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Abstract. The aim of this work is to certify lower bounds for real-
valued multivariate functions, de�ned by semialgebraic or transcenden-
tal expressions. The certi�cate must be, eventually, formally provable in
a proof system such as Coq. The application range for such a tool is
widespread; for instance Hales' proof of Kepler's conjecture yields thou-
sands of inequalities. We introduce an approximation algorithm, which
combines ideas of the max-plus basis method (in optimal control) and of
the linear templates method developed by Manna et al. (in static analy-
sis). This algorithm consists in bounding some of the constituents of the
function by suprema of quadratic forms with a well chosen curvature.
This leads to semialgebraic optimization problems, solved by sum-of-
squares relaxations. Templates limit the blow up of these relaxations at
the price of coarsening the approximation. We illustrate the e�ciency of
our framework with various examples from the literature and discuss the
interfacing with Coq.
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1 INTRODUCTION

Numerous problems coming from various �elds boil down to the computation of a
certi�ed lower bound for a real-valued multivariate function
f : Rn ! R over a compact semialgebraic set K � Rn.

Our aim is to automatically provide lower bounds for the following global
optimization problem:

f� := inf
x2K

f(x) ; (1.1)



We want these bounds to be certi�able, meaning that their correctness must be,
eventually, formally provable in a proof system such as Coq. One among many
applications is the set of several thousands of non-linear inequalities which occur
in Thomas Hales' proof of Kepler's conjecture, which is formalized in the Fly-
speck project [1, 2]. Several inequalities issued from Flyspeck actually deal with
special cases of Problem (1.1). For instance, f may be a multivariate polyno-
mial (polynomial optimization problems (POP)), or belong to the algebra A of
semialgebraic functions which extends multivariate polynomials with arbitrary

compositions of (�)p; (�) 1p (p 2 N0); j�j;+;�;�; =; sup(�; �); inf(�; �) (semialgebraic
optimization problems), or involve transcendental functions (sin, arctan, etc).

Formal methods that produce precise bounds are mandatory because of the
tightness of these inequalities. However, we also need to tackle scalability issues,
which arise when one wants to provide coarser lower bounds for optimization
problems with a larger number of variables or polynomial inequalities of a higher
degree, etc. A common idea to handle Problem (1.1) is to �rst approximate f by
multivariate polynomials through a semialgebraic relaxation and then obtain a
lower bound of the resulting POP with a specialized software. This implies being
able to also certify the approximation error in order to conclude. Such techniques
rely on hybrid symbolic-numeric certi�cation methods, see Peyrl and Parrilo [3]
and Kaltofen et al. [4]. They allow one to produce positivity certi�cates for such
POP which can be checked in proof assistants such as Coq [5, 6], HOL-light [7]
or MetiTarski [8]. Recent e�orts have been made to perform a formal veri�ca-
tion of several Flyspeck inequalities with Taylor interval approximations [9]. We
also mention procedures that solve SMT problems over the real numbers, using
interval constraint propagation [10].

Solving POP is already a hard problem, which has been extensively studied.
Semide�nite programming (SDP) relaxations based methods have been devel-
oped by Lasserre [11] and Parrilo [12]. A sparse re�nement of the hierarchy of
SDP relaxations by Kojima [13] has been implemented in the SparsePOP solver.
Other approaches are based on Bernstein polynomials [14], global optimization
by interval methods (see e.g. [15]), branch and bound methods with Taylor mod-
els [16].

Inequalities involving transcendental functions are typically di�cult to solve
with interval arithmetic, in particular due to the correlation between arguments
of unary functions (e.g. sin) or binary operations (e.g. +;�;�; =). For illustration
purpose, we consider the following running example coming from the global
optimization literature:

Example 1 (Modi�ed Schwefel Problem 43 from Appendix B in [17]).

min
x2[1;500]n

f(x) = �
nX
i=1

(xi + �xi+1) sin(
p
xi);

where xn+1 = x1, and � is a �xed parameter in f0; 1g. In the original problem,
� = 0, i.e. the objective function f is the sum of independent functions involving
a single variable. This property may be exploited by a global optimization solver



by reducing it to the problem minx2[1;500] x sin(
p
x). Hence, we also consider a

modi�ed version of this problem with � = 1.

