Performance Analysis of a Verified Linear Algebra Program in SML

Jesiis Aransay'*, Jose Divason’'
I jesus-maria.aransay @unirioja.es, 2 jose.divasonm @unirioja.es
Departamento de Matematicas y Computacién
Universidad de La Rioja, Logrofio, Spain

Abstract: In this paper we describe the performance results that have been obtained
after executing a verified Linear Algebra SML program automatically generated
from an Isabelle/HOL formalization. This SML program computes the reduced row
echelon form of a matrix, using the well-known Gauss-Jordan algorithm. We explain
how the code generator of Isabelle has been configured to obtain the SML program,
the data structures involved, the accuracy of computations and the performance tests
carried out over Z, @ and R matrices with the SML implementation Poly/ML and
the optimizing compiler MLton.

Keywords: Gauss-Jordan algorithm, Verified code, Computer Algebra, Isabelle

Introduction

Isabelle [NPWO02] is a generic theorem prover (in the sense that different logics can be im-
plemented on top of it). One of those logics is HOL (acronym for Higher-Order Logic) and
Isabelle/HOL is the specialization of Isabelle for it. HOL is the most widely used logical setting
by the Isabelle community, so that usually Isabelle/HOL is commonly referred to as Isabelle.
Its expressiveness has been helpful to formalize relevant results in diverse fields, from software
and hardware verification (for instance, the seL.4 project on the formal verification of an operat-
ing system kernel [K™09]) to mathematical foundations (as, for instance, the Basic Perturbation
Lemma, an intricate result in Homological Algebra [ABROS]).

Thanks to the facilities presented in the code generator of Isabelle, one can obtain certified
executable programs in languages such as SML (abbreviation of Standard ML), OCaml, Haskell
and Scala from a suitable subset of HOL specifications. This way, verified code is generated
in those languages (in the sense that one can be sure that the output of the generated code will
satisfy the properties proved in its Isabelle/HOL specification).

Isabelle is programmed in SML [Pau96], a well-known functional programming language.
Features of SML include, among others, first-class functions, automatic memory management,
parametric polymorphism, static typing, type inference, algebraic data types and pattern match-
ing. Some SML compilers are Poly/ML [POL] and SML/NJ [NJ]. In addition, an optimizing
SML compiler is MLton [MLT] which enables faster computations at the expense of greater
compilation times.

* This work has been supported by the Spanish Government (project MTM2009-13842-C02-01 of MEC) and by
FORMATH project, nr. 243847, of the FET program within the FP7 European Commission.
¥ This author is sponsored by the Universidad de La Rioja under a research grant FPI-UR-12.

Performance Analysis of a Verified Linear Algebra Program in SML 1/8


mailto:jesus-maria.aransay@unirioja.es
mailto:jose.divasonm@unirioja.es

The main objective of this paper is to present the results obtained in the execution of a verified
SML program generated from the formalization in Isabelle/HOL of a well-known Linear Algebra
algorithm: the Gauss-Jordan elimination. In order to do that, we present the specific setup
that we have configured on top of the standard Isabelle code generator trying to obtain better
performance. This article is divided as follows: in Section 1 we introduce the Gauss-Jordan
algorithm whose properties we have formalized in Isabelle/HOL. Then, in Section 2 we present
how the code generator of Isabelle has been configured in order to obtain an SML program.
In Section 3 the experimental results obtained from the benchmarks are shown and explained,
together with some conclusions and further work.

1 The Gauss-Jordan Algorithm

The Gauss-Jordan algorithm is a well-known and useful Linear Algebra algorithm. It is a method
with several applications; for instance, it is used to solve systems of linear equations, compute
the rank of matrices and calculate the inverse or the determinant of a matrix. Given any matrix
over a field, the algorithm returns its reduced row echelon form. The reduced row echelon form
of a matrix (hereafter, rref) is another matrix that satisfies several properties (see [RomO8] for
a complete definition). The Gauss-Jordan algorithm and its properties have been formalized
in Isabelle/HOL (see [ADDb]); a technical report which shows how this formalization has been
carried out is presented in [ADa].

