophantine Equations. Mathematics of Computation, 25(116):897–907, 1971.

6. M. Codescu et al. Towards Logical Frameworks in the Heterogeneous Tool Set
Hets. In WADT’10, volume 7137 of LNCS, pages 139–159, 2012.

7. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1995.
8. T. H. Cormen et al. Introduction to Algorithms. McGraw-Hill, 2003.
9. S. Cruanes et al. Tool integration with the evidential tool bus. In VMCAI’13,

volume 7737 of LNCS, pages 275–294, 2013.
10. E. Denney. A Prototype Proof Translator from HOL to Coq. In TPHOLs’00,

volume 1869 of LNCS, pages 108–125, 2000.
11. G. Gonthier and A. Mahboubi. An introduction to Small Scale Reflection in Coq.

Journal of Formalized Reasoning, 3(2):95–152, 2010.
12. M. J. C. Gordon et al. The Right Tools for the Job: Correctness of Cone of Influ-

ence Reduction Proved Using ACL2 and HOL4. Journal of Automated Reasoning,
47(1):1–16, 2011.

13. J. Hendrix. Matrices in ACL2. In ACL2’03), 2003.
14. J. Heras et al. Verifying a platform for digital imaging: a multi-tool strategy. In

CICM’13, volume 7961 of LNCS, pages 66–81, 2013.
15. M. Jacquel et al. Verifying B Proof Rules Using Deep Embedding and Automated

Theorem Proving. In SEFM’11, volume 7041 of LNCS, pages 253–268, 2011.
16. M. Kaufmann et al. Computer-Aided Reasoning: An Approach. Kluwer Academic

Publishers, 2000.
17. C. Keller and B. Werner. Importing HOL Light into Coq. In ITP’11, volume 6172

of LNCS, pages 307–322, 2011.
18. P. Naumov et al. The HOL/NuPRL Proof Translator - A Practical Approach to

Formal Interoperability. In TPHOLs’01, volume 2152 of LNCS, pages 329–345,
2001.

19. T. Nipkow et al. Isabelle/HOL: A proof assistant for Higher-Order Logic. Springer,
2002.

20. S. Obua and T. Nipkow. Flyspeck II: the basic linear programs. Annals of Math-
ematics and Artificial Intelligence, 56(3-4):245–272, 2009.

21. S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In IJCAR’06, volume
4130 of LNCS, pages 17–20, 2006.

22. A. P. Sexton et al. Computing with Abstract Matrix Structures. In ISSAC’09,
ACM, pages 325–332, 2009.

23. J. H. Siekmann et al. Proof Development with OMEGA. In CADE-18, volume
2392 of LNCS, pages 144–149, 2002.

24. G. L. Steele. Common Lisp the Language. Digital Press, 1990.
25. W3C. XSLT 2.0. http://www.w3.org/TR/xslt-xquery-serialization/.