Contributions. In this paper, we present an exact certi�cation method, aiming
at handling the approximation of transcendental functions and increasing the size
of certi�able instances. It consists in combining SDP relaxations �a la Lasserre /
Parrilo, with an abstraction or approximation method. The latter is inspired by
the linear template method of Sankaranarayanan, Sipma and Manna in static
analysis [18], its nonlinear extension by Adj�e et al. [19], and the maxplus basis
method in optimal control introduced by Fleming and McEneaney [20], and
developed by several authors [21{24].

The non-linear template method is a re�nement of polyhedral based methods
in static analysis. It allows one to determine invariants of programs by consid-
ering a parametric family of sets, S(�) = fx j wi(x) 6 �i; 1 6 i 6 pg, where the
vector � 2 Rp is the parameter, and w1; : : : ; wp (the template) are �xed possibly
non-linear functions, tailored to the program characteristics. The max-plus basis
method is equivalent to the approximation of the epigraph of a function by a
set S(�). In most basic examples, the functions wi of the template are linear or
quadratic functions.

In the present application, templates are used both to approximate tran-
scendental functions, and to produce coarser but still tractable relaxations when
the standard SDP relaxation of the semialgebraic problem is too complex to
be handled. Indeed, SDP relaxations are a powerful tool to get tight certi�ed
lower bound for semialgebraic optimization problems, but their applicability is
so far limited to small or medium size problems: their execution time grows
exponentially with the relaxation order, which itself grows with the degree of
the polynomials to be handled. Templates allow one to reduce these degrees, by
approximating certain projections of the feasible set by a moderate number of
nonconvex quadratic inequalities.

Note that by taking a trivial template (bound constraints, i.e., functions of
the form wi(x) = �xi), the template method specializes to a version of inter-
val calculus, in which bounds are derived by SDP techniques. By comparison,
templates allow one to get tighter bounds, taking into account the correlations
between the di�erent variables. They are also useful as a replacement of stan-
dard Taylor approximations of transcendental functions: instead of increasing
the degree of the approximation, one increases the number of functions in the
template. A geometrical way to interpret the method is to think of it in terms of
\quadratic cuts": quadratic inequalities are successively added to approximate
the graph of a transcendental function.

The present paper is a followup of [25], in which the idea of max-plus approx-
imation of transcendental function was applied to formal proof. By comparison,
the new ingredient is the introduction of the template technique (approximating
projections of the feasible sets), leading to an increase in scalability.

The paper is organized as follows. In Section 2, we recall the de�nition and
properties of Lasserre relaxations of polynomial problems (Section 2.1), together



with reformulations by Lasserre and Putinar of semialgebraic problems classes.
In Section 2.2, we outline the conversion of the numerical SOS produced by the
SDP solvers into an exact rational certi�cate. Then we explain how to verify this
certi�cate in Coq. The max-plus approximation, and the main algorithm based
on the non-linear templates method are presented in Section 3. Numerical results
are presented in Section 4. We demonstrate the scalability of our approach by
certifying bounds of non-linear problems involving up to 103 variables, as well
as non trivial inequalities issued from the Flyspeck project.

2 NOTATION AND PRELIMINARY RESULTS

Let Rd[x] be the vector space of multivariate polynomials in n variables of degree
d and R[x] the set of multivariate polynomials in n variables. We also de�ne the
cone of sums of squares of degree at most 2d:

�d[x] =
nX

i

q2i ; with qi 2 Rd[x]
o
: (2.1)

The set �d[x] is a closed, fully dimensional convex cone in R2d[x]. We denote by
�[x] the cone of sums of squares of polynomials in n variables.

