Cylindrical Algebraic Decomposition in Coq
MAP 2010 - Logrofio 13-16 November 2010

Assia Mahboubi

INRIA Microsoft Research Joint Centre (France)
INRIA Saclay - fle-de-France
Ecole Polytechnique, Palaiseau

November 11th 2010

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework

program of the European Commission.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

1/39

What we have seen so far

We have investigated two levels of formalization:
@ A formal representation of logical objects:
» A formalization of the first order theory of discrete real closed fields;
» A sufficient condition to obtain full quantifier elimination;
Eliminate 3 in 3x, A7, L;
@ A formal representation of geometrical objects:

» A formalization of models of the real closed field structures (as records)
> A geometrical (constructive) proof that the projection of semi-algebraic
sets is a semi-algebraic set
Txes 1X € R P(x) = 0A Ageg @(x) > 0} is a semi-algebraic set.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 2 /39

What we have seen so far

This in fact covers three different levels:
@ The programmer (computer algebra)
@ The Coq user (formalizing correctness of computer algebra)

@ The Coq logician user (formalizing theorems of logic)

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

3/ 39

The programmer

These are constructive proofs, we can write programs. For instance:

1 coef(p : poly R): R := ...

count_sign_changes(l : seq R): nat := ...

signed_prem(p q : poly R): seq poly R := ...

@ tarski_query (p q : poly R) : nat :=
count_sign_changes

(map lcoef (signed_prem p (p~‘() * @)))

@ test_sas_emptyl (p q : poly R) : bool :=
(tarski_query p q°2) + (tarski_query p q) > 0

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 4 /39

The Coq user, interested in real algebraic geometry

These are constructive proofs, we can write program (in Coq):

Definition test_sas_emptyl (p q : {poly R}) : bool :=
(tarski_query p q°2) + (tarski_query p q) > O

But moreover we want to formalize the proof that:

Theorem test_sas_emptyl_correct : forall p q : {poly R},

p!=0-—>
(test_sas_emptyl p q) > 0

<>
(exists x, p.[x] =0 /\ q.[x] > 0).

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

5/ 39

The other Coq user, interested in formal proofs in logic

We want a running quantifier elimination algorithm:

@ A program:

Fixpoint quantifier elim :
formula term -> formula term := ...

@ And formal proofs that:

Lemma g_free_quantifier_elim : forall f,
qg_free (quantifier_elim f).

Lemma quantifier_elim_correct : forall (R_rcf : rcf),
forall (f : formula term) (ctx : seq (R R_rcf)),
(holds ctx f) <-> (holds ctx (quantifier_elim f)).

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 6 /39

Sharing the efforts

@ Can the programmer rely on mathematics textbooks?
Yes, if they are reasonably written (for that purpose).

@ Can the Coq user rely on the programmer?
Yes, if the programmer uses a pure functional language.

@ Can the logician Coq user rely on the geometer Coq user?
Unclear at this stage.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 7 /39

Can the logician Coq user rely on the geometer Coq user?

@ Is it “easy” to understand the semi-algebraic object described by the
input formula?

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 8 /39

Can the logician Coq user rely on the geometer Coq user?

@ Is it “easy” to understand the semi-algebraic object described by the
input formula?
Yes, very easy.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 8 /39

Can the logician Coq user rely on the geometer Coq user?

@ Is it “easy” to understand the semi-algebraic object described by the
input formula?
Yes, very easy.
@ Is it “easy” to read the expected, quantifier free formula from the
computer algebra programs?

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 8 /39

Can the logician Coq user rely on the geometer Coq user?

@ Is it “easy” to understand the semi-algebraic object described by the
input formula?

Yes, very easy.

@ Is it “easy” to read the expected, quantifier free formula from the
computer algebra programs?

@ Is it “easy” to prove that this formula is correct with respect to the
initial one?

