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Abstract. Formal verification of algorithms often requires a choice be-
tween definitions that are easy to reason about and definitions that are
computationally efficient. One way to reconcile both consists in adopt-
ing a high-level view when proving correctness and then refining stepwise
down to an efficient low-level implementation. Some refinement steps are
interesting, in the sense that they improve the algorithms involved, while
others only express a switch from data representations geared towards
proofs to more efficient ones geared towards computations. We relieve
the user of these tedious refinements by introducing a framework where
correctness is established in a proof-oriented context and automatically
transported to computation-oriented data structures. Our design is gen-
eral enough to encompass a variety of mathematical objects, such as
rational numbers, polynomials and matrices over refinable structures.
Moreover, the rich formalism of the Coq proof assistant enables us to
develop this within Coq, without having to maintain an external tool.
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1 Introduction

It is commonly conceived that computationally well-behaved programs and data
structures are more difficult to study formally than naive ones. Rich formalisms
like the Calculus of Inductive Constructions, on which the Coq [6] proof assistant
relies, allow for several different representations of the same mathematical object
so that users can choose the one suiting their needs.

Even simple objects like natural numbers may have both a unary represen-
tation which features a very straightforward induction scheme and a binary one
which is exponentially more compact, but usually entails more involved proofs.
Their respective incarnations in the standard library of Coq are the two in-
ductive types nat and N along with two isomorphisms N.of_nat : nat -> N
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and N.to_nat : N -> nat. Recent versions of the library make use of ML-like
modules and functors [4] to factor programs and proofs over these two types.

The traditional approach to abstraction is to first define an interface specify-
ing operators and their properties, then instantiate it with concrete implementa-
tions of the operators with proofs that they satisfy the properties. However, this
has at least two drawbacks in our context. First, it is not always obvious how
to define the correct interface, and it is not clear if a suitable one even exists.
Second, having abstract axioms goes against the type-theoretic view of objects
with computational content, which means in practice that proof techniques like
small scale reflection, as advocated by the SSReflect extension [9], are not
applicable.

Instead, the approach we describe here consists in proving the correctness of
programs on data structures designed for proofs — as opposed to an abstract
signature — and then transporting them to more efficient implementations. We
distinguish two notions: program refinements and data refinements. The first of
these consists in transforming a program into a more efficient one computing
the same thing using a different algorithm, but preserving the involved types.
For example, standard matrix multiplication can be refined to a more efficient
implementation like Strassen’s fast matrix product [25]. The correctness of this
kind of refinements is often straightforward to state. In many cases, it suffices
to prove that the two algorithms are extensionally equal. The second notion
of refinement consists in changing the data representation on which programs
operate while preserving the algorithm, for example a multiplication algorithm
on dense polynomials may be refined to an algorithm on sparse polynomials.
This kind of refinement is more subtle to express as it involves transporting
both programs and their correctness proofs to the new data representation.

The two kinds of refinements can be treated independently and in the fol-
lowing, we focus on data refinements. A key feature of these should be composi-
tionality, meaning that we can combine multiple data refinements. For instance,
given both a refinement from dense to sparse polynomials and a refinement from
unary to binary integers we get a refinement from dense polynomials over unary
integers to sparse polynomials over binary integers.

In a previous work [8], two of the authors defined a framework for refining
algebraic structures in a comparable way, while allowing a step-by-step approach
to prove the correctness of algorithms. The present work3 improves several as-
pects by considering the following methodology:

1. relate a proof-oriented data representation with a more efficient one (Sect. 2),
2. parametrize algorithms and the data on which they operate by an abstract

type and its basic operations (Sect. 3),
3. instantiate these algorithms with proof-oriented data types and their basic

operations, and prove the correctness of that instance,
4. use parametricity of the algorithm (with respect to the data representation

on which it operates), together with points 2 and 3, to deduce that the

3 The formal development is available at http://www.maximedenes.fr/coqeal/
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algorithm instantiated with the more efficient data representation is also
correct (Sect. 4).

Further, this paper also contains a detailed example application of this new
framework to Strassen’s algorithm for efficient matrix multiplication (Sect. 5).
Section 6 provides an overview of related work.

2 Data refinements

In this section we will study various data refinements by considering some ex-
amples. All of these fit in a general framework of data refinements based on
heterogeneous relations which relate proof-oriented types for convenient proofs
with computation-oriented types for efficient computation.