2.1 Constrained Polynomial Optimization Problems and SDP

We consider the general constrained polynomial optimization problem (POP):

f�pop := inf
x2Kpop

fpop(x); (2.2)

where fpop : Rn ! R is a d-degree multivariate polynomial, Kpop is a compact
set de�ned by inequalities g1(x) > 0; : : : ; gm(x) > 0, where gj(x) : R

n ! R is
a real-valued polynomial of degree !j , for j = 1; : : : ;m. Recall that the set of
feasible points of an optimization problem is simply the domain over which the
optimum is taken, i.e., here, Kpop.

Lasserre's hierarchy of semide�nite relaxations. We set g0 := 1 and take
k > k0 := max(dd=2e;max16j6md!j=2e). We consider the following hierarchy of
semide�nite relaxations for Problem (2.2), consisting of the optimization prob-
lems Qk, k > k0,

Qk :

8<
:
sup�;�j �

s.t. fpop(x)� � =
Pm

j=0 �j(x)gj(x);

� 2 R; �j 2 �k�d!j=2e[x]; j = 0; � � � ;m:

We denote by sup(Qk) the optimal value of Qk. A feasible point (�; �0; : : : ; �m)
of Problem Qk is said to be a SOS certi�cate, showing the implication g1(x) >
0; : : : ; gm(x) > 0 =) fpop(x) > �.

The sequence of optimal values (sup(Qk))k>k0 is non-decreasing. Lasserre
showed [11] that it does converge to f�pop under certain assumptions on the
polynomials gj . Here, we will consider sets Kpop included in a box of Rn, so that
Lasserre's assumptions are automatically satis�ed.



Application to semialgebraic optimization. Given a semialgebraic function
fsa, we consider the problem f�sa = infx2Ksa fsa(x), whereKsa is a basic semialge-
braic set. Moreover, we assume that fsa has a basic semialgebraic lifting (for more
details, see e.g. [26]). This implies that we can add auxiliary variables z1; : : : ; zp
(lifting variables), and construct polynomials h1; : : : ; hs 2 R[x; z1; : : : ; zp] de�n-
ing the semialgebraic set Kpop := f(x; z1; : : : ; zp) 2 Rn+p : x 2 Ksa; h1(x; z) >
0; : : : ; hs(x; z) > 0g, such that f�pop := inf(x;z)2Kpop

zp is a lower bound of f�sa.

2.2 Hybrid Symbolic-Numeric Certi�cation and Formalization

The previous relaxation Qk can be solved with several semide�nite program-
ming solvers (e.g. SDPA [27]). These solvers are implemented using 
oating-
point arithmetics. In order to build formal proofs, we currently rely on exact
rational certi�cates which are needed to make formal proofs: Coq, being built
on a computational formalism, is well equipped for checking the correctness of
such certi�cates.

Such rational certi�cates can be obtained by a rounding and projection algo-
rithm of Peyrl and Parillo [3], with an improvement of Kaltofen et al. [4]. Note
that if the SDP formulation of Qk is not strictly feasible, then the rounding and
projection algorithm fails. However, Monniaux and Corbineau proposed a par-
tial workaround for this issue [5]. In this way, except in degenerate situations, we
arrive at a candidate SOS certi�cate with rational coe�cients, (�; �0; : : : ; �m).
This certi�cate can straightforwardly be translated to Coq; the veri�cation then
boils down to formally checking that this SOS certi�cate does satisfy the equal-
ity constraint in Qk with Coq's field tactic, which implies that f�pop > �.
This checking is typically handled by generating Coq scripts from the OCaml
framework, when the lower bound � obtained at the relaxation Qk is accurate
enough.

Future improvements could build, for instance, on future Coq libraries han-
dling algebraic numbers or future tools to better handle 
oating point approxi-
mations inside Coq.

3 MAX-PLUS APPROXIMATIONS AND

NON-LINEAR TEMPLATES

3.1 Max-plus Approximations and Non-linear Templates

The max-plus basis method in optimal control [20, 21, 23] involves the approxi-
mation from below of a function f in n variables by a supremum

f ' g := sup
16i6p

�i + wi : (3.1)

The functions wi are �xed in advance, or dynamically adapted by exploiting the
problem structure. The parameters �i are degrees of freedom.