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 8 /39

The Coq programs

1 coef(p : poly R): R := ...

count_sign_changes(l : seq R): mnat := ...

signed_prem(p q : poly R): seq poly R := ...

o tarski_query (p q : poly R) : nat :=
count_sign_changes

(map lcoef (signed_prem p (p~ ‘() * @)))

o test_sas_emptyl (p q : poly R) : bool :=
(tarski_query p q°2) + (tarski_query p q) > 0

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 9 /39

Execution of the program for {x € R|ax® + Bx + v = 0}

=] & = E nae
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq

From programs to formulas

@ The expected formula should collect the conditions leading to the
desired result along all the successful paths.

@ From the code as such, it might well be difficult.

@ We need to expose (more) the control over the execution flow.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

11 / 39

Concrete polynomials

@ Univariate polynomials are represented by lists of coefficients.
@ We only manipulate polynomials in normal form:

» The empty list represents the zero polynomial.

» The head of the list is the constant coefficient.

> A non empty list has a head non zero element.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

12 / 39

Example of program

@ A program computing the leading coefficient:

Fixpoint lcoef (p : {poly R}) : R :=
match p with

| [::1 ->0
| ¢ :: q->if q == 0 then c else lcoef q
end.

@ A program testing that the leading coefficient is positive:

Definition test (p : {poly R}) : bool :=
lcoef p > 0.

@ What is the counterpart at the formula level?

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

13 / 39

Terms, the parameterized ring signature

Inductive term (R : Type) : Type :=
| Var of nat
| Const of R
| NatConst of nat
| Add of term & term
| Opp of term
| Mul of term & term.

@ An atom is a term compared to zero (after reduction).

@ Terms are polynomial expressions in their free variables.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 14 / 39

First order theory, again with parameters

Inductive formula (R : Type) : Type :=
| Equal of (term R) & (term R)
| Leq of (term R) & (term R)

| Lt of (term R) & (term R)

| trueF : formula R

| falseF : formula R

| Not of formula

| And of formula & formula

| Or of formula & formula

| Implies of formula & formula
| Exists of nat & formula

| Forall of nat & formula.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

15 / 39

Abstract polynomials

Consider the formula with a single existential quantifier:

Ix,ax® + (Bx+1)+ay=0

@ The atom is a sign condition on the term ax? + Bx + 7;
@ The single quantifier binds the variable x;

@ The term in the atom should be understood as a polynomial, element
of Rle, 8,7][x]

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 16 / 39

Abstract polynomials

Consider the formula with a single existential quantifier:

I, ax® + (B+1)x+ay=0

@ The term embedded in such an atom can be seen as an abstract
univariate polynomial, with abstract polynomial coefficients.

@ An abstract univariate polynomial is represented by lists of terms.
[, B+ 1,a7]: (seq (term R))
@ An abstract coefficient is only a term.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 17 / 39

Abstract polynomials

@ From a (t : term) in an atom, and the name / of the variable
bound by the existential, we can extract the abstract univariate
polynomial in the variable x; thanks to the function:

Fixpoint abstrX (i : nat) (t : term R) : (seq term) :=

@ An abstract univariate polynomial can be interpreted to a univariate
polynomial given a context:

Fixpoint eval_polyF (e : seq R) (ap : (seq term)) : {
poly R} :=
match ap with
lc :: qf => (eval_polyF e qf)*’X + (eval e c)
[[::1 =>0
end.

@ We want the diagram to commute.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 18 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 g — if (g == 0) then c else (Icoef q)
end.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.

Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (p: {poly R}) : =

Definition cps_test (p : {poly R}) : bool :=

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.

Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (p: {poly R}) : =
match p with

Definition cps_test (p : {poly R}) : bool :=

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with

| [:] =
|cq—
end

Definition cps_test (p : {poly R}) : bool :=

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with

| [::] = (k0)
|ciq—
end.