2.1 Refinement relations

In some cases we can define (possibly partial) functions from proof-oriented
to computation-oriented types and vice versa. We call a function from proof-
oriented to computation-oriented types an implementation function, and a func-
tion going the other way around a specification function.

Note that a specification function alone suffices to define a refinement relation
between the two data types: a proof-oriented term p refines to a computation-
oriented term c if the specification of c is p. We write the following helper
functions to map respectively total and partial specification functions to the
corresponding refinement relations:

Definition fun_hrel A B (f : B -> A) : A -> B -> Prop :=

fun a b => f b = a.

Definition ofun_hrel A B (f : B -> option A) : A -> B -> Prop :=

fun a b => f b = Some a.

Isomorphic types. Isomorphic types correspond to the simple case where the
implementation and specification functions are inverse of each other.

The introduction mentions the two types nat and N which represent unary
and binary natural numbers. These are isomorphic, which is witnessed by the
implementation function N.of_nat : nat -> N and the specification function
N.to_nat : N -> nat. Here, the proof-oriented type is nat and the computation-
oriented type is N. Another example of isomorphic types is the efficient binary
representation Z of integers in the Coq standard library that can be declared
as a refinement of the unary, nat-based, representation int of integers in the
SSReflect library.



Quotients. Quotients correspond to the case where the specification and im-
plementation functions are total and where the specification is a left inverse of
the implementation. This means that the computation-oriented type may have
“more elements” and that the implementation function is not necessarily sur-
jective (unless the quotient is trivial). In this case the proof-oriented type can
be seen as a quotient of the computation-oriented type by an equivalence rela-
tion defined by the specification function, i.e. two computation-oriented objects
are related if their specifications are equal. This way of relating types by quo-
tients is linked to the general notion of quotient types in type theory [5]. The
specification corresponds to the canonical surjection in the quotient, while the
implementation corresponds to the choice of a canonical representative. How-
ever, here we are not interested in studying the proof-oriented type, which is the
quotient type. Instead, we are interested in studying the computation-oriented
type, which is the type being quotiented.

An important example of quotients is the type of polynomials. These are
represented in SSReflect as a record type with a list and a proof that the last
element is nonzero, however this proof is only interesting when developing theory
about polynomials and not for computation. Hence a computation-oriented type
can be just the list of coefficients and the specification function would normalize
polynomials by removing zeros in the end.

A better representation of polynomials is sparse Horner normal form [10]
which can be implemented as:

Inductive hpoly := Pc : A -> hpoly

| PX : A -> pos -> hpoly -> hpoly.

Here A is an arbitrary type and pos is the type of positive numbers, the
first constructor represents a constant polynomial and PX a n p should be in-
terpreted as a + Xnp where a is a constant, n is a positive number and p is
another polynomial in sparse Horner normal form. However, with this represen-
tation not only polynomials with zeros in the end can be represented but there
are also multiple ways to represent polynomials like X2 as it can be represented
by either 0 +X2 · 1 or 0 +X1(0 +X1 · 1). To remedy this we implement a speci-
fication function that normalize polynomials and translate them to SSReflect
polynomials.

Partial quotients. Quotient based refinement relations cover a larger class of
data refinements than the relations defined by isomorphisms, but there are still
interesting examples that are not covered, for example when the specification
function is partial. To illustrate this, let us consider rational numbers. The SS-
Reflect library contains a definition where they are defined as pairs of coprime
integers with nonzero denominator:

Record rat : Set := Rat {

valq : int * int;

_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.



Here ‘|valq.1| denotes the absolute value of the first projection of the valq

pair. This definition is well-suited for proofs, notably because elements of type
rat can be compared using Leibniz equality since they are normalized. But main-
taining this invariant during computations is often too costly since it requires
multiple gcd computations. Besides, the structure also contains a proof which is
not interesting for computations but only for developing the theory of rational
numbers.