This method is closely related to the non-linear extension [19] of the template
method [18]. This extension deals with parametric families of subsets of Rn of



the form S(�) = fx j wi(x) 6 �i; 1 6 i 6 pg: The template method consists
in propagating approximations of the set of reachables values of the variables
of a program by sets of the form S(�). The non-linear template and max-plus
approximation methods are somehow equivalent. Indeed, the 0-level set of g,
fx j g(x) 6 0g, is nothing but S(��), so templates can be recovered from max-
plus approximations, and vice versa.

The functions wi are usually required to be quadratic forms,

wi(x) = p>i x+
1

2
x>Aix ;

where pi 2 Rn and Ai is a symmetric matrix. A basic choice is Ai = �cI, where
c is a �xed constant, and I the identity matrix. Then, the parameters p remain
the only degrees of freedom.

The consistency of the approximation follows from results of Legendre-Fenchel
duality. Recall that a function f is said to be c-semiconvex if x 7! f(x) + ckxk2
is convex. Then, if f is c-semiconvex and lowersemicontinuous, as the number
of basis functions r grows, the best approximation g / f by a supremum of
functions of type (3.1), with Ai = �cI, is known to converge to f [20]. The same
is true without semiconvexity assumptions if one allows Ai to vary [28].

A basic question is to estimate the number of basis functions needed to
attain a prescribed accuracy. A typical result is proved in [24, Theorem 3.2], as a
corollary of techniques of Gr�uber concerning the approximation of convex bodies
by circumscribed polytopes. This theorem shows that if f is c�� semiconvex, for
� > 0, twice continuously di�erentiable, and if X is a full dimensional compact
convex subset of Rn, then, the best approximation g of f as a supremum or r
functions as in (3.1), with wi(x) = p>i x� ckxk2=2, satis�es

kf � gkL1(X) '
C(f)

r2=n
(3.2)

where the constant C(f) is explicit (it depends of det(f 00 + cI) and is bounded
away from 0 when � is �xed). This estimate indicates that some curse of dimen-
sionality is unavoidable: to get a uniform error of order �, one needs a number
of basis functions of order 1=�n=2. However, in what follows, we shall always
apply the approximation to small dimensional constituents of the optimization
problems (n = 1 when one needs to approximate transcendental functions in a
single variable). We shall also apply the approximation by templates to certain
relevant small dimensional projections of the set of lifted variables, leading to a
smaller e�ective n. Note also that for optimization purposes, a uniform approx-
imation is not needed (one only needs an approximation tight enough near the
optimum, for which fewer basis functions are enough).

3.2 A Templates Method based on Max-plus Approximations

We now consider an instance of Problem (1.1). We assume that K is a box and
we identify the objective function f with its abstract syntax tree tf . We suppose



that the leaves of tf are semialgebraic functions, and that the other nodes are
either basic binary operations (+, �, �, =), or unary transcendental functions
(sin, etc).

Our main algorithm template optim (Figure 1) is based on a previous method
of the authors [25], in which the objective function is bounded by means of
semialgebraic functions. For the sake of completeness, we �rst recall the basic
principles of this method.

Bounding the objective function by semialgebraic estimators. Given a function
represented by an abstract tree t, semialgebraic lower and upper estimators t�

and t+ are computed by induction. If the tree is reduced to a leaf, i.e. t 2 A,
it su�ces to set t� = t+ := t. If the root of the tree corresponds to a binary
operation bop with children c1 and c2, then the semialgebraic estimators c�1 ,
c+1 and c�2 , c

+
2 are composed using a function compose bop to provide bounding

estimators of t. Finally, if t corresponds to the composition of a transcendental
(unary) function � with a child c, we �rst bound c with semialgebraic functions
c+ and c�. We compute a lower bound cm of c� as well as an upper bound cM of
c+ to obtain an interval I := [cm; cM ] enclosing c. Then, we bound � from above
and below by computing parabola at given control points (function build par),
thanks to the semiconvexity properties of � on the interval I. These parabola
are composed with c+ and c�, thanks to a function denoted by compose.

These steps correspond to the part of the algorithm template optim from
Lines 1 to 10.