2 Setting Up the Code Generator of Isabelle

Once we have formalized in Isabelle/HOL the Gauss-Jordan algorithm and its properties, we aim
at generating a verified SML version from it. In order to do that, we have to suitably configure
the code generator of Isabelle to obtain an efficient implementation in SML.

2.1 Mapping Matrices from Isabelle to SML

The data types used both in Isabelle/HOL and SML are crucial, because of their influence in the
formalization and the performance tests. In Isabelle/HOL, two representations have been used.
In the first one the correctness of the algorithm is proved. The second one is introduced to obtain
a better performance, preserving the correctness since the equivalence between operations in both
representations is formally proved inside Isabelle/HOL. The idea is that formalizations have to
be carried out over an abstract representation (the first one) which facilitates this work, whereas
an efficient concrete representation (the second one) is only used during the code generation
process.

The first representation defines matrices as functions over finite domains. The idea of having
underlying finite types for the indices of matrices has great advantages, from the formalization
point of view. For instance, the type system enforces that matrix operations (such as addition or
substraction) are only performed on matrices of equal dimensions (this would not be the case if
we were to use, for instance, a list of lists to represent matrices). The algorithm can be executed
using this representation, but it offers very poor performance.

Performance Analysis of a Verified Linear Algebra Program in SML 2/8



The second representation is introduced to solve this performance problem. We have chosen
nested iarrays (iarray stands in the Isabelle library for inmmutable arrays, which are represented
in the SML Library by the structure Vecfor) to represent matrices. As we will show in Section 3,
this representation offers a better performance; additionally, it preserves the functional style of
operations. This means that the definitions of operations over both representations are rather
similar and this makes easier proving the equivalence between an operation in the functional
representation of matrices and the corresponding one in the representation with iarrays. As we
have already said, the Isabelle type iarray is implemented by the Vector structure of the SML
Library. The Vector structure defines polymorphic vectors, immutable sequences with constant-
time access (a priori, more efficient and faster than, for instance, lists of lists).

2.2 Mapping Matrices Elements from Isabelle to SML

The Gauss-Jordan algorithm is designed to be carried out over matrices whose elements belong to
a field. Now we show how the code generator of Isabelle has been configured to obtain efficient
code for executing this algorithm over matrices with elements in Z,, Q or R.

2.2.1 The Z;, Implementation

To represent Z, in Isabelle, we have made use of the bif type provided in the Isabelle library. We
have considered three different alternatives to implement the Isabelle type bit in SML:

1. Using the Bool SML structure (mapping 0 of Isabelle type bit to the false boolean value of
SML and 1 of Isabelle type bit to the frue boolean value of SML).

2. Using the IntInf SML structure (mapping the bit values to the corresponding ones of
IntInf) implementing the arithmetic operations by extensional definitions (by a table).

3. Using the IntInf SML structure implementing the arithmetic making use of integer opera-
tions modulo 2.

We have decided to use the third option. Experimentally, we have checked that a better per-
formance is achieved using the IntInf structure than using the Bool one (in our case, allocating
IntInf.int elements in memory is faster). Regarding the implementation of operations, better
results have been obtained mapping the Isabelle bit operations to IntInf operations modulo 2 (a
15% reduction in the execution time compared to using an implementation by a table). Therefore,
the code generator of Isabelle has been configured as follows to obtain an efficient representation
of Z; and its arithmetic in SML:
code_datatype "O::bit" "(l::bit)"
code_type bit (SML "IntInf.int")

code_const "O::bit" (SML "0O")
code_const "1l::bit" (SML "1")

code_const "op + :: bit => bit => bit"

(SML "IntInf.rem ((IntInf.+ ((), ())), 20™
code_const "op * :: bit => bit => bit" (SML "IntInf.x ((_), (L))"
code_const "op / :: bit => bit => bit" (SML "IntInf.x ((_), (L))")

Then, in SML a Z, matrix is a nested vector of elements of type Intlnf.int.

