Root Isolation for one-variable polynomials

Yves Bertot
Joint work with
Assia Mahboubi and Frédérique Guilhot

July 2010

Introduction

- Solving systems of inequations and geometrical problems
- Does there exist (x, y) so that the following comparisons hold?

$$
\begin{aligned}
x^{2} & \leq y \\
y & \leq 18-3 x+9 x^{2} \\
x & <1
\end{aligned}
$$

- Here find whether the roots of $18-3 x+10 x^{2}$ are in some interval.
- More general applications in quantifier elimination and cylindrical decomposition
- Can be used to define algebraic numbers

Method

- Bernstein coefficient approximate a polynomial's curve
- Discrete approximation
- Associated to bounded intervals
- Exactly one sign change implies exactly one root in the interval
- No sign change implies no root in the interval
- More than one sign change: no conclusion
- Refinement: cut the interval in halves and start again
- Use a simple combinatorial algorithm

Geometric intuition: Bernstein

Geometric intution: False alert

Geometric intution: Exactly one root

Geometric intuition: interval splitting

Computing Bernstein coefficients

- Polynomial $a_{0}+a_{1} X+\cdots+a_{n} X^{n}$
- Bernstein coefficients for interval (I, r)

$$
b_{i}=\sum_{j=0}^{n}\binom{j}{n} a_{i} \frac{r^{j} l^{n-j}}{r-l}
$$

- Easy computation of Bernstein coefficients for the half intervals
- de Casteljau's algorithm

Correctness proof

- Relate Bernstein coefficients with plain coefficients of another polynomial
- Using an automorphism
- Prove Descartes' law of signs (on a simple case)
- Establish correspondances between the roots of both polynomials
- Make the combinatorial proof for interval splitting

Constructive proof

- Use rational numbers
- New meaning of "having a root"
- Decompose interval into several parts
- parts where the absence of root is guaranteed
- parts where the polynomial changes sign, with monotonicity
- Replacement for the intermediate value theorem
- Express that one can find a value that is arbitrary close to 0 .
- Upper bound on slopes for polynomials and bounded intervals
- Deduce uniform continuity
- take regularly spaced points and work in a discrete setting

Sufficient conditions for one root only

Sufficient conditions for one root only

Intermediate value theorem replacement

- The intermediate value theorem is used to produce a root
- Here, we only want to use to produce a two values x^{\prime} and y^{\prime}
- The polynomial in these two values is close enough to 0
- The polynomial is negative in x^{\prime} and positive in y^{\prime}
- Proof using an upper bound on slopes

Intermediate value theorem replacement

Descartes' law of signs

- A relation between sign changes and the number of positive roots
- The number of changes is larger than the number of roots
- More precisely, the difference is a multiple of 2
- Counting multiplicity of roots
- $(x-1) *\left(x^{2}+2\right)=x^{3}+x^{2}-2: 1$ sign change
- $(x-1)^{2}=x^{2}-2 x+1: 2$ sign changes
- $(x-1)(x-2)=x^{2}-3 x+2: 2$ sign changes
- If there is exactly one sign change, there is exactly one root
- A specific proof for this corollary

Proving Descartes' corollary

- A finite state approach
- five kinds of polynomial curves,
- move from one kind to the other by apply Horner's scheme
- move depends on the sign of the added constant.

Geometric intuition for Descartes' corollary

More on Descartes

- Use interval decompositions,
- Assume P has a slope larger than $k>0$ above a bound y
- When multiplying by X, new slope is $k x+P(x)$
- Use intermediate value replacement to make $P(x)$ negligible
- in a closed field we would simply use the existing root
- When adding a negative constant a, take a value so that $0 \leq P(x)<P(a)$

From Bernstein to Descartes

- Reversing the list of coefficients: nice trick!
- $P=\operatorname{rev}(R) \Leftrightarrow P(x)=1 / x^{n} R(1 / x)$
- Root of P in $(0,1)$ correspond to roots of R in $(1,+\infty)$
- $R^{\prime}(x)=R(1+x)$ and use Descartes' corollary for R^{\prime}
- For an arbitrary interval (I, r), use change of variable $y=r x+(1-x) /$

Difficulties in formalization

- relate the slopes of $P P(1 / x)$ and R
- Also use upper bounds of slopes

Interval splitting

- Remember Bernstein coefficients are obtained after translating, flipping, and affine variable change
- All linear invertible operations
- Call v the vector of Bernstein coefficients
- Call ϕ the function so that $\phi(p)=v$
- ϕ can also be seen as function mapping polynomials to polynomials
- consider $P_{b}^{\prime}(n, l, r, k)$ the inverse image of X^{k}
- $\operatorname{phi}(p)=\sum_{k=0}^{n} v_{i} X^{k} \Leftrightarrow p=\sum_{i} v_{i}\left(P_{b}^{\prime}(n, l, r, k)\right)$
- Bernstein coefficients are coefficients in a precise basis
- $P_{b}(n, l, r, k)=\binom{k}{n} x^{n-k}(1-x)^{k}$

Combinatorial computation

Variables l r : Qcb.

Fixpoint dc (b : nat -> Qcb) (n : nat) := if n is i. +1 then
fun j => l * dc b i j + r * dc b i j.+1 else b.

Definition dicho' b i := de_casteljau b i 0. Definition dicho p b i := de_casteljau b (p - i) i.

On Casteljau's algorithm

- Algorithm due to P. de Casteljau (work on CAD)
- Same scheme as for binomial coefficients
- Combinatorial proof, relying on the Bernstein basis

Conclusion

- Basic blocs for a decision procedure
- Start with an large bounded interval
- Apply dichotomy until 0 or 1 alternation in Bernstein coefficients
- Termination not proved yet (one known proof, using complex numbers)
- First proofs done with real numbers (not maintained)
- More recent proofs redone with ssreflect