Reducing the complexity of semialgebraic estimators using templates. The semi-
algebraic estimators previously computed are used to determine lower and upper
bounds of the function associated with the tree t, at each step of the induction.
The bounds are obtained by calling the functions min sa and max sa respectively,
which reduce the semialgebraic optimization problems to polynomial optimiza-
tion problems by introducing extra lifting variables (see Section 2).

However, the complexity of solving the POPs can grow signi�cantly because
of the number nlifting of lifting variables. If k denotes the relaxation order, the
corresponding SDP problem Qk indeed involve linear matrix inequalities of size
O((n+ nlifting)

k) over O((n+ nlifting)
2k) variables.

Consequently, this is crucial to control the number of lifting variables, or
equivalently, the complexity of the semialgebraic estimators. For this purpose,
we introduce the function build template. It allows to compute approxima-
tions of the tree t by means of suprema/in�ma of quadratic functions, when
the number of lifting variables exceeeds a user-de�ned threshold value nmax

lifting.
The algorithm is depicted in Figure 2. Using a heuristics, it �rst builds can-
didate quadratic forms q�j and q+j approximating t at each control point xj
(function build quadratic form, described below). Since each q�j does not
necessarily underestimate the function t, we then determine the lower bound
m�
j of the semialgebraic function t� � q�j , which ensures that q�j + m�

j is a

quadratic lower-approximation of t. Similarly, the function q+j +M
+
j is an upper-

approximation of t. The returned semialgebraic expressions max16j6rfq�j +m�
j g



Input: tree t, box K, SDP relaxation order k, control points sequence s =
fx1; : : : ;xrg � K

Output: lower bound m, upper bound M , lower semialgebraic estimator t�2 , upper
semialgebraic estimator t+2

1: if t 2 A then

2: t� := t, t+ := t

3: else if bop := root (t) is a binary operation with children c1 and c2 then

4: mci ;Mci ; c
�

i ; c
+
i := template optim(ci;K; k; s) for i 2 f1; 2g

5: t�; t+ := compose bop(c�1 ; c
+
1 ; c

�

2 ; c
+
2 )

6: else if r := root(t) 2 T with child c then

7: mc, Mc, c
�, c+ := template optim(c;K; k; s)

8: par�; par+ := build par(r;mc;Mc; s)
9: t�; t+ := compose(par�; par+; c�; c+)
10: end
11: t�2 ; t

+
2 := build template(t;K; k; s; t�; t+)

12: return min sa(t�2 ; k), max sa(t+2 ; k), t
�

2 , t
+
2

Fig. 1: template optim

and min16j6rfq+j +M+
j g now generate only one lifting variable (representing

max or min).

Quadratic functions returned by build quadratic form(t;xj) are of the
form:

qxj ;� : x 7! t(xj)+D(t)(xj) (x�xj)+ 1

2
(x�xj)TD2(t)(xj) (x�xj)+ 1

2
�(x�xj)2

(we assume that t is twice di�erentiable) where � is computed as follows. We
sample the Hessian matrix di�erence D2(t)(x) � D2(t)(xj) over a �nite set of
random points R � K, and construct a matrix interval D enclosing all the
entries of (D2(t)(x) � D2(t)(xj)) for x 2 R. A lower bound �� of the minimal
eigenvalue of D is obtained by applying a robust SDP method on interval matrix
described by Cala�ore and Dabbene in [29]. Similarly, we get an upper bound
�+ of the maximal eigenvalue of D. The function build quadratic form(t;xj)
then returns the two quadratic forms q� := qxj ;�� and q+ := qxj ;�+ .

Example 2 (Modi�ed Schwefel Problem). We illustrate our method with the
function f from Example 1 and the �nite set of three control points f135; 251; 500g.
For each i = 1; : : : ; n, consider the sub-tree sin(

p
xi). First, we represent each

sub-tree
p
xi by a lifting variable yi and compute a1 :=

p
135, a2 :=

p
251, a3 :=p

500. Then, we get the equations of par�a1 , par
�
a2 and par

�
a3 with buildpar, which

are three underestimators of the function sin on the real interval I := [1;
p
500].

