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Yesterday

We have defined the language of first order (discrete) ordered fields.

We have defined the theory of (discrete) real closed fields.

We are interested in intuitionistic the theory of discrete real closed
fields (we will see it is the same as the classical).

We have stated the theorem of quantifier elimination for the theory of
discrete real closed fields.

We want to formalize a (constructive) proof of this theorem in the
Coq system, meaning we want a quantifier elimination program.
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Formal definition of the field signature

Terms on the language of fields.

Inductive term : Type :=

| Var of nat

| C0 : term

| C1 : term

| Add of term & term

| Opp of term

| Mul of term & term

| Inv of term.
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Formal definition of a first order theory

For an arbitrary type term of terms, formulas are:

Inductive formula (term : Type) : Type :=

| Equal of term & term

| Leq of term & term

| Not of formula

| And of formula & formula

| Or of formula & formula

| Implies of formula & formula

| Exists of nat & formula

| Forall of nat & formula.
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Theory of real closed fields
We use a record type to define a type which is simultaneously equipped
with a field signature and a theory of real closed fields.

Record rcf := RealClosedField{

carrier : Type;

Req : carrier -> carrier -> bool;

Rleq : carrier -> carrier -> bool;

zero : carrier;

one : carrier

opp : carrier -> carrier;

add : carrier -> carrier -> carrier;

mul : carrier -> carrier -> carrier;

inv : carrier -> carrier;

_ : associative add;

_ : commutative add;

_ : left_id zero add;

_ : left_inverse zero opp add;

...}.
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Instances of the theory of real closed fields

An instance of this theory is constructed when:

We have formed a concrete type
for instance the type Ralg of real algebraic numbers

We have defined field constants and implemented field operations
Zero, one, addition, ...

We have proved the theorems specifying these operations
Addition is commutative, ...

We have gathered all this in an element of the record type

Definition Ralg_rcf :=

RealClosedField Ralg Ralg0 Ralg1 Ralg_opp ...
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What do we formalize?

A signature Σ (of rings)
The type term

The terms on Σ
The elements t : term

The first order statements F(Σ,N)
The elements f : formula

The definition of Σ-structure
The type rcf (which contains specifications).

The Σ-structures themselves
The elements MyRcf : rcf
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What do we formalize?

An interpretation function [t(x)]R,e from terms in L(Σ,N)) in a
Σ-structure

eval: (seq (carrier R))-> term -> (carrier R)

An interpretation function [f (x)]R,e from formulas in F(Σ,N)) in Coq
statements

holds: (seq (carrier R))-> formula -> Prop

R, e |= f
A proof of the Coq statement (holds e f)

R is a model of the theory of (discrete) real closed fields
R : rcf
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Semantic quantifier elimination

A theory T on a language Σ with a set of variables V admits
semantic quantifier elimination if

for every φ ∈ F(Σ,V),

there exists a quantifier free formula ψ ∈ F(Σ,V)

such that for any model M of T , and for any list e of values,

M, e |= φ iff M, e |= ψ

This is the (a priori weaker) quantifier elimination result we formalize.
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Semantic quantifier elimination

The formalization of the theorem in our framework is:

Program a quantifier elimination procedure:

Fixpoint quantifier_elim :

formula term -> formula term := ...

Prove :

Lemma quantifier_elim_correct : forall (R_rcf : rcf),

forall (f : formula term)(ctx : seq (R R_rcf)),

(holds ctx f) <-> (holds ctx (quantifier_elim f)).
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Decidability

There is a boolean test which given a context an a first-order formula,
determines whether the formula holds or not:

Definition DecidableField.axiom R

(sat : seq (carrier R) -> formula -> bool) :=

forall ctx f, (holds ctx f) <-> (sat ctx f = true).

If the semantic quantifier elimination is proved, program sat by:

Eliminating quantifiers

Deciding the obtained quantifier-free formula instanciated with
parameters of the desired context
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From proofs to proof-producing procedure

The (so-called) reflexion scheme:

(Forall 1 (Exists 2 (...)) true

Lemma statement Abstract syntax Decision

Prop formula bool

holds [::]

apply: RDecidableFieldAxiom.

sat [::]
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Sufficient condition (for discrete structures)

Suppose it is possible to eliminate the ∃ in ∃x ,
∧n

i=1 Li .