Performance Analysis of a Verified Linear Algebra Program in SML 3/8



2.2.2 The Q Implementation

Q is representated in Isabelle by fractions of elements of type int. Without doing any modifica-
tion in the code generator of Isabelle, a similar data type in SML is obtained (this representation
allows to exploit the full arithmetic power of the IntInf SML structure, obtaining arbitrary preci-
sion):

data type rat = Frct of (IntInf.int » IntInf.int);

2.2.3 The R Implementation

To implement the Isabelle real type (R), the Isabelle code generator offers two alternatives: using
fractions of integers' (obtaining the same performance and precision than in @ because it is the
same representation) or serialising it to machine reals in SML (type Real.real). This last one
is formally inconsistent, but convenient from a performance point of view; as far as one only
pretends to carry out computations in the target language (and not bringing them back to Isabelle
for proving purposes), the formalization will preserve its soundness.

2.3 The Generated Code

Once the data type refinements for both matrices and matrices elements have been formalized
in Isabelle, an efficient and certified program can be obtained. We must remark that the code
generator of [sabelle allows us to generate stand-alone verified SML programs. In our case, from
the Isabelle formalization presented in [ADb] we have generated a verified SML program which
computes the rank and the rref of a matrix using the Gauss-Jordan algorithm. The exported code
takes up 1743 lines (65’8 kb) and it can be downloaded from [ADb].

3 Time Comparisons

3.1 The Benchmarks

The tests have been run on an Intel Core 13-370M Processor (2 cores of 2.4 GHz) with 4GB
of RAM and Ubuntu GNU/Linux 11.10. The SML compilers that have been used are Poly/ML
(versions 5.2 and 5.5) and MLton 20100608; the benchmarks consisted in computing the rref of
randomly generated matrices of different sizes. To enrich the comparison, we will make use of
some matrices obtained from neuronal digital images. The total elapsed time in computations is
divided into two columns:

e Processing Time: This is the time that the compilers take up to read and process the file
with the input matrix.

e Execution time: This is the time that the SML program spends on applying the Gauss-
Jordan algorithm and printing the result.

I By default the code generator of Isabelle will make the implementation this way.

Performance Analysis of a Verified Linear Algebra Program in SML 4/8



3.2 Results Obtained with Z, Matrices

Table 1 shows that a remarkable performance is achieved in Z, by using Poly/ML. MLton is
slower: it increases the processing time without reducing the execution one. Both the processing
and the execution times grow following a linear pattern with respect to the number of elements
of each matrix using Poly/ML. Moreover, the randomness of the matrices has an influence in
the time. For instance, for a 1024 x 1024 Z, matrix generated from a digital image of a neuron
(Figure 3.2), the execution time is reduced to half (to 21 seconds, whereas a randomly generated
matrix of a similar size takes up 45.1 seconds). This is caused by the presence of numerous
zero columns (the SML program is faster because the Gauss-Jordan algorithm doesn’t process
these zero columns). Thus, it is reasonable to think that if the algorithm is applied to matrices
obtained from the real world”, the execution time (the processing one did not) could be reduced

significantly.

3.3 Results Obtained with () Matrices

Table 2 shows the results obtained for matrices whose elements be-
long to Q. In this case MLton is faster than Poly/ML: it reduces
the execution time with a moderate increment of the processing time.
Times also grow in the same linear pattern with respect to the number
of elements of each matrix in both SML compilers.

The implementation for @ matrices explained in Section 2.2.2 al-
lows arbitrary precision, at the expense of a slower performance. It
can be noted that most of the computing time of @ matrices is spent
on the integer arithmetic. Profiling the computation of the rref of a
70 x 70 rational matrix, one can see that the algorithm spends most of
the time on performing integer divisions (functions bigRem, bigQuot
and bigDivMod), related to the concrete representation of elements
of @, whereas matrices operations (plus_iarray, mult_iarray) take up
minor times.

18.39 seconds of CPU time (0.54 seconds GC)

function cur raw
Primitive.IntInf.bigRem 29.6% (5.61s)
Primitive.IntInf.bigQuot 24.9% (4.71s)
Primitive.IntInf.bigDivMod 13.0% (2.47s)
Primitive.IntInf.make 9.0% (1.71s)
GJ_GENERATED_CODE.plus_iarray.fn 0.1% (0.01ls)
GJ_GENERATED_CODE.mult_iarray.fn 0.1% (0.01s)

3.4 Results Obtained with R Matrices

Figure 1: Digital image
(1024 x 1024 px.) of aneu-
ron.

