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Introduction

Introduction

Goals of our research

1 To formalize the proof of the Basic Perturbation Lemma (BPL) in
Isabelle/HOL.

2 To generate code for the associated algorithm to the BPL with the
Isabelle/HOL facilities.

In this talk we will focus on the difficulties that had to be overcome to
move from goal 1 to goal 2 above.

Main topics

Representation of algebraic structures.

Representation of mathematical properties.

Representation of data structures.
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Introduction

Kenzo

Kenzo is a Computer Algebra system specialised in the field of
Homological Algebra. It applies the BPL in the computation of homology
groups of chain complexes and differential groups.

Isabelle/HOL

Isabelle/HOL is a theorem proving assistant implementing higher-order
logic. It includes a tool enabling code generation (from a subset of the
specification language including the executable ingredients) to functional
programming languages such as SML or Haskell.
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Introduction

Related work

The ideas of getting programs from formal specifications and of
formalizing programs are becoming rather popular:

ACL2 is a subset (plus something else) of Common Lisp, where proofs
about Common Lisp programs can be carried out. More concretely,
the defexec mechanism allows various “equivalent” algorithms to be
used for different purposes.

ssreflect is an attempt of communicating non-executable and
executable fragments of the Coq world.

Haskabelle is an embedding of Haskell into Isabelle, where one writes
Haskell programs and proves properties of them in Isabelle.

Data refinement is being studied in Isabelle as an extension of the
code generation facilities.
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Homological Algebra: the Basic Perturbation Lemma Statement of the BPL

Statement of the BPL: structural and analytic part

Theorem

Let (f , g , h) : (D, dD)⇒ (C , dC ) be a reduction between differential
groups and δ : D → D a perturbation of the differential dD satisfying the
nilpotency condition w.r.t. the reduction (f , g , h). Then a new reduction
(f ′, g ′, h′) : (D ′, dD′)⇒ (C ′, dC ′) can be obtained where the underlying
abelian groups D and D ′ (resp. C and C ′) are the same, but the
differentials are perturbed: dD′ = dD + δ, dC ′ = dC + f δDψg, f ′ = f φ,
g ′ = ψg, h′ = hφ, φ =

∑∞
i=0(−1)i (δh)i , and ψ =

∑∞
i=0(−1)i (hδ)i .

(D, dD)

h
��

δ
�� f --

(C , dC )
g

mm

(D, dD′)

h′

�� f ′ --
(C , dC ′)

g ′
mm
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Main features of the proof in Isabelle

Algebraic structures, following the ideas in [Ballarin et al, 2010]2, are
implemented by means of:

Types as extensible records with explicit domains or carriers (given by
an explicit predicate or characteristic function);

Specifications with locales to introduce their properties.

Other possibilities in HOL

The use of types, instead of sets, for representing the domains.

The use of type classes.

...

2Ballarin et al., The Isabelle/HOL Algebra Library.
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Record types with explicit sets as domains are the best option, since they
enable:

A unified treatment of basic algebraic structures and algebraic
structures defined over endomorphisms or homomorphisms.

An easy way to interplay with algebraic structures and their subsets.
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Data type definition

record ’a monoid =

carrier :: "’a set"

mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)

one :: ’a ("1ı")

Formal specification

locale monoid =

fixes G (structure)
assumes m_closed [intro, simp]:

"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"

and m_assoc:

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"

and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"

and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Unfortunately, the previous representation does not provide a direct way
for code generation (this representation admits non-computable sets).
Some possible solutions:

By means of a characteristic function.

By means of a list (finite sets).

By means of type classes.
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Type classes:

Type classes are a feature of Haskell specially introduced for allowing
ad-hoc overloading, abstract specifications and modular
reasoning [Haftmann & Wenzel, 2007]3.

Advantages of using Isabelle implementation of type classes:

Algebraic structures become types (the family of types satisfying the
given signature and specification).

Instances of a type class can be stated and proved inside of
Isabelle/HOL.

By means of the instances, we thus certify the input data of the certified
programs.