Then it is possible to eliminate a single prenex ∃.

I Consider ∃x ,F where F is quantifier free
I F is equivalent to its disjunctive normal form:

∨n
i=1

∧m
j=1 Li,j

I The existential quantifier distributes over the disjunctions.
I The hypothesis is applied to every conjunction

∧m
j=1 Li,j

Now by induction on the structure of an arbitrary formula:

I All cases are trivial except for quantified formulas.
I Existential case:

F ∃x ,F where F can be considered qf (by induction).
F The first lemma applies.

I Universal case: ∀x ,F where F can be considered qf (by induction).
F Since (F ∨ ¬F ) holds, ∀x ,F is equivalent to ¬∃x ,¬F .
F ¬F is quantifier free: the lemma applies to ∃¬F .
F The outermost negation does not introduce quantifiers.
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Sufficient condition (semantic version)

What we need to prove is that for any candidate theory R:

There is a projection operator:

Parameter proj : nat -> formula -> formula.

Such that:

Definition wf_proj_axiom proj := forall n f,

literal_conjunction f -> qf_form (proj n f).

Definition holds_proj_axiom R proj :=

forall n f ctx, literal_conjunction f ->

(holds ctx (Exists n f)) <-> holds ctx (proj n f).
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From language of fields to language of rings

Remark:

Any first order sentence in this theory has an equivalent in the
language of discrete ordered rings (possibly with more quantifiers, and
we can allow rational constants).

Hence:
I For any first order sentence in the language of ordered rings
I We want to construct a quantifier free formula in the language of rings

which is equivalent to the former, in the theory of real closed fields.
I We restrict our study to polynomial atoms.
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Sufficient condition (geometric version)

Some vocabulary:

Algebraic set: The set of roots of a finite number of polynomials.
Realizations of an equality atom.

Semi-algebraic set: The set of points satisfying a (disjunction of)
finite number of polynomial inequalities (and equalities).

Realization of quantifier-free formulas.

Basic semi-algebraic set:

{x ∈ Rk | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

Semi-algebraic sets are finite unions of basic semi-algebraic sets.
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Sufficient condition (geometric version)

Theorem (Projection of semi-algebraic sets)

For any discrete real closed field R, for any S basic semi-algebraic set of
Rk+1 defined by polynomials with rational coefficients, the projection of S
on Rk is a semi-algebraic set.

We only prove the theorem for basic semi-algebraic sets.
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Emptiness of a one dimensional basic semi-algebraic set

Quantifier elimination amounts to deciding whether a basic semi-algebraic:

{x ∈ R | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

is empty or not, for P ∈ R[X ] and Q ⊂ R[X ] (finite).
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The Tarski Query “oracle”

Definition (Tarski Query)

Let R be a real closed fields and P,Q ∈ R[X ] with P 6= 0. The Tarski
Query of P and Q is defined as:

TQuery(P,Q) :=
∑

x∈R,P(x)=0

sign Q(x)

By sign we mean:

TQuery(P,Q) := 1 × ]{x |P(x) = 0 ∧ Q(x) > 0}
+ 0 × ]{x |P(x) = 0 ∧ Q(x) = 0}
+ −1 × ]{x |P(x) = 0 ∧ Q(x) < 0}
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The Tarski Query “oracle”

Properties:

TQuery(P,Q) = ]{P = 0,Q > 0} − ]{P = 0,Q < 0}

TQuery(P,Q2) = ]{P = 0,Q > 0}+ ]{P = 0,Q < 0}
TQuery(P, 1) = ]{P = 0}
TQuery(P, 1) =

]{P = 0,Q = 0}+ ]{P = 0,Q > 0}+ ]{P = 0,Q < 0}
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The Tarski Query “oracle”

In other words: TQuery(P, 1)
TQuery(P,Q)
TQuery(P,Q2)

 =

 1 1 1
0 1 −1
0 1 1

 ]{P = 0,Q = 0}
]{P = 0,Q > 0}
]{P = 0,Q < 0}



Fortunately, M :=

 1 1 1
0 1 −1
0 1 1

 is invertible.