Similarly we obtain three overestimators par+a1 , par
+
a2 and par+a3 . Finally, we

obtain the underestimator t�1;i := maxj2f1;2;3gfpar�aj (yi)g and the overestima-

tor t+1;i := minj2f1;2;3gfpar+aj (yi)g. To solve the modi�ed Schwefel problem, we



Input: tree t, box K, SDP relaxation order k, control points sequence s =
fx1; : : : ;xrg � K, lower/upper semialgebraic estimator t�, t+

1: if the number of lifting variables exceeds nmax
lifting then

2: for xj 2 s do

3: q�j ; q
+
j := build quadratic form(t;xj)

4: m�

j := min sa(t�1 � q�j ; k) . q�j +m�

j 6 t� 6 t

5: M+
j := max sa(q+j � t+1 ; k) . q+j +M+

j > t+ > t

6: done

7: return max16j6rfq�j +m�

j g, min16j6rfq+j +M+
j g

8: else
9: return t�, t+

10: end

Fig. 2: build template

b

y

b 7! sin(
p
b)

par�b1

par�b2

par�b3

par+b1

par+b2

par+b3

1 b1 b2 b3 = 500

Fig. 3: Templates based on Max-plus Semialgebraic Estimators for b 7! sin(
p
b):

t�2;i := maxj2f1;2;3gfpar�bj (xi)g 6 sin
p
xi 6 t+2;i := minj2f1;2;3gfpar+bj (xi)g

consider the following POP:8><
>:

min
x2[1;500]n;y2[1;p500]n;z2[�1;1]n

�Pn
i=1(xi + �xi+1)zi

s.t. zi 6 par+aj (yi); j 2 f1; 2; 3g; i = 1; � � � ; n
y2i = xi; i = 1; � � � ; n

Notice that the number of lifting variables is 2n and the number of equality
constraints is n, thus we can obtain coarser semialgebraic approximations of f
by considering the function b 7! sin(

p
b) (see Figure 3). We get new estimators

t�2;i and t
+
2;i of each sub-tree sin(

p
xi) with the functions build quadratic form,

min sa and max sa. The resulting POP involves only n lifting variables. Besides,
it does not contain equality constraints anymore, which improves in practice the
numerical stability of the POP solver.

Dynamic choice of the control points. As in [25], the sequence s of control points
is computed iteratively. We initialize the set s to a single point of K, chosen
so as to be a minimizer candidate for t (e.g. with a local optimization solver).



Calling the algorithm template optim on the main objective function tf yields
an underestimator t�f . Then, we compute a minimizer candidate xopt of the un-

derestimator tree t�f . It is obtained by projecting a solution xsdp of the SDP
relaxation of Section 2.1 on the coordinates representing the �rst order mo-
ments, following [11, Theorem 4.2]. We add xopt to the set of control points s.
Consequently, we can re�ne dynamically our templates based max-plus approx-
imations by iterating the previous procedure to get tighter lower bounds. This
procedure can be stopped as soon as the requested lower bound is attained.

Remark 1 (Exploiting the system properties). Several properties of the POP can
be exploited to decrease the size of the SDP relaxations such as symmetries [30]
or sparsity [31]. Consider Problem (1.1) with f having some sparsity pattern
or being invariant under the action of a �nite subgroup symmetries. Then the
same properties hold for the resulting semialgebraic relaxations that we build
with our non-linear templates method.

4 RESULTS

Comparing three certi�cation methods. We next present numerical results
obtained by applying the present template method to examples from the global
optimization literature, as well as inequalities from the Flyspeck project. Our
tool is implemented in OCaml and interfaced with the SparsePOP solver [31].

In each example, our aim is to certify a lower bound m of a function f
on a box K. We use the algorithm template optim, keeping the SOS relaxation
order k su�ciently small to ensure the fast computation of the lower bounds. The
algorithm template optim returns more precise bounds by successive updates of
the control points sequence s. However, in some examples, the relaxation gap is
too high to certify the requested bound. Then, we perform a domain subdivision
in order to reduce this gap: we divide the maximal width interval of K in two
halves to get two sub-boxes K1 and K2 such that K = K1 [K2. We repeat this
subdivision procedure, by applying template optim on a �nite set of sub-boxes,
until we succeed to certify that m is a lower bound of f . We denote by #boxes
the total number of sub-boxes generated by the algorithm.