In order to be able to compute efficiently we would like to refine this to
pairs of integers (int * int) that are not necessarily normalized and perform
all operations on the subset of pairs with nonzero second component. The link
between the two representations is depicted in Fig. 1:

Proof-oriented type A
Valid elements

Computation-oriented type C

implementation

specification

Fig. 1. Partial quotients

In the example of rational numbers the proof-oriented type is rat while the
computation-oriented type is int * int and computations should be performed
on the subset of valid elements of the computation-oriented type, i.e. pairs with
nonzero second component. In order to conveniently implement this, the output
type of the specification function has been extended to option A in order to
make it total. The key property of the implementation and specification functions
is still that the specification is a left inverse of the implementation. This means
that the proof-oriented type can be seen as a quotient of the set of valid elements,
i.e. elements that are not sent to None by the specification function. For rational
numbers the implementation and specification functions and their correctness
looks like:

Definition rat_to_Qint (r : rat) : int * int := valq r.

Definition Qint_to_rat (r : int * int) : option rat :=

if r.2 != 0 then Some (r.1%:Q / r.2%:Q) else None.

Lemma Qrat_to_intK :

forall (x : rat), Qint_to_rat (rat_to_Qint x) = Some x.

The notation %:Q is the cast from int to rat. Here the lemma says that the
composition of the implementation with the specification is the identity. Using



this, we get a relation between rat and int * int by using ofun_hrel defined
at the beginning of this section:

Definition Rrat : rat -> int * int -> Prop := ofun_hrel Qint_to_rat.

Functional relations. Partial quotients often work for the data types we define,
but fails to describe refinement relations on functions. Given two relations R : A

-> B -> Prop and R’ : A’ -> B’ -> Prop we build a relation on the function
space: R ==> R’ : (A -> A’) -> (B -> B’) -> Prop. It is a heterogeneous
generalization of the respectful functions defined for generalized rewriting [22].

This definition is such that two functions are related by R ==> R’ if they send
related inputs to related outputs. We can now use this to define the correctness
of addition on rational numbers:

Lemma Rrat_addq : (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

The lemma states that if the two arguments are related by Rrat then the
outputs are also related by Rrat.

However, we have left an issue aside: we refined rat to int * int, but this
is not really what we want to do as the type int is itself proof-oriented. Thus,
taking it as the basis for our computation-oriented refinement of rat would be
inefficient. Instead, we would like to express that rat refines to C * C for any
type C that refines int. The next section will explain how to program, generically,
operations in the context of such parametrized refinements. Then, in Sect. 4, we
will show that correctness can be proved in the specific case when C is int,
and automatically transported to any other refinement by taking advantage of
parametricity.

2.2 Comparison with the previous approach

We gain in generality with regard to the previous work on refinements [8] in
several ways. The previous work assumed a total injective implementation func-
tion, which intuitively corresponds to a partial isomorphism: the proof-oriented
type is isomorphic to a subtype of the computation-oriented type. Since we do
not rely on those translation functions anymore, we can now express refinement
relations on functions. Moreover, we take advantage of (possibly partial) speci-
fication functions, rather than implementation functions.

Another important improvement is that we do not need any notion of equality
on the computation-oriented type anymore. Indeed, the development used to rely
on Leibniz equality, which prevented us from using setoids [2] as computation-
oriented types. In Sect. 2.1, we use the setoid int * int of rational numbers, but
the setoid equality is left implicit. This is in accordance with our principle never
to do proofs on computation-oriented types. We often implement algorithms to
decide equality, but these are treated as any other operation (Sect. 3).



2.3 Indexing and using refinements

We use the Coq type class mechanism [23] to maintain a database of lemmas es-
tablishing refinement relations between proof-oriented and computation-oriented
terms. The way this database is used is detailed in Sect. 4.

In order to achieve this, we define a heterogeneous generalization of the
Proper relations from generalized rewriting [22]. We call this class of rela-
tions param and define it by:

Class param (R : A -> B -> Prop) (a : A) (b : B) := param_rel : R a b.

Here R is meant to be a refinement relation from A to B, and we can register
an instance of this class whenever we have two elements a and b and a proof
that R a b. For example, we register the lemma Rrat_addq from Sect. 2.1 using
the following instance:

Instance Rrat_addq : param (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

Given a term x, type class resolution searches for y and a proof of param R
x y. If R was obtained from a specification function, then x = spec y and we

can always substitute x by spec y and compute y, thus taking advantage of our
framework to do efficient computation steps within proofs.