In Section 2.2.3 we have presented two possible implementations for the Isabelle type real: using
fractions of integers or using machine numbers (type Real.real in SML). The first representation

2 Real world matrices usually present repetitions or patterns which increase the computing performance.

Performance Analysis of a Verified Linear Algebra Program in SML

5/8



7., matrices
Poly/ML MLton

Size Processing Execution Processing Execution
(n) Time (seconds) Time (seconds) Time (seconds) Time (seconds)
50 0.0 0.0 0.8 0.0
100 0.3 0.0 4.0 0.1
150 0.6 0.1 16.3 0.3
200 1.0 0.3 54.6 0.6
250 1.6 0.7 124.7 1.3
300 2.2 1.2 262.9 2.2
350 3.0 1.9 480.4 35
400 4.6 29 809.2 5.2
500 7.3 6.1 - -

600 10.6 9.8 - -

800 19.8 24.1 - -
1000 31.8 45.1 - -
1200 53.7 79.7 - -
1400 65.6 143.0 - -
1600 107.0 200.5 - -

Table 1: Elapsed time (in seconds) to process randomly generated (Z,)"*" matrices and computing their
corresponding rrefs using the Gauss-Jordan algorithm with Poly/ML 5.5 and MLton 20100608.

is the same as the one chosen for ) matrices, so the results are the same as the ones presented in
Table 2. The results for the second representation are presented in Table 3.

MLton is faster than Poly/ML executing the program, although at the expense of a huge in-
crement in the processing time. In addition, it is easy to see that R matrices implemented using
machine numbers have a better performance than @) ones (or R matrices whose elements have
been implemented as fractions of integers). For instance, for the same 100 x 100 matrix, in @
takes up 200.9 seconds using Poly/ML and 84.1 using MLton, whereas in R is almost immediate
using Poly/ML. Nevertheless, operations involving ) matrices have arbitrary precision (because
integer arithmetic is used) and, on the contrary, some precision errors could appear working with
R matrices due to the implementation of floating-point numbers. The user can decide which
serialisation of the Isabelle real type fits better for matrices elements in each use case, according
to the size of the input matrix and the required precision.

3.5 Conclusions and Further Work

We have presented the results obtained in the execution of a verified SML program generated
from the formalization in Isabelle/HOL of a well-known Linear Algebra algorithm. We must
remark that the main objective of this work is to experiment in order to get better performance.
In our opinion, we have achieved a verified SML code to compute the rref of matrices using
the Gauss-Jordan algorithm with a remarkable performance. Taking a quick look at Tables 1, 2
and 3, it can be checked that the processing and execution times grow following a linear pattern
with respect to the number of elements of each matrix. In general, the execution limits will be
determined by the memory and not by the time (as it can be seen in Table 3). Another remarkable
fact is that MLton, despide being an “optimized SML compiler”, does not outperform Poly/ML

Performance Analysis of a Verified Linear Algebra Program in SML 6/8



Rational matrices
Poly/ML MLton

Size Processing Execution Processing Execution
(n) Time (seconds) Time (seconds) Time (seconds) Time (seconds)

10 0.0 0.0 0.2 0.0

20 0.0 0.2 0.3 0.0

30 0.0 1.0 0.6 0.5

40 0.1 3.7 0.9 1.5

50 0.1 10.2 1.4 4.5

60 0.2 22.7 1.9 9.6

70 0.3 43.0 2.7 18.4

80 0.5 77.0 35 32.7

90 0.6 126.9 4.5 54.1
100 0.7 200.9 6.0 84.1

Table 2: Elapsed time (in seconds) to process random Q" matrices (with elements between -10 and 10)
and computing their rrefs using the Gauss-Jordan algorithm with Poly/ML 5.5 and MLton 20100608.

