
Coherent and Strongly Discrete Rings in
Type Theory

Thierry Coquand, Anders Mörtberg and Vincent Siles

Department of Computer Science and Engineering – Chalmers University of
Technology and University of Gothenbug, Sweden

December 15 – CPP 2012

Introduction

(
0 2
1 0

)T (
x1
x2

)
=

(
2
0

)

(
x1
x2

)
=

(
0
2

)

Introduction

(
0 2
1 0

)T (
x1
x2

)
=

(
2
0

)

(
x1
x2

)
=

(
0
2

)

Introduction

A=[0 2 ; 1 0];

b=[2 ; 0];

A’\b

ans =

0

1

Introduction

A=[0 2 ; 1 0];

b=[2 ; 0];

A’\b

ans =

0

1

Introduction

(
0
2

)
6=

(
0
1

)

Introduction

I “The bug seems to be new in release R2009b and applies to
Linux and Windows 32 and 64 bit versions.”
http://www.netlib.org/na-digest-html/09/v09n48.html

I A serious bug in Matlab2009b?
http://www.walkingrandomly.com/?p=1964

http://www.netlib.org/na-digest-html/09/v09n48.html
http://www.walkingrandomly.com/?p=1964

Introduction

Goal: Formally verified algorithms for solving (in)homogeneous
systems of equations over commutative rings in Coq/SSReflect

Motivation: Simplifying systems of differential equations,
computing homology groups...

Coherent rings

For every row matrix M ∈ R1×m there exists L ∈ Rm×n such that

MX = 0↔ ∃Y .X = LY

L generate the module of solutions for MX = 0

Coherent rings

Theorem: Possible to solve MX = 0 where M ∈ Rm×n, i.e. we
can compute L such that

MX = 0↔ ∃Y .X = LY

Constructive proof ⇒ algorithm computing generators of solutions

Constructive proof = Program + Specification + Correctness proof

Coherent rings

Theorem: Possible to solve MX = 0 where M ∈ Rm×n, i.e. we
can compute L such that

MX = 0↔ ∃Y .X = LY

Constructive proof ⇒ algorithm computing generators of solutions

Constructive proof = Program + Specification + Correctness proof

Coherent rings

Fixpoint solve m n : forall (M : ’M_(m,n)),

’M_(n,size_solve M) := match m with

| S p => fun (M : ’M_(1+p,n)) =>

let G1 := solve_row (usubmx M) in

G1 *m solve (dsubmx M *m G1)

| _ => fun _ => 1%:M

end.

Lemma solveP m n (M : ’M[R]_(m,n)) (X : ’cV[R]_n) :

reflect (exists Y, X = solve M *m Y) (M *m X == 0).

Proof.

...

Qed.

Coherent rings

How do we prove that R is coherent?

Theorem: If I ∩ J is finitely generated for finitely generated ideals
I and J in R then R is coherent.

Problems: How do we represent I ∩ J? How do we represent ideals?

Coherent rings

How do we prove that R is coherent?

Theorem: If I ∩ J is finitely generated for finitely generated ideals
I and J in R then R is coherent.

Problems: How do we represent I ∩ J? How do we represent ideals?

Coherent rings

How do we prove that R is coherent?

Theorem: If I ∩ J is finitely generated for finitely generated ideals
I and J in R then R is coherent.

Problems: How do we represent I ∩ J?

How do we represent ideals?

Coherent rings

How do we prove that R is coherent?

Theorem: If I ∩ J is finitely generated for finitely generated ideals
I and J in R then R is coherent.

Problems: How do we represent I ∩ J? How do we represent ideals?

Strongly discrete rings

There exists an algorithm testing if x ∈ I for finitely generated
ideal I and if this is the case produce a witness.

That is, if I = (x1, . . . , xn) compute w1, . . . ,wn such that

x = x1w1 + · · ·+ xnwn

Strongly discrete rings

There exists an algorithm testing if x ∈ I for finitely generated
ideal I and if this is the case produce a witness.

That is, if I = (x1, . . . , xn) compute w1, . . . ,wn such that

x = x1w1 + · · ·+ xnwn

Strongly discrete rings

I Suitable for developing ideal theory in type theory:
I Decidable ideal membership: x ∈ I
I Decidable ideal inclusion: I ⊆ J
I Decidable ideal equality: I = J ↔ I ⊆ J ∧ J ⊆ I

I Key idea: Represent finitely generated ideals as row matrices

Ideals

Definition subid (I : ’rV[R]_m) (J : ’rV[R]_n) := ...

Notation "I <= J" := (subid I J).

Lemma subidP (I : ’rV[R]_m) (J : ’rV[R]_n) :

reflect (exists D, I = J *m D) (I <= J)%IS.

Definition addid (I : ’rV[R]_m) (J : ’rV[R]_n) :=

row_mx I J.

Notation "I +i J" := (addid I J).

Lemma subid_addidC (I : ’rV[R]_m) (J : ’rV[R]_n) :

(I +i J <= J +i I)%IS.

I ∩ J revisited

I I ∩ J can be defined as an ideal such that:

I ∩ J ⊆ I

I ∩ J ⊆ J

∀x . (x ∈ I ∧ x ∈ J)→ x ∈ I ∩ J

I Now we can prove (constructively) that if I ∩ J is finitely
generated then R is coherent

Coherent strongly discrete rings

Recap:

I R is coherent if we can find generators for solutions of
MX = 0

I R is strongly discrete if we can decide if x ∈ I for a finitely
generated ideal I in R

Theorem: If R is coherent and strongly discrete we can decide if a
system MX = A has a solution

Coherent rings

Examples of coherent rings:

I Fields – Gaussian elimination

I Bézout domains – Z, Q[x], . . .