3 Generic programming

We may want to provide operations on the computation-oriented type corre-
sponding to operations on the proof-oriented type. For example, we want to
define an addition addQ on computation-oriented rationals C * C, correspond-
ing to the addition (+rat) on rat. However this computation-oriented operation
relies on both addition (+C) and multiplication (*C) on C, so we parametrize
addQ by (+C) and (*C):

Definition addQ C (+C) (*C) : (C * C) -> (C * C) -> (C * C) :=

fun x y => (x.1 *C y.2 +C y.1 *C x.2, x.2 *C y.2).

This operation is correct if (+rat) refines to (addQ C (+C) (*C)) whenever
(+int) refines to (+C) and (*int) refines to (*C). The refinement from (+rat)

to (addQ C (+C) (*C)) is explained in Sect. 4.1.
Since we abstracted over operations of the underlying data type, only one

implementation of each algorithm suffices, the same code can be used for doing
both correctness proofs and efficient computations as it can be instantiated by
both proof-oriented and computation-oriented types and programs. This means
that the programs need only be written once and code is never duplicated, which
is an improvement compared to the previous development.

In order to ease the writing of this kind of programs and refinement state-
ments in the code, we use operational type classes [24] for standard operations
like addition and multiplication together with appropriate notations. This means
we define a class for each operator and a generic notation referring to the corre-
sponding operation. For example, in the code of addQ we can always write (+)

and (*) and let the system infer the operations,



Instance addQ C ‘{add C, mul C} : add (C * C) :=

fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Here ‘{add C, mul C} means that C comes with type classes for addition
and multiplication operators. Declaring addQ as an instance of addition on C * C

enables the use of the generic (+) notation to denote addQ.

4 Parametricity

The approach presented in the above section is incomplete though: once we have
proven that the instantiation of a generic algorithm to proof-oriented structures
is correct, how can we guarantee that other instances will be correct as well?
Proving correctness directly on computation-oriented types is precisely what we
are trying to avoid.

Informally, since our generic algorithms are polymorphic in their types and
operators, their behavior has to be uniform across all instances. Hence, a cor-
rectness proof should be portable from one instance to another, so long as the
operators instances are themselves correct.

The exact same idea is behind the interpretation of polymorphism in rela-
tional models of pure type systems [3]. The present section builds on this analogy
to formalize the automated transport of a correctness proof from a proof-oriented
instance to other instances of the same generic algorithm.

4.1 Splitting refinement relations

Let us illustrate the parametrization process by an example on rational numbers.
For simplicity, we consider negation which is implemented by:

Instance oppQ C ‘{opp C} : opp (C * C) :=

fun (a : Q C) => (-C a.1, a.2).

The function takes a negation operation in the underlying type C and define
negation on C * C by negating the first projection of the pair (the numerator).
Now let us assume that C is a refinement of int for a relation Rint : int ->

C -> Prop and that we have:

(Rint ==> Rint) (-int) (-C)

(Rrat ==> Rrat) (-rat) (oppQ int (-int))

The first of these states that the (-C) parameter of oppQ is correctly instan-
tiated, while the second one expresses that the proof-oriented instance of oppQ is
correct. Assuming this, we want to show that (-rat) refines all the way to oppQ,
but instantiated with C and (-C) instead of their proof-oriented counterparts
(int and (-int)).

In order to write this formally, we define the product and composition of
relations as R * S := fun x y => R x.1 y.1 /\ S x.2 y.2 and R \o S :=

fun x y => exists z, R x z /\ S z y. Using this we can define the rela-
tion RratC : rat -> C * C -> Prop as RratC := Rrat \o (Rint * Rint).
We want to show:



(RratC ==> RratC) (-rat) (oppQ C (-C))

A small automated procedure, relying on type class instance resolution, first
splits this goal in two, following the composition \o in the definition of RratC:

(Rrat ==> Rrat) (-rat) (oppQ int (-int))

(Rint * Rint ==> Rint * Rint) (oppQ int (-int)) (oppQ C (-C))

The first of these is one of the assumptions while the second relates the results
of the proof-oriented instance of oppQ to another instance. This is precisely where
parametricity comes into play, as we will show in the next section.