In addition to certified programs, we also obtain certified inputs.

3Haftmann and Wenzel, “Constructive Type Classes in Isabelle”.
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Example (Type class definition, instantiation and execution)

FILE “Group-instance.thy” 1

Group-instance.thy

(* Title: code_generation/exampleZ2Z4.thy

ID: $Id: exampleZ2Z4.thy $

Author: Jesus Aransay

*)

theory Group_instance

imports Main

(*imports "/home/jesules/Isabelle_06-May-2007/src/HOL/Library/Pretty_Int"*)

begin

text{*Keep in mind that inside the class environemnts, symbols are always preceded

by the "loc" antiquotation*}

text{*We fist introduce a type class only with a binary operation, namely @{term

mult}, without any further specification*}

class monoid_class = type +

fixes mult :: "’a ⇒ ’a ⇒ ’a" (infixl "
N

" 70)

and one :: ’a ("1")
assumes assoc: "x

N
y

N
z = x

N
(y

N
z)"

and neutl: "1
N

x = x"

and neutr: "x
N

1 = x"

instance nat :: monoid_class and int :: monoid_class

mult_nat_def: "m
N

n ≡ m * n"

one_nat_def: "1 ≡ (1::nat)"

mult_int_def: "m
N

n ≡ m + n"

one_int_def: "1 ≡ (0::int)"

proof

fix m n l :: nat

from mult_nat_def show "m
N

n
N

l = m
N

(n
N

l)" by simp

from mult_nat_def one_nat_def show "1
N

n = n" by simp

from mult_nat_def one_nat_def show "n
N

1 = n" by simp

next

fix i j k :: int

from mult_int_def show "i
N

j
N

k = i
N

(j
N

k)" by simp

from mult_int_def one_int_def show "1
N

i = i" by simp

from mult_int_def one_int_def show "i
N

1 = i" by simp

qed

definition one_times_one_int_def: "one_times_one_int == (1::int)
N

1"
definition one_times_one_nat_def: "one_times_one_nat == (1::nat)

N
1"

code_gen one_times_one_int one_times_one_nat in SML

ML "ROOT.Group_instance.one_times_one_int"

ML "ROOT.Group_instance.one_times_one_nat"

end

FILE “Group-instance.thy” 1

Group-instance.thy

(* Title: code_generation/exampleZ2Z4.thy

ID: $Id: exampleZ2Z4.thy $

Author: Jesus Aransay
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

Example (Type class definition, instantiation and execution)

FILE “Group-instance.thy” 1

Group-instance.thy

(* Title: code_generation/exampleZ2Z4.thy

ID: $Id: exampleZ2Z4.thy $

Author: Jesus Aransay

*)

theory Group_instance

imports Main

(*imports "/home/jesules/Isabelle_06-May-2007/src/HOL/Library/Pretty_Int"*)

begin

text{*Keep in mind that inside the class environemnts, symbols are always preceded

by the "loc" antiquotation*}

text{*We fist introduce a type class only with a binary operation, namely @{term

mult}, without any further specification*}

class monoid_class = type +

fixes mult :: "’a ⇒ ’a ⇒ ’a" (infixl "
N

" 70)

and one :: ’a ("1")
assumes assoc: "x

N
y

N
z = x

N
(y

N
z)"

and neutl: "1
N

x = x"

and neutr: "x
N

1 = x"

instance nat :: monoid_class and int :: monoid_class

mult_nat_def: "m
N

n ≡ m * n"

one_nat_def: "1 ≡ (1::nat)"

mult_int_def: "m
N

n ≡ m + n"

one_int_def: "1 ≡ (0::int)"

proof

fix m n l :: nat

from mult_nat_def show "m
N

n
N

l = m
N

(n
N

l)" by simp

from mult_nat_def one_nat_def show "1
N

n = n" by simp

from mult_nat_def one_nat_def show "n
N

1 = n" by simp

next

fix i j k :: int

from mult_int_def show "i
N

j
N

k = i
N

(j
N

k)" by simp

from mult_int_def one_int_def show "1
N

i = i" by simp

from mult_int_def one_int_def show "i
N

1 = i" by simp

qed

definition one_times_one_int_def: "one_times_one_int == (1::int)
N

1"
definition one_times_one_nat_def: "one_times_one_nat == (1::nat)