For the sake of comparison, we have implemented a template-free SOS method
ia sos, which coincides with the particular case of template optim in which
#s = 0 and nlifting = 0. It computes the bounds of semialgebraic functions
with standard SOS relaxations and bounds the univariate transcendental func-
tions by interval arithmetic. We also tested the MATLAB toolbox algorithm
intsolver [32], which is based on the Newton interval method [33]. Experi-
ments are performed on an Intel Core i5 CPU (2:40GHz).

Global optimization problems. The following test examples are taken from
Appendix B in [17]. Some of these examples depend on numerical constants, the
values of which can be found there.



{ Hartman 3 (H3): min
x2[0;1]3

f(x) = �
4P
i=1

ci exp

"
�

3P
j=1

aij(xj � pij)
2

#

{ Mc Cormick (MC), with K = [�1:5; 4]� [�3; 3]:
min
x2K

f(x) = sin(x1 + x2) + (x1 � x2)
2 � 0:5x1 + 2:5x2 + 1

{ Modi�ed Langerman (ML):

min
x2[0;10]n

f(x) =
5P

j=1
cj cos(dj=�) exp(��dj), with dj =

nP
i=1

(xi � aji)
2

{ Paviani Problem (PP), with K = [2:01; 9:99]10:

min
x2K

f(x) =
10P
i=1

�
(log(xi � 2))2 � log(10� xi))

2
�� � 10Q

i=1
xi

�0:2

{ Shubert (SBT): min
x2[�10;10]n

f(x) =
nQ
i=1

� 5P
j=1

j cos((j + 1)xi + j)
�

{ Modi�ed Schwefel (SWF): see Example 1

Informal certi�cation of lower bounds of non-linear problems. In Table 1, the
time column indicates the total informal veri�cation time, i.e. without the exact
certi�cation of the lower bound m with Coq. Each occurrence of the symbol
\�" means that m could not be determined within one day of computation by
the corresponding solver. We see that ia sos already outperforms the interval
arithmetic solver intsolver on these examples. However, it can only be used for
problems with a moderate number of variables. The algorithm template optim

allows us to overcome this restriction, while keeping a similar performance (or
occasionally improving this performance) on moderate size examples.

Notice that reducing the number of lifting variables allows us to provide
more quickly coarse bounds for large-scale instances of SWF. We discuss the
results appearing in the two last lines of Table 1. Without any box subdivision,
we can certify a better lower bound m = �967n with nlifting = 2n since our
semialgebraic estimator is more precise. However the last lower bound m =
�968n can be computed twice faster by considering only n lifting variables,
thus reducing the size of the POP described in Example 2. This indicates that
the method is able to avoid the blow up for certain hard sub-classes of problems
where a standard (template free) POP formulation would involve a large number
of lifting variables.

Formal certi�cation of lower bounds of POP. For some small size instances of
POP, our tool can prove the correctness of lower bounds. Our solver is interfaced
with the framework mentioned in [5] to provide exact rational certi�cates, which
can be formally checked with Coq. This formal veri�cation is much slower. As
an example, for the MC problem, it is 36 times slower to generate exact SOS
certi�cates and 13 times slower to prove its correctness in Coq. Note that the
interface with Coq still needs some streamlining.