4.2 Parametricity for refinements

While studying the semantics of polymorphism, Reynolds introduced a relational
interpretation of types [19]. Parametricity [27] is a reformulation based on the
fact that if a type has no free variable, its relational interpretation expresses
a property shared by all terms of this type. This result extends to pure type
systems [3] and provides a meta-level transformation [[·]] defined inductively on
terms and contexts. In the closed case, this transformation is such that if ` A : B,
then ` [[A]] : [[B]] AA. That is, for any term A of type B, it gives a procedure to
build a proof that A is related to itself for the relation interpreting the type B.

The observation we make is that the last statement of Sect. 4.1 is an instance
of such a free theorem. More precisely, we know that [[oppQ]] is a proof of

[[∀Z, (Z→ Z)→ Z ∗ Z→ Z ∗ Z]] oppQ oppQ

which expands to

∀Z : Type, ∀Z′ : Type, ∀ZR : Z→ Z′ → Prop,
∀oppZ : Z→ Z, ∀oppZ′ : Z′ → Z′, [[Z→ Z]] oppZ oppZ′ →

[[Z ∗ Z→ Z ∗ Z]] (oppQ Z oppZ) (oppQ Z′ oppZ′).

Then, instantiating Z to int, Z’ to C and ZR to Rint gives us the exact
statement we wanted to prove, since [[Z→ Z]] is what we denoted ZR ==> ZR.

Following the term transformation [[·]], we design a logic program in order to
derive proofs of closed instances of the parametricity theorem. Indeed, it should
be possible in practice to establish the parametric relation between two terms
like oppQ and itself, since oppQ is closed.

For now, we can only express and infer parametricity on polymorphic expres-
sions (no dependent types allowed), by putting the polymorphic types outside
the relation. Hence we do not need to introduce a quantification over relations.

4.3 Generating the parametricity lemma

Rather than giving the details of how we programmed the proof search using
type classes and hints in the Coq system, we instead show an execution of this
logic program on our simple example, starting from:



(Rrat ==> Rrat) (-rat) (oppQ C (-C))

Let us first introduce the variables and their relations, and we get to prove

(Rint * Rint) (oppQ int (-int) a) (oppQ C (-C) b)

knowing that ((Rint ==> Rint) (-int) (-C)) and ((Rint * Rint) a b).
By unfolding oppQ, it suffices to show:

(Rint * Rint) (-int a.1, a.2) (-C b.1, b.2)

To show that, we use parametricity theorems for the pair constructor pair

and eliminators _.1 and _.2. In our context, we have to give manual proofs for
them. Indeed, we lack automation for the axioms, but the number of combinators
to treat by hand is negligible compared to the number of occurrences in user-
defined operations. These lemmas look like:

param_pair := forall RA RB, (RA ==> RB ==> RA * RB) pair pair

param_fst := forall RA RB, (RA * RB ==> RA) _.1 _.1

param_snd := forall RA RB, (RA * RB ==> RB) _.2 _.2

Unfolding the last of these gives:

forall (RA : A -> A’ -> Prop) (RB : B -> B’ -> Prop)

(a : A) (a’ : A’) (b : B) (b’ : B’),

RA a a’ → RB b b’ → (RA * RB) (a, b) (a’, b’)

This can be applied to the initial goal, giving two subgoals:

Rint (-int a.1) (-C b.1)

Rint a.2 b.2

The second of these follow directly from param_snd and to show the first it
suffices to prove:

(Rint ==> Rint) (-int) (-C)

Rint a.1 b.1

The first of these is one of the assumptions we started with and the second
follows directly from param_fst.

5 Example: Strassen’s matrix product

In the previous development an important application of the refinement frame-
work was Strassen’s algorithm for the product of two square matrices of size n
with time complexity O(n2.81) [25]. We show here how we adapted it to the new
framework described in this paper.

Let us begin with one step of Strassen’s algorithm: given a function f which
computes the product of two matrices of size p, we define, generically, a function
Strassen_step f which multiplies two matrices of size p + p:



Variable mxA : nat -> nat -> Type.

Context ‘{hadd mxA, hsub mxA, hmul mxA, hcast mxA, block mxA}.

Context ‘{ulsub mxA, ursub mxA, dlsub mxA, drsub mxA}.