Real matrices
Poly/ML MLton

Size Processing Time Execution Processing Execution
(n) (seconds) Time (seconds) Time (seconds) Time (seconds)

10 0.0 0.0 0.8 0.0

20 0.0 0.0 2.5 0.0

30 0.0 0.0 6.4 0.0

40 0.1 0.0 13.8 0.0

60 0.2 0.0 56.9 0.0

80 0.3 0.0 164.3 0.0
100 0.6 0.2 361.6 0.1
200 3.7 0.7 91454 0.5
300 9.6 2.4 - -
400 20.3 5.9 - -
500 37.3 10.2 - -
600 65.8 20.5 - -
700 98.6 44 .4 - -

800 Segmentation Fault - - -

Table 3: Elapsed time (in seconds) to process random R"*" matrices (with elements between -10 and 10)
and computing their rrefs using the Gauss-Jordan algorithm with Poly/ML 5.2 and MLton 20100608.

significantly; the experimental results show that Poly/ML works quite well computing the rref of
Z; and R matrices. In fact, MLton needs a lot of time to process those matrices and it doesn’t
achieve a reduction of the execution times that Poly/ML take up (see Table 1 and Table 3). Nev-
ertheless, an improvement on the performance is obtained working in MLton with @ matrices:
the time is reduced to half (see Table 2). As it was expected, scientific computational commercial
software obtains better performance than our SML program. For instance, Mathematica 7 takes
up 0.25 seconds in computing the rref of a 100 x 100 matrix with rational elements between -10
and 10, whereas our SML program takes up 84.1 seconds using MLton (both of them with exact
arithmetic, see Table 2). Moreover, Mathematica 7 takes up 109.14 seconds for a 500 x 500

Performance Analysis of a Verified Linear Algebra Program in SML 7/8



rational matrix. From our point of view, the SML program performs quite remarkably, taking
into account that it was designed for being formalized and not for computational performance.

As further work, our SML program could be optimized to achieve better performance. The first
way for doing that is to make new refinements on the formalized algorithm in Isabelle/HOL. Our
SML program has been automatically generated from an Isabelle/HOL development, so if we
optimize the algorithm in Isabelle/HOL we will obtain more efficient SML code. The second way
is to parallelize it. MLton allows us to export SML functions to C, where we could explore how
to parallelize the generated C code. A different possibility would be to use MultiMLton [MUL],
a compiler that targets scalable multicore platforms and provides a sophisticated runtime system
tuned to efficiently handle large numbers of lightweight threads.

Bibliography

[ABRO8] J. Aransay, C. Ballarin, J. Rubio. A mechanized proof of the Basic Perturbation
Lemma. Journal of Automated Reasoning 40(4):271-292, 2008.

[ADa] J. Aransay, J. Divason. Formalization and execution of Linear Algebra: from theo-
rems to algorithms. Technical report.
http://wiki.portal.chalmers.se/cse/uploads/ForMath/felafte

[ADDb] J. Aransay, J. Divasén. Formalization of the Gauss-Jordan algorithm in Isabelle/HOL.
Formal development.
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan/

[KT09] G. Klein et al. seL4: Formal Verification of an OS Kernel. In ACM Symposium on
Operating Systems Principles. Pp. 207-220. ACM, 2009.

[MLT] The MLton Home Page.
http://mlton.org/

[MUL] The MultiMLton Home Page.
http://multimlton.cs.purdue.edu/mML/Welcome.html

[NJ] The Standard ML of New Jersey Home Page.
http://www.smlnj.org/

[NPWO2] T. Nipkow, L. Paulson, M. Wenzel. Isabelle/HOL: A proof assistant for Higher-Order
Logic. Springer, 2002.

[Pau96] L. C. Paulson. ML for the working programmer (2nd ed.). Cambridge University
Press, New York, NY, USA, 1996.

[POL] The Poly/ML Home Page.
http://www.polyml.org/

[RomO08] S.Roman. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer, 2008.

Performance Analysis of a Verified Linear Algebra Program in SML 8/8


http://wiki.portal.chalmers.se/cse/uploads/ForMath/felafte
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan/
http://mlton.org/
http://multimlton.cs.purdue.edu/mML/Welcome.html
http://www.smlnj.org/
http://www.polyml.org/

	The Gauss-Jordan Algorithm
	Setting Up the Code Generator of Isabelle
	Mapping Matrices from Isabelle to SML
	Mapping Matrices Elements from Isabelle to SML
	The Field of Integer Numbers module 2 Implementation
	The Rational Field Implementation
	The Real Field Implementation

	The Generated Code

	Time Comparisons
	The Benchmarks
	Results Obtained with Binary Matrices
	Results Obtained with Rational Matrices
	Results Obtained with Real Matrices
	Conclusions and Further Work


