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Introduction

I Solving systems of inequations and geometrical problems

I Does there exist (x , y) so that the following comparisons hold?

x2 ≤ y

y ≤ 18− 3x + 9x2

x < 1

I Here find whether the roots of 18− 3x + 10x2 are in some
interval.

I More general applications in quantifier elimination and
cylindrical decomposition

I Can be used to define algebraic numbers



Method

I Bernstein coefficient approximate a polynomial’s curve
I Discrete approximation

I Associated to bounded intervals

I Exactly one sign change implies exactly one root in the
interval

I No sign change implies no root in the interval
I More than one sign change: no conclusion

I Refinement: cut the interval in halves and start again
I Use a simple combinatorial algorithm



Geometric intuition: Bernstein



Geometric intution: False alert



Geometric intution: Exactly one root



Geometric intuition: interval splitting



Computing Bernstein coefficients

I Polynomial a0 + a1X + · · ·+ anX
n

I Bernstein coefficients for interval (l , r)

bi =
n∑

j=0

(
j
n

)
ai

r j ln−j

r − l

I Easy computation of Bernstein coefficients for the half
intervals

I de Casteljau’s algorithm



Correctness proof

I Relate Bernstein coefficients with plain coefficients of another
polynomial

I Using an automorphism

I Prove Descartes’ law of signs (on a simple case)

I Establish correspondances between the roots of both
polynomials

I Make the combinatorial proof for interval splitting



Constructive proof

I Use rational numbers

I New meaning of “having a root”
I Decompose interval into several parts

I parts where the absence of root is guaranteed
I parts where the polynomial changes sign, with monotonicity

I Replacement for the intermediate value theorem
I Express that one can find a value that is arbitrary close to 0.
I Upper bound on slopes for polynomials and bounded intervals
I Deduce uniform continuity
I take regularly spaced points and work in a discrete setting



Sufficient conditions for one root only
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Sufficient conditions for one root only
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Intermediate value theorem replacement

I The intermediate value theorem is used to produce a root
I Here, we only want to use to produce a two values x ′ and y ′

I The polynomial in these two values is close enough to 0
I The polynomial is negative in x ′ and positive in y ′

I Proof using an upper bound on slopes



Intermediate value theorem replacement



Descartes’ law of signs

I A relation between sign changes and the number of positive
roots

I The number of changes is larger than the number of roots
I More precisely, the difference is a multiple of 2
I Counting multiplicity of roots

I (x − 1) ∗ (x2 + 2) = x3 + x2 − 2 : 1 sign change

I (x − 1)2 = x2 − 2x + 1 : 2 sign changes

I (x − 1)(x − 2) = x2 − 3x + 2 : 2 sign changes
I If there is exactly one sign change, there is exactly one root

I A specific proof for this corollary



Proving Descartes’ corollary

I A finite state approach

I five kinds of polynomial curves,

I move from one kind to the other by apply Horner’s scheme

I move depends on the sign of the added constant.



Geometric intuition for Descartes’ corollary



More on Descartes

I Use interval decompositions,

I Assume P has a slope larger than k > 0 above a bound y

I When multiplying by X , new slope is kx + P(x)

I Use intermediate value replacement to make P(x) negligible

I in a closed field we would simply use the existing root

I When adding a negative constant a, take a value so that
0 ≤ P(x) < P(a)



From Bernstein to Descartes

I Reversing the list of coefficients: nice trick!

I P = rev(R) ⇔ P(x) = 1/xnR(1/x)

I Root of P in (0, 1) correspond to roots of R in (1,+∞)

I R ′(x) = R(1 + x) and use Descartes’ corollary for R ′

I For an arbitrary interval (l , r), use change of variable
y = rx + (1− x)l



Difficulties in formalization

I relate the slopes of P P(1/x) and R

I Also use upper bounds of slopes



Interval splitting

I Remember Bernstein coefficients are obtained after
translating, flipping, and affine variable change

I All linear invertible operations

I Call v the vector of Bernstein coefficients

I Call φ the function so that φ(p) = v

I φ can also be seen as function mapping polynomials to
polynomials

I consider P ′
b(n, l , r , k) the inverse image of X k

I phi(p) =
∑n

k=0 viX
k ⇔ p =

∑
i vi (P

′
b(n, l , r , k))

I Bernstein coefficients are coefficients in a precise basis

I Pb(n, l , r , k) =

(
k
n

)
xn−k(1− x)k



Combinatorial computation

Variables l r : Qcb.

Fixpoint dc (b : nat -> Qcb) (n : nat) :=
if n is i.+1 then

fun j => l * dc b i j + r * dc b i j.+1
else b.

Definition dicho’ b i := de_casteljau b i 0.
Definition dicho p b i := de_casteljau b (p - i) i.



On Casteljau’s algorithm

I Algorithm due to P. de Casteljau (work on CAD)

I Same scheme as for binomial coefficients

I Combinatorial proof, relying on the Bernstein basis



Conclusion

I Basic blocs for a decision procedure

I Start with an large bounded interval

I Apply dichotomy until 0 or 1 alternation in Bernstein
coefficients

I Termination not proved yet (one known proof, using complex
numbers)

I First proofs done with real numbers (not maintained)

I More recent proofs redone with ssreflect