Definition Strassen_step {p : positive} (A B : mxA (p+p) (p+p))

(f : mxA p p -> mxA p p -> mxA p p) : mxA (p+p) (p+p) :=

let A11 := ulsubmx A in let A12 := ursubmx A in

let A21 := dlsubmx A in let A22 := drsubmx A in

let B11 := ulsubmx B in let B12 := ursubmx B in

let B21 := dlsubmx B in let B22 := drsubmx B in

let X := A11 - A21 in let Y := B22 - B12 in

let C21 := f X Y in let X := A21 + A22 in

let Y := B12 - B11 in let C22 := f X Y in

let X := X - A11 in let Y := B22 - Y in

let C12 := f X Y in let X := A12 - X in

let C11 := f X B22 in let X := f A11 B11 in

let C12 := X + C12 in let C21 := C12 + C21 in

let C12 := C12 + C22 in let C22 := C21 + C22 in

let C12 := C12 + C11 in let Y := Y - B21 in

let C11 := f A22 Y in let C21 := C21 - C11 in

let C11 := f A12 B21 in let C11 := X + C11 in

block_mx C11 C12 C21 C22.

The mxA variable represents the type of matrices indexed by their sizes. The
various operations on this type are abstracted over by operational type classes,
as shown in Sect. 3. Playing with notations and scopes allows us to make this
generic implementation look much like an equivalent one involving SSReflect
matrices.

Note that Strassen_step expresses matrix sizes by the positive type.
These are positive binary numbers, whose recursion scheme matches the one
of Strassen’s algorithm through matrix block decomposition. This is made com-
patible with the nat-indexed mxA type thanks to a hidden coercion nat_of_pos.

The full algorithm is expressed by induction over positive. However, in order
to be able to state parametricity lemmas, we do not use the primitive Fixpoint

construction. Instead, we use the recursion scheme attached to positive:

positive_rect : forall P : positive -> Type,

(forall p : positive, P p -> P (p~1)%positive) ->

(forall p : positive, P p -> P (p~0)%positive) ->

P 1%positive -> forall p : positive, P p

We thus implement three functions corresponding to the three cases given
by the constructor of the positive inductive type: Strassen_xI for odd-sized
matrices, Strassen_xO for even-sized ones and Strassen_xH for matrices of
size 1. Strassen’s algorithm is then defined as:



Definition Strassen :=

(positive_rect (fun p => (mxA p p -> mxA p p -> mxA p p))

Strassen_xI Strassen_xO Strassen_xH).

Then we instantiate the mxA type and all the associated operational type
classes to SSReflect proof-oriented matrix type and operators. In this con-
text, we prove the program refinement from the naive matrix product mulmx to
Strassen’s algorithm:

Lemma StrassenP p : param (eq ==> eq ==> eq) mulmx (@Strassen p).

The proof is essentially unchanged from [8], the present work improving only
the data refinement part. The last step consists in stating and proving the para-
metricity lemmas. This is done in a context abstracted over both a representation
type for matrices and a refinement relation:

Context (A : ringType) (mxC : nat -> nat -> Type).

Context (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n -> Prop).

Operations on matrices are also abstracted, but we require them to have
an associated refinement lemma with respect to the corresponding operation on
proof-oriented matrices. For instance, for addition we write as follows:

Context ‘{hadd mxC, forall m n, param (RmxA ==> RmxA ==> RmxA)

(@addmx A m n) (@hadd_op _ _ _ m n)}.

We also have to prove the parametricity lemma associated to our recursion
scheme on positive:

Instance param_elim_positive P P’

(R : forall p, P p -> P’ p -> Prop) txI txI’ txO txO’ txH txH’ :

(forall p, param (R p ==> R (p~1)) (txI p) (txI’ p)) ->

(forall p, param (R p ==> R (p~0)) (txO p) (txO’ p)) ->

(param (R 1) txH txH’) ->

forall p, param (R p) (positive_rect P txI txO txH p)

(positive_rect P’ txI’ txO’ txH’ p).

We declare this lemma as an Instance of the param type class. This allows
to automate data refinement proofs requiring induction over positive. Finally,
we prove parametricity lemmas for Strassen_step and Strassen:

Instance param_Strassen_step p :

param (RmxA ==> RmxA ==> (RmxA ==> RmxA ==> RmxA) ==> RmxA)

(@Strassen_step (@matrix A) p) (@Strassen_step mxC p).