 ]{P = 0,Q = 0}
]{P = 0,Q > 0}
]{P = 0,Q < 0}

 = M−1

 TQuery(P, 1)
TQuery(P,Q)
TQuery(P,Q2)


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Tarski Queries and emptiness test

The one dimensional basic semi-algebraic set

{x ∈ R | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

is non empty iff ]{P = 0,Q > 0} > 0

Tarski Queries provide an emptiness test for one sign condition.

What about a basic semi-algebraic set with more sign conditions?
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Multi Tarski Queries

Let Q := {Q1, . . . ,Qn} ⊂ R[X ]:

A sign assignment for Q is:

σ : Qi 7→ εi ∈ {0,−1, 1}

Let Σ := {0,−1, 1}Q be the set of all possible sign assignments for Q.

Let A := {0, 1, 2}Q. For every α ∈ A, let Qα :=
∏

Q
α(Qi )
i
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Multi Tarski Queries

Now define:

TQuery(P,QA) := [TQuery(P,Qα1), . . . ,TQuery(P,Qα3n )]
where the elements α1, . . . , α3N of A are in lexicographic order.

v(P = 0,Σ) := []{P = 0, σ1}, . . . , ]{P = 0, σ3n}]
where the elements σ1, . . . , σ3N of Σ are in lexicographic order.

(Mn)n∈N by M1 := M and Mk+1 := Mk ⊗M

Theorem

TQuery(P,QA) = Mn.v(P = 0,Σ)

(and Mn is invertible)
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Computing Tarski Queries

Theorem

For any two polynomials P,Q ∈ R[X ] with P 6= 0, the value of
TQuery(P,Q) only depends on the sign of the leading coefficients of
polynomials occurring in the chain of remainders of P and P ′Q and on the
degree of these remainders.

It is obtained as a the number of sign changes in the signed remainder
chain.
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Consequence on the emptiness test

The emptiness of a basic semi-algebraic set

{x ∈ R | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

is determined by the degrees and signs of the leading coefficients of
the polynomials occurring in the remainder chains of P and the P ′Qα.

The emptiness of a basic semi-algebraic set

{x ∈ R |
∧
Q∈Q

Q(x) > 0}

is determined by the degrees and signs of the leading coefficients of
the polynomials occurring in the remainder chains of C and C ′ and C
and the C ′′Qα, where C =

∏n
i=1 Qi .

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 9th 2010 26 / 29



Back to quantifier elimination

Given a basic semi-algebraic set:

{x ∈ Rk+1 | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

we want to show that its projection on Rk is still a semi-algebraic set.

This problem is different from the unidimensional case:

{(y , x) ∈ Rk+1 | P(y)(x) = 0 ∧
∧
Q∈Q

Q(y)(x) > 0}

where P,Q ∈ Q[X1, . . . ,Xk ][Xk+1].
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Back to quantifier elimination

Obtain a semi-algebraic description of

{x ∈ Rk | ∃y ∈ R | P(x)(y) = 0 ∧
∧
Q∈Q

Q(x)(y) > 0}

where P,Q ∈ Q[X1, . . . ,Xk ][Xk+1].

Coefficients are no more in a field but in a ring. Yet euclidean division
can be replaced by pseudo-euclidean division.

Harmless

The output semi-algebraic description depends on the values of the
parameters.

Example
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Back to quantifier elimination

We need a model-independent description of a finite partition of the
space of parameters Rk into semi-algebraic cells.

Each cell corresponds to a possible value for the quantifier free
equivalent formula.

This description is obtained by analyzing the tree of successive zero
tests performed when computing the degrees and the pseudo divisions
involved in the Tarski Queries.

What about the (formal) formula construction?
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