I Prüfer domains – Z[
√
−5], Q[x , y]/(y2 − 1 + x4), . . .

I Polynomial rings – k[x1, . . . , xn] via Gröbner bases

I ...

Coherent rings

Examples of coherent rings:

I Fields – Gaussian elimination

I Bézout domains – Z, Q[x], . . .

I Prüfer domains – Z[
√
−5], Q[x , y]/(y2 − 1 + x4), . . .

I Polynomial rings – k[x1, . . . , xn] via Gröbner bases

I ...

Bézout domains

I Bézout domains: Every finitely generated ideal is principal, i.e.
for all finitely generated ideals I there is a ∈ R such that
I = (a)

I Equivalent definition:

∀ab.∃xy . ax + by = gcd(a, b)

Bézout domains

Theorem: Bézout domains (with explicit divisibility) are strongly
discrete

Theorem: Bézout domains are coherent

Get algorithm for solving MX = A over Z and k[x]

Prüfer domains

I First-order characterization:

∀ab.∃uvw . ua = vb ∧ (1− u)b = wa

I Has many nice ideal properties

I Examples: Bézout domains, algebraic numbers (Z[
√
−5]),

algebraic curves (Q[x , y]/(y2 − 1 + x4)), ...

Prüfer domains

Theorem: Prüfer domains (with explicit divisibility) are strongly
discrete

Theorem: Prüfer domains are coherent

Get algorithm for solving system MX = A over Prüfer domains

Computation in Coq

I Matrices in SSReflect are represented as:

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

I Well suited for proofs, but not for computation...

I Solution: Data refinements

Computation in Coq

I Matrices in SSReflect are represented as:

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

I Well suited for proofs, but not for computation...

I Solution: Data refinements

Data refinements

’M[R]_(m,n)

seq (seq R)

seqmx_of_mx

Data refinements

’M[R]_(m,n)

seq (seq R)

seqmx_of_mx

Data refinements

’M[R]_(m,n)

+, ×, ·T ,. . .

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx

Computations

Solve (
0 2
1 0

)T (
x1
x2

)
=

(
2
0

)

Eval compute in

csolveGeneral 2 2

(trseqmx [::[:: 0; 2];[:: 1; 0]])

[::[:: 2];[:: 0]].

= Some [:: [:: 0]; [:: 2]]

Computations

Solve (
0 2
1 0

)T (
x1
x2

)
=

(
2
0

)

Eval compute in

csolveGeneral 2 2

(trseqmx [::[:: 0; 2];[:: 1; 0]])

[::[:: 2];[:: 0]].

= Some [:: [:: 0]; [:: 2]]

Summary and conclusions

I Implementation of formally verified algorithms for solving
systems of equations over:

I Bézout domains: Z, Q[x], ...
I Prüfer domains: Z[

√
−5], Q[x , y]/(y2 − 1 + x4),...

I Using data refinements to implement efficient algorithms
works well

I CoqEAL1 – The Coq Effective Algebra Library

1http://www-sop.inria.fr/members/Maxime.Denes/coqeal/

http://www-sop.inria.fr/members/Maxime.Denes/coqeal/

Thank you!

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th
Framework program of the European Commission

Extra slides

Bézout domains: Coherent

Theorem: Bézout domains are coherent

I It suffices to show that I ∩ J is finitely generated for finitely
generated ideals I and J.

I Compute a and b such that I = (a) and J = (b).

I Can prove I ∩ J = (lcm(a, b))

Prüfer domains

Theorem: Every nonzero finitely generated ideal is invertible

Given a finitely generated ideal I over R there exists I−1 such that
II−1 = (a) for some a ∈ R

Coherence of Prüfer domains

Theorem: Prüfer domains are coherent

I Given finitely generated I and J we have (I + J)(I ∩ J) = IJ

I To compute I ∩ J invert I + J and multiply on both sides:

(a)(I ∩ J) = (I + J)−1IJ

I Hence we can compute I ∩ J

Optimizations

I We can also do program refinements to optimize our
algorithms

I Simple example: Ideal addition
I Problems with naive implementation: Zeroes? Duplicate

elements?
I Solution: Implement more efficient version +′ such that

I + J = I +′ J and then refine +′ to lists

Future work

I Polynomial rings – k[x1, . . . , xn] via Gröbner bases

I Implement library of homological algebra – Homalg project2

2http://homalg.math.rwth-aachen.de/

http://homalg.math.rwth-aachen.de/

SSReflect matrices

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

Matrix

Finite function

Tuple

Sequence

I Fine-grained architecture

I Proof-oriented design

I Had to be locked to avoid term size
explosion

I Not suited for computation

SSReflect matrices

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

Matrix

Finite function

Tuple

Sequence

I Fine-grained architecture

I Proof-oriented design

I Had to be locked to avoid term size
explosion

I Not suited for computation

SSReflect matrices

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

Matrix

Finite function

Tuple

Sequence

I Fine-grained architecture

I Proof-oriented design

I Had to be locked to avoid term size
explosion

I Not suited for computation

Objective

I Define concrete and executable representations and operations
on matrices, using a relaxed datatype (unsized lists)

I Devise a way to link them with the theory in SSReflect

I Still be able to use convenient tools to reason about the
algorithms we implement

Methodology

’M[R]_(m,n)

seq (seq R)

seqmx_of_mx

Methodology

’M[R]_(m,n)

seq (seq R)

seqmx_of_mx

Methodology

’M[R]_(m,n)

+, ×, ·T ,. . .

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx

List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).

List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).

List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).

List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).

Methodology

’M[R]_(m,n)

+, ×, ·T ,. . .

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx

Methodology

Specification

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx

Methodology

Specification

Implementation

seqmx_of_mx

Methodology

Specification

Implementation

Morphism