Instance param_Strassen p :

param (RmxA ==> RmxA ==> RmxA)

(@Strassen (@matrix A) p) (@Strassen mxC p).

Here, the improvement over [8] is twofold: only one generic implementation of
the algorithm is now required and refinement proofs are now mostly automated,
including induction steps.



A possible drawback is that our generic description of the algorithms requires
all the operators to take the sizes of the matrices involved as arguments, which
are sometimes not required for computation-oriented operators. However, some
preliminary benchmarks seem to indicate that this does not entail a significant
performance penalty.

6 Related Work

Our work addresses a fundamental problem: how to change data representations
in a compositional way. As such, it is no surprise that it shares aims with other
work. We already mentioned ML-like modules and functors, that are available
in Coq, but forbid proof methods to have a computational content.

The most general example of refinement relations we consider are partial
quotients, which are often represented in type theory by setoids over partial
equivalence relations [2] and manipulated using generalized rewriting [22]. The
techniques we are using are very close to a kind of heterogeneous version of the
latter. Indeed, it usually involves a relation R : A -> A -> Prop for a given
type A, whereas our refinement relations have the shape R : A -> B -> Prop

where A and B can be two different types.
Some years ago, a plugin was developed for Coq for changing data represen-

tations and converting proofs from a type to another [16]. However, this approach
was limited to isomorphic types, and does not provide a way to achieve generic
programming (only proofs are ported). Our design is thus more general, and we
do not rely on an external plugin which can be costly to maintain.

In [15], a methodology for modular specification and development of pro-
grams in type theory is presented. The key idea is to express algebraic spec-
ifications using sigma-types which can be refined using refinement maps, and
realized by concrete programs. This approach is close to the use of ML-like
modules, since objects are abstracted and their behavior is represented by a
set of equational properties. A key difference to our work is that these equa-
tional properties are stated using an abstract congruence relation, while we aim
at proving correctness on objects that can be compared with Leibniz equality,
making reasoning more convenient. This is made possible by our more relaxed
relation between proof-oriented and computation-oriented representations.

Another way to reconcile data abstraction and computational content is
the use of views [17,26]. In particular, it allows to derive induction schemes
independently of concrete representations of data. This can be used in our
setting to write generic programs utilizing these induction schemes for defin-
ing recursive programs and proving properties for generic types, in particular
param_elim_positive (Sect. 5) is an example of a view.

The closest work to ours is probably the automatic data refinement tool Au-
toref implemented independently for Isabelle [14]. While many ideas, like the
use of parametricity, are close to ours, the choice is made to rely on an exter-
nal tool to synthesize executable instances of generic algorithms and refinement
proofs. The richer formalism that we have at our disposal, in particular full poly-



morphism and dependent types makes it easier to internalize the instantiation
of generic programs.

Another recent work that is related to this paper is [11] in which the authors
explain how the Isabelle/HOL code generator uses data refinements to gener-
ate executable versions of abstract programs on abstract types like sets. In the
paper they use a refinement relation that is very similar to our partial quotients
(they use a domain predicate instead of an option type to denote what values are
valid and which are not). The main difference though is that they are applying
data refinements for code generation while in our case this is not necessary since
all programs written in Coq can be executed as they are and data refinements
are only useful to perform more efficient computations.

7 Conclusions and Future Work

In this paper an approach to data refinements has been presented where the user
only needs to supply the minimum amount of necessary information and both
programs and their correctness proofs gets transported to new data representa-
tion. The three main parts of the approach are:

1. a lightweight and general refinement interface to support any heterogeneous
relation between two types,

2. operational type classes to increase generality of implementations and
3. parametricity to automatically transport correctness proofs.

As mentioned in the introduction of this paper, this work is an improvement
of a previous work [8]. More precisely it improves the approach presented in
Sect. 5 of [8] in the following aspects.

1. Generality: it extends to previously unsupported data types, like the type of
non-normalized rationals (Sect. 2.2).

2. Modularity: each operator is refined in isolation instead of refining whole
algebraic structures (Sect. 2.3), as suggested in the future work section of
the previous paper.

3. Genericity: before, every operation had to be implemented both for the proof-
oriented and computation-oriented types, now only one generic implementa-
tion is sufficient (Sect. 3).

