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Introduction

I “The bug seems to be new in release R2009b and applies to
Linux and Windows 32 and 64 bit versions.”
http://www.netlib.org/na-digest-html/09/v09n48.html

I A serious bug in Matlab2009b?
http://www.walkingrandomly.com/?p=1964

http://www.netlib.org/na-digest-html/09/v09n48.html
http://www.walkingrandomly.com/?p=1964


Introduction

Goal: Formally verified algorithms for solving (in)homogeneous
systems of equations over commutative rings in Coq/SSReflect

Motivation: Simplifying systems of differential equations,
computing homology groups...



Coherent rings

For every row matrix M ∈ R1×m there exists L ∈ Rm×n such that

MX = 0↔ ∃Y .X = LY

L generate the module of solutions for MX = 0
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Coherent rings

Fixpoint solve m n : forall (M : ’M_(m,n)),

’M_(n,size_solve M) := match m with

| S p => fun (M : ’M_(1+p,n)) =>

let G1 := solve_row (usubmx M) in

G1 *m solve (dsubmx M *m G1)

| _ => fun _ => 1%:M

end.

Lemma solveP m n (M : ’M[R]_(m,n)) (X : ’cV[R]_n) :

reflect (exists Y, X = solve M *m Y) (M *m X == 0).

Proof.

...

Qed.
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Theorem: If I ∩ J is finitely generated for finitely generated ideals
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Strongly discrete rings

I Suitable for developing ideal theory in type theory:
I Decidable ideal membership: x ∈ I
I Decidable ideal inclusion: I ⊆ J
I Decidable ideal equality: I = J ↔ I ⊆ J ∧ J ⊆ I

I Key idea: Represent finitely generated ideals as row matrices



Ideals

Definition subid (I : ’rV[R]_m) (J : ’rV[R]_n) := ...

Notation "I <= J" := (subid I J).

Lemma subidP (I : ’rV[R]_m) (J : ’rV[R]_n) :

reflect (exists D, I = J *m D) (I <= J)%IS.

Definition addid (I : ’rV[R]_m) (J : ’rV[R]_n) :=

row_mx I J.

Notation "I +i J" := (addid I J).

Lemma subid_addidC (I : ’rV[R]_m) (J : ’rV[R]_n) :

(I +i J <= J +i I)%IS.



I ∩ J revisited

I I ∩ J can be defined as an ideal such that:

I ∩ J ⊆ I

I ∩ J ⊆ J

∀x . (x ∈ I ∧ x ∈ J)→ x ∈ I ∩ J

I Now we can prove (constructively) that if I ∩ J is finitely
generated then R is coherent



Coherent strongly discrete rings

Recap:

I R is coherent if we can find generators for solutions of
MX = 0

I R is strongly discrete if we can decide if x ∈ I for a finitely
generated ideal I in R

Theorem: If R is coherent and strongly discrete we can decide if a
system MX = A has a solution



Coherent rings

Examples of coherent rings:

I Fields – Gaussian elimination

I Bézout domains – Z, Q[x ], . . .

I Prüfer domains – Z[
√
−5], Q[x , y ]/(y2 − 1 + x4), . . .

I Polynomial rings – k[x1, . . . , xn] via Gröbner bases

I ...
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I Bézout domains – Z, Q[x ], . . .
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Bézout domains

I Bézout domains: Every finitely generated ideal is principal, i.e.
for all finitely generated ideals I there is a ∈ R such that
I = (a)

I Equivalent definition:

∀ab.∃xy . ax + by = gcd(a, b)



Bézout domains

Theorem: Bézout domains (with explicit divisibility) are strongly
discrete

Theorem: Bézout domains are coherent

Get algorithm for solving MX = A over Z and k[x ]



Prüfer domains

I First-order characterization:

∀ab.∃uvw . ua = vb ∧ (1− u)b = wa

I Has many nice ideal properties

I Examples: Bézout domains, algebraic numbers (Z[
√
−5]),

algebraic curves (Q[x , y ]/(y2 − 1 + x4)), ...



Prüfer domains

Theorem: Prüfer domains (with explicit divisibility) are strongly
discrete

Theorem: Prüfer domains are coherent

Get algorithm for solving system MX = A over Prüfer domains
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Data refinements
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Summary and conclusions

I Implementation of formally verified algorithms for solving
systems of equations over:

I Bézout domains: Z, Q[x ], ...
I Prüfer domains: Z[

√
−5], Q[x , y ]/(y2 − 1 + x4),...

I Using data refinements to implement efficient algorithms
works well

I CoqEAL1 – The Coq Effective Algebra Library

1http://www-sop.inria.fr/members/Maxime.Denes/coqeal/

http://www-sop.inria.fr/members/Maxime.Denes/coqeal/


Thank you!

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th
Framework program of the European Commission
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Bézout domains: Coherent

Theorem: Bézout domains are coherent

I It suffices to show that I ∩ J is finitely generated for finitely
generated ideals I and J.

I Compute a and b such that I = (a) and J = (b).

I Can prove I ∩ J = (lcm(a, b))



Prüfer domains

Theorem: Every nonzero finitely generated ideal is invertible

Given a finitely generated ideal I over R there exists I−1 such that
II−1 = (a) for some a ∈ R



Coherence of Prüfer domains

Theorem: Prüfer domains are coherent

I Given finitely generated I and J we have (I + J)(I ∩ J) = IJ

I To compute I ∩ J invert I + J and multiply on both sides:

(a)(I ∩ J) = (I + J)−1IJ

I Hence we can compute I ∩ J



Optimizations

I We can also do program refinements to optimize our
algorithms

I Simple example: Ideal addition
I Problems with naive implementation: Zeroes? Duplicate

elements?
I Solution: Implement more efficient version +′ such that

I + J = I +′ J and then refine +′ to lists



Future work

I Polynomial rings – k[x1, . . . , xn] via Gröbner bases

I Implement library of homological algebra – Homalg project2

2http://homalg.math.rwth-aachen.de/

http://homalg.math.rwth-aachen.de/


SSReflect matrices

Inductive matrix R m n :=

Matrix of {ffun ’I_m * ’I_n -> R}.

Matrix

Finite function

Tuple

Sequence

I Fine-grained architecture

I Proof-oriented design

I Had to be locked to avoid term size
explosion

I Not suited for computation
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Objective

I Define concrete and executable representations and operations
on matrices, using a relaxed datatype (unsized lists)

I Devise a way to link them with the theory in SSReflect

I Still be able to use convenient tools to reason about the
algorithms we implement
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List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).



List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).



List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).



List-based representation of matrices

Variable R : ringType.

Definition seqmatrix := seq (seq R).

Definition seqmx_of_mx (M : ’M_(m,n)) : seqmatrix :=

map (fun i => map (fun j => M i j) (enum ’I_n))

(enum ’I_m).

Lemma seqmx_eqP (M N : ’M_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => x + y)) M N.

Lemma addseqmxE (M N : ’M[R]_(m,n)) :

seqmx_of_mx (M + N) =

addseqmx (seqmx_of_mx M) (seqmx_of_mx N).



Methodology

’M[R]_(m,n)

+, ×, ·T ,. . .

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx



Methodology

Specification

seq (seq R)

addseqmx,

mulseqmx,

trseqmx, . . .

seqmx_of_mx



Methodology

Specification

Implementation

seqmx_of_mx



Methodology

Specification

Implementation

Morphism