N
1"

code_gen one_times_one_int one_times_one_nat in SML

ML "ROOT.Group_instance.one_times_one_int"

ML "ROOT.Group_instance.one_times_one_nat"

end

FILE “Group-instance.thy” 1

Group-instance.thy

(* Title: code_generation/exampleZ2Z4.thy

ID: $Id: exampleZ2Z4.thy $

Author: Jesus Aransay

*)

theory Group_instance

imports Main

(*imports "/home/jesules/Isabelle_06-May-2007/src/HOL/Library/Pretty_Int"*)

begin

text{*Keep in mind that inside the class environemnts, symbols are always preceded

by the "loc" antiquotation*}

text{*We fist introduce a type class only with a binary operation, namely @{term

mult}, without any further specification*}

class monoid_class = type +

fixes mult :: "’a ⇒ ’a ⇒ ’a" (infixl "
N

" 70)

and one :: ’a ("1")
assumes assoc: "x

N
y

N
z = x

N
(y

N
z)"

and neutl: "1
N

x = x"

and neutr: "x
N

1 = x"

instance nat :: monoid_class and int :: monoid_class

mult_nat_def: "m
N

n ≡ m * n"

one_nat_def: "1 ≡ (1::nat)"

mult_int_def: "m
N

n ≡ m + n"

one_int_def: "1 ≡ (0::int)"

proof

fix m n l :: nat

from mult_nat_def show "m
N

n
N

l = m
N

(n
N

l)" by simp

from mult_nat_def one_nat_def show "1
N

n = n" by simp

from mult_nat_def one_nat_def show "n
N

1 = n" by simp

next

fix i j k :: int

from mult_int_def show "i
N

j
N

k = i
N

(j
N

k)" by simp

from mult_int_def one_int_def show "1
N

i = i" by simp

from mult_int_def one_int_def show "i
N

1 = i" by simp

qed

definition one_times_one_int_def: "one_times_one_int == (1::int)
N

1"
definition one_times_one_nat_def: "one_times_one_nat == (1::nat)

N
1"

code_gen one_times_one_int one_times_one_nat in SML

ML "ROOT.Group_instance.one_times_one_int"

ML "ROOT.Group_instance.one_times_one_nat"

end

FILE “Group-instance.thy” 1

Group-instance.thy

(* Title: code_generation/exampleZ2Z4.thy

ID: $Id: exampleZ2Z4.thy $

Author: Jesus Aransay

*)

theory Group_instance

imports Main

(*imports "/home/jesules/Isabelle_06-May-2007/src/HOL/Library/Pretty_Int"*)

begin

text{*Keep in mind that inside the class environemnts, symbols are always preceded

by the "loc" antiquotation*}

text{*We fist introduce a type class only with a binary operation, namely @{term

mult}, without any further specification*}

class monoid_class = type +

fixes mult :: "’a ⇒ ’a ⇒ ’a" (infixl "
N

" 70)

and one :: ’a ("1")
assumes assoc: "x

N
y

N
z = x

N
(y

N
z)"

and neutl: "1
N

x = x"

and neutr: "x
N

1 = x"

instance nat :: monoid_class and int :: monoid_class

mult_nat_def: "m
N

n ≡ m * n"

one_nat_def: "1 ≡ (1::nat)"

mult_int_def: "m
N

n ≡ m + n"

one_int_def: "1 ≡ (0::int)"

proof

fix m n l :: nat

from mult_nat_def show "m
N

n
N

l = m
N

(n
N

l)" by simp

from mult_nat_def one_nat_def show "1
N

n = n" by simp

from mult_nat_def one_nat_def show "n
N

1 = n" by simp

next

fix i j k :: int

from mult_int_def show "i
N

j
N

k = i
N

(j
N

k)" by simp

from mult_int_def one_int_def show "1
N

i = i" by simp

from mult_int_def one_int_def show "i
N

1 = i" by simp

qed

definition one_times_one_int_def: "one_times_one_int == (1::int)
N

1"
definition one_times_one_nat_def: "one_times_one_nat == (1::nat)