4. Automation: the current approach has a clearer separation between the dif-
ferent steps of data refinements which makes it possible to use parametricity
(Sect. 4) in order to automate proofs that previously had to be done by
hand.

The implementation of points 2, 3 and 4 relies on the type class mecha-
nism of Coq in two different ways: in order to support ad-hoc polymorphism of
algebraic operations, and in order to do proof and term reconstruction automat-
ically through logic programming. The automation of proof and term search is
achieved by the same set of lemmas as in the previous paper, but now these do
not impact the interesting proofs anymore.



The use of operational type classes is very convenient for generic program-
ming. But the more complicated programs get, the more arguments they need.
In particular, we may want to bundle operators in order to reduce the size of
contexts that users need to write when defining generic algorithms.

The handling of parametricity is currently done by meta-programming but
requires some user input and deals only with polymorphic constructions. We
should address these two issues by providing a systematic way of producing
parametricity lemmas for inductive types [3] and extending relation construc-
tions with dependent types. We may adopt Keller and Lasson’s [13] way of
producing parametricity theorems and their proofs for closed terms.

Currently all formalizations have been done using standard Coq, but it would
be interesting to see how the univalent foundations [18] can be used for simplify-
ing our approach to data refinements. Indeed, in the presence of the univalence
axiom, isomorphic structures are equal [1,7] which should be useful when refining
isomorphic types. Also in the univalent foundations there are ways to represent
quotient types (see for example [20]). This could be used to refine types that are
related by quotients or even partial quotients.

The work presented in this paper is currently being used as a new basis for
CoqEAL — The Coq Effective Algebra Library — which is a library, cur-
rently in development, containing many formally verified program refinements,
for instance: Strassen’s fast matrix product [25], Karatsuba’s fast polynomial
product [12], the Sasaki-Murao algorithm for efficiently computing the charac-
teristic polynomial of a matrix [21] and an algorithm for computing the Smith
normal form of matrices over Euclidean rings.
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11. F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data Refinement in Is-
abelle/HOL. In Interactive Theorem Proving, LNCS. Springer, 2013.

12. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. In USSR Academy of Sciences, volume 145, pages 293–294, 1962.

13. C. Keller and M. Lasson. Parametricity in an Impredicative Sort. In CSL, vol-
ume 16, pages 381–395. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

14. P. Lammich. Automatic Data Refinement. In Interactive Theorem Proving, volume
7998 of LNCS, pages 84–99, 2013.

15. Z. Luo. Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York, NY, USA, 1994.

16. N. Magaud. Changing Data Representation within the Coq System. In TPHOLs,
volume 2758 of LNCS, pages 87–102. Springer, 2003.

17. C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

18. T. U. F. Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013. http://homotopytypetheory.org/book/.

19. J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513–523, 1983.

20. E. Rijke and B. Spitters. Sets in homotopy type theory, 2013. Preprint. http:
//arxiv.org/abs/1305.3835.

21. T. Sasaki and H. Murao. Efficient Gaussian Elimination Method for Symbolic
Determinants and Linear Systems. ACM Trans. Math. Softw., 8(3):277–289, Sept.
1982.

22. M. Sozeau. A new look at generalized rewriting in type theory. Journal of For-
malized Reasoning, 2(1):41–62, 2009.

23. M. Sozeau and N. Oury. First-Class Type Classes. In TPHOLs, volume 5170 of
LNCS, pages 278–293, 2008.

24. B. Spitters and E. van der Weegen. Type Classes for Mathematics in Type The-
ory. MSCS, special issue on ‘Interactive theorem proving and the formalization of
mathematics’, 21:1–31, 2011.

25. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug. 1969.

26. P. Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In POPL, pages 307–313. ACM Press, 1987.

27. P. Wadler. Theorems for free! In Functional Programming Languages and Com-
puter Architecture, pages 347–359. ACM Press, 1989.

http://homotopytypetheory.org/book/
http://arxiv.org/abs/1305.3835
http://arxiv.org/abs/1305.3835

	Refinements for free!
	Introduction
	Data refinements
	Refinement relations
	Comparison with the previous approach
	Indexing and using refinements

	Generic programming
	Parametricity
	Splitting refinement relations
	Parametricity for refinements
	Generating the parametricity lemma

	Example: Strassen's matrix product
	Related Work
	Conclusions and Future Work