High-degree polynomial approximations. An alternative approach consists in ap-
proximating the transcendental functions by polynomial functions of su�ciently



Table 1: Comparison results for global optimization examples

Problem n m
template optim ia sos intsolver

k #s nlifting #boxes time #boxes time time

H3 3 �3:863 2 3 4 99 101 s 1096 247 s 3:73h
H6 6 �3:33 2 1 6 113 102 s 113 45 s > 4h
MC 2 �1:92 1 2 1 17 1:8 s 92 7:6 s 4:4 s
ML 10 �0:966 1 1 6 8 8:2 s 8 6:6 s > 4h
PP 10 �46 1 3 2 135 89 s 3133 115 s 56min

SBT 2 �190 2 3 2 150 36 s 258 0:6 s 57 s

SWF (� = 0)

10 �430n 2 6 2n 16 40 s 3830 129 s 18:5min

100 �440n 2 6 2n 274 1:9h > 20000 > 10h �
1000 �486n 2 4 2n 1 450 s � � �
1000 �488n 2 4 n 1 250 s � � �

SWF (� = 1)
1000 �967n 3 2 2n 1 543 s � � �
1000 �968n 3 2 n 1 272 s � � �

Table 2: Results for Flyspeck inequalities using template optim with n = 6,
k = 2 and m = 0

Inequality id nT #s nlifting #boxes time

9922699028 1 4 9 47 241 s
9922699028 1 4 3 39 190 s
3318775219 1 2 9 338 26min

7726998381 3 4 15 70 43min

7394240696 3 2 15 351 1:8h
4652969746 1 6 4 15 81 1:3h
OXLZLEZ6346351218 2 0 6 4 24 200 5:7h

high degree, and then applying sums of squares approach to the polynomial
problems. Given d 2 N and a 
oating-point interval I, we can approximate an
univariate transcendental function on I by the best uniform degree-d polynomial
approximation and obtain an upper bound of the approximation error. This tech-
nique, based on Remez algorithm, is implemented in the Sollya tool (for further
details, see e.g. [34]).

We interfaced our tool with Sollya and performed some numerical tests. The
minimax approximation based method is eventually faster than the templates
method for moderate instances. For the examples H3 and H6, the speed-up factor
is 8 when the function exp is approximated by a quartic minimax polynomial.

However, this approach is much slower to compute lower bounds of problems
involving a large number of variables. It requires 57 times more CPU time to solve
SWF (� = 1) with n = 10 by considering a cubic minimax polynomial approx-
imation of the function b 7! sin(

p
b) on a 
oating-point interval I � [1;

p
500].

These experiments indicate that a high-degree polynomial approximation is not
suitable for large-scale problems.



Certi�cation of various Flyspeck inequalities. In Table 2, we present some
test results for several non-linear Flyspeck inequalities. The information in the
columns time, #boxes, and nlifting is the same as above. The integer nT repre-
sents the number of transcendental univariate nodes in the corresponding ab-
stract syntax trees. These inequalities are known to be tight and involve sum
of arctan of correlated functions in many variables, whence we keep high the
number of lifting variables to get precise max-plus estimators. However, some
inequalities (e.g. 9922699028) are easier to solve by using coarser semialgebraic
estimators. For instance, the �rst line (nlifting = 9) corresponds to the algorithm
described in [25] and the second one (nlifting = 3) illustrates our improved tem-
plates method. For the latter, we do not use any lifting variables to represent
square roots of univariate functions.

5 CONCLUSION

The present quadratic templates method computes certi�ed lower bounds for
global optimization problems. It can provide tight max-plus semialgebraic es-
timators to certify non-linear inequalities involving transcendental multivariate
functions (e.g. for Flyspeck inequalities). It also allows one to limit the growth
of the number of lifting variables as well as of polynomial constraints to be
handled in the POP relaxations, at the price of a coarser approximation. Thus,
our method is helpful when the size of optimization problems increases. Indeed,
the coarse lower bounds obtained (even with a low SDP relaxation order) are
better than those obtained with interval arithmetic or high-degree polynomial
approximation. For future work, we plan to study how to obtain more accurate
non-linear templates by constructing a sequence of semialgebraic estimators,
which converges to the \best" max-plus estimators (following the idea of [35]).

Furthermore, the formal part of our implementation, currently can only han-
dle small size POP certi�cates. We plan to address this issue by a more careful
implementation on the Coq side, but also by exploiting system properties of the
problem (sparsity, symmetries) in order to reduce the size of the rational SOS
certi�cates. Finally, it remains to complete the formal veri�cation procedure by
additionally proving in Coq the correctness of our semialgebraic estimators.
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