N
1"

code_gen one_times_one_int one_times_one_nat in SML

ML "ROOT.Group_instance.one_times_one_int"

ML "ROOT.Group_instance.one_times_one_nat"

end

J. Aransay (UR) Certified programs in Homological Algebra 11 / 20



Theorem proving vs Code generation Isabelle Proof: algebraic structures
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Theorem proving vs Code generation Isabelle Proof: algebraic structures

A couple of remarks in type classes

The proof of the BPL has to be translated into the type classes
representation of algebraic structures (type classes are converted into
a particular case of records). Here a certain degree of automation
should be possible.

The original proof was not possible in this setting (no subsets notion).

A limitation of type classes à la Isabelle/HOL:

Type classes have to be single parameterised.
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Theorem proving vs Code generation Isabelle Proof: definition of mathematical properties

Definition of mathematical properties

Representation of the local nilpotency condition:

locale local-nilpotent-term-existential = ring-endomorphisms D R + var a +
assumes a-in-R: a ∈ carrier R
and a-local-nilpot : ∀ x∈carrier D . ∃n::nat . (a (ˆ)R n) x = 1D
fixes deg-of-nilpot
defines deg-of-nilpot-def : deg-of-nilpot == (λx . (LEAST n. (a (ˆ)R (n::nat)) x = 1D))

definition (in local-nilpotent-term-existential)
power-series x == finprod D (λi ::nat . (a(ˆ)R i) x ) {..deg-of-nilpot x}

The previous specifications of deg-of-nilpot and thus of power-series
cannot be directly code-generated in Isabelle/HOL (they are based on the
Hilbert’s ε-operator)

.
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Theorem proving vs Code generation Isabelle Proof: definition of mathematical properties

locale local-nilpotent-term-existential = ring-endomorphisms D R + var a +
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power-series x == finprod D (λi ::nat . (a(ˆ)R i) x ) {..deg-of-nilpot x}

How can we turn this into an executable specification?

constdefs
local-bound-gen f (x :: ′a::ab-group-class) (n::nat) ≡ For (λ y . y 6= 1D) f (λ y n. n+1 ) x n
local-bound f (x :: ′a::ab-group-class) ≡ local-bound-gen f x 0

Do we know a way to turn a while loop into a (tail) recursive
function?

function (tailrec) While :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a
where While continue f s = (if continue s then While continue f (f s) else s)
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Theorem proving vs Code generation Isabelle Proof: definition of mathematical properties

Code generation from definitions

The following ML code is the one obtained from the previous definitions:

structure While =

struct

fun whilea continue f s = (if continue s then whilea continue f (f s) else s);

fun for’ continue f aca x ac =

whilea (fn a as (acb, aa) => continue aa)

(fn a as (acb, xa) => (aca xa acb, f xa)) (ac, x);

fun for continue f aca x ac = Product_Type.fst (for’ continue f aca x ac);

end; (*struct While*)

fun local_bound_gen (A1_, A2_) f x n =

While.for

(fn y =>

not (Code_Generator.op_eq A1_ y

(zero (ab_group_class_ab_monoid_class A2_))))

f (fn y => fn na => (+ na 1) x n;

fun local_bound (A1_, A2_) f x = local_bound_gen (A1_, A2_) f x 0;

The function Isabelle package is due to A. Krauss [Krauss 2006]4, and S.
Obua [Obua 2007]5 introduced definitions for While and For loops.

4Krauss, “Partial Recursive Functions in Higher-Order Logic”.
5Obua, “Looping around the Orbit”.
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Theorem proving vs Code generation Execution of the programs

Execution of the programs: An example with bicomplexes
The reduction is given by the following elements: D can be understood as
integer coefficients over N× N, C = 0, f = 0, g = 0 and d , h, δ as
depicted below.

Z(0,0) Z(1,0) Z(2,0) Z(3,0) . . .

Z(0,1) Z(1,1) Z(2,1) Z(3,1) . . .

Z(0,2) Z(1,2) Z(2,2) Z(3,2) . . .

Z(0,3) Z(1,3) Z(2,3) Z(3,3) . . .

. . . . . . . . . . . .

//

OO

d=id
��

d=0
��

d=id
��

d=0
��

d=0
��

d=id
��

d=0
��

d=id
��

d=id
��

d=0
��

d=id
��

d=0
��

d=0
��

d=id
��

d=0
��

d=id
��

Figure: Definition of the differential
d of a bicomplex.

Z(0,0) Z(1,0) Z(2,0) Z(3,0) . . .

Z(0,1) Z(1,1) Z(2,1) Z(3,1) . . .

Z(0,2) Z(1,2) Z(2,2) Z(3,2) . . .

Z(0,3) Z(1,3) Z(2,3) Z(3,3) . . .

. . . . . . . . . . . .

//

OO

δ=id
oo

δ=0
oo

δ=id
oo

δ=0
oo

δ=0
oo

δ=id
oo

δ=0
oo

δ=id
oo

δ=id
oo

δ=0
oo

δ=id
oo

δ=0
oo

δ=0
oo

δ=id
oo

δ=0
oo

δ=id
oo

h=id

OO

h=0

OO

h=id

OO

h=0

OO

h=0

OO

h=id

OO

h=0

OO

h=id

OO

h=id

OO

h=0

OO

h=id

OO

h=0

OO

h=0

OO

h=id

OO

h=0

OO

h=id

OO

Figure: Definition of the homotopy
operator h and the perturbation δ of
a bicomplex.
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Theorem proving vs Code generation Execution of the programs

A word on the implementation

D is implemented as integer matrices (see [Obua & Nipkow, 2010]6).

Abstract Matrices

Matrices had to be proved an instance of an algebraic structure appearing
in the BPL statement. The type definition that we (successfully) used was

{f : N× N→ α| finite (nonzero positions f )}

Sparse Matrices

Computations with abstract matrices were unfeasible. A different
representation of matrices had to be figured out, fitting in the scope of the
code generation facility. For instance:

α spvec = (nat ∗ α) list
α spmat = (α spvec) spvec

6Obua and Nipkow, “Flyspeck II: the basic linear programs”.
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Theorem proving vs Code generation Execution of the programs

How are both representations communicated?

A collection of lemmas proving that operations over the abstract
representation +, . . . are equal to some operations over the sparse one has
to be provided:

lemma (sparse_row_matrix A) + (sparse_row_matrix B) =

sparse_row_matrix (add_spmat (A, B))

Nevertheless, the properties proved over abstract matrices have not been
proved over sparse matrices.
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Theorem proving vs Code generation Execution of the programs

The previous datatype conversion has two remarkable features:

It is done inside of the Isabelle/HOL framework, formally verified.

The representation based on lists does not satisfy the good properties
of the first one (for instance, the zero matrix has multiple
representations as list of lists of zeros, whereas in the first one
representations where unique w.r.t. the extensional equality for
functions).
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Conclusions and Further work

Conclusions

Algebraic structures admit a wide range of representations in theorem
provers; the choice usually depends on the aim of the implementation.
Proof reusing among representations should be improved.

Mathematical specifications (and sometimes proofs) do not usually
pay attention to constructive matters, even within the scope of
algorithmic.

Mathematical structures (polynomials, matrices, finite sets) admit a
wide range of representations in theorem provers; the choice usually
depends on the aim of the implementation. Proof reusing among
representations should be improved.

Some ideas

To produce minimal representations (in the number of operations or
properties stated) of mathematical structures and to define
embeddings, or functors from every other representation to such one.

Suggestions welcome!!
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