Definition cps_test (p : {poly R}) : bool :=

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with

| [:] = (k0)
| c:: q— cps_lcoef q
end.
Definition cps_test (p : {poly R}) : bool :=
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with
|] = (k 0)
| c i g = cps_lcoef (fun | = if (q == 0) then (k c) else (k1)) q
end.
Definition cps_test (p : {poly R}) : bool :=

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with

|] = (k 0)
| c i g = cps_lcoef (fun | = if (q == 0) then (k c) else (k1)) q
end.
Definition cps_test (p : {poly R}) : bool :=
cps_lcoef p
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

19 / 39

Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
|[:] =0
| c 2 q — if (q ==0) then c else (lcoef q)
end.
Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps_lcoef (k : R — bool) (p : {poly R}) : bool :=
match p with
|] = (k 0)
| c i g = cps_lcoef (fun | = if (q == 0) then (k c) else (k1)) q
end.
Definition cps_test (p : {poly R}) : bool :=
cps_lcoef (fun n = if n > 0 then true else false) p

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 19 / 39

What happened in this transformation?

Consider the emptiness test for one dimensional basic semi-algebraic sets:

{xeR|P(x)=0n \ Qx)>0}

QeQ

@ |t consists in assembling sign tests on polynomial expressions in the
coefficients of P and the Qs:

C(f(pla <o Pks Q11 - -5 QL ks - - -7q1,k,,))

@ These tests are the nodes in the tree of execution.
@ For test on such a polynomial expression we can abstract over the
control operation by:

» Programming a CPS version cps_f of f
» Giving the continuation k. as an argument to f

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 20 / 39

Continuation passing style

@ This is not (meant to be) code obfuscation.
@ We have exposed the control operations by the mean of a
continuation.
@ This version of the code is ready to be translated at the formula level:
» By turning boolean outputs into formulas outputs
» By turning polynomials and coefficients into terms
@ Remark : we can define a branching formula:
Definition ifF (condF thenF elseF : formula R) : formula R :=
((condF A thenF) Vv ((condF) A elseF)).

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 21 /39

Formula level programs

Fixpoint cps_lcoef
(k : R — bool) (p : {poly R}) : bool :=
match p with
[— (k0)
| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef
(k : R — bool) (p : {poly R}) : bool :=
match p with
[— (k0)
| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF

(k: >) (P) : =

match p with

| [:] —
| c:: g — cps_lcoefF q
end.
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef

(k : R — bool) (p : {poly R}) : bool :=
match p with
| [:] = (k0)

| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF

(k: —) (pF :) : =
match pF with
| [:] —
| c:: g — cps_lcoefF q
end.
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef

(k : R — bool) (p : {poly R}) : bool :=
match p with
| [:] = (k0)

| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF

(k: —) (pF : (seq (term R))) : =
match pF with
| [:] —
| c:: g — cps_lcoefF q
end.
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef

(k : R — bool) (p : {poly R}) : bool :=
match p with
| [:] = (k0)

| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF

(k: term R —) (pF : (seq (term R))) : =
match pF with
| [:] —
| c:: g — cps_lcoefF q
end.
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef
(k : R — bool) (p : {poly R}) : bool :=
match p with
[— (k0)
| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF
(k : term R — (formula R)) (pF : (seq (term R))) : (formula R) :=
match pF with
e
| c:: g — cps_lcoefF
end.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef
(k : R — bool) (p : {poly R}) : bool :=
match p with
[— (k0)
| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF
(k : term R — (formula R)) (pF : (seq (term R))) : (formula R) :=
match pF with
| [::] = (k (Const 0))
| c:: g — cps_lcoefF
end.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Fixpoint cps_lcoef
(k : R — bool) (p : {poly R}) : bool :=
match p with
[— (k0)
| ¢ g — cps_lcoef (fun | = if (q == 0) then (k c) else (k 1)) q
end.

Fixpoint cps_lcoefF

(k : term R — (formula R)) (pF : (seq (term R))) : (formula R) :=
match pF with
| [::] = (k (Const 0))
| ¢ g — cps_lcoefF (fun | = ifF (Equal | (Const 0)) (kc) (k1)) q
end.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 22 /39

Formula level programs

Definition cps_test (p : {poly R}) : bool :=
cps_lcoef

(fun n = if n > 0 then true else false)

p

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 23 /39

Formula level programs

Definition cps_test (p : {poly R}) : bool :=
cps_lcoef
(fun n = if n > 0 then true else false)

p

Definition cps_testF (p : term R) : formula R :=
cps_lcoefF
(fun n = ifF (Lt (Const n) (Const 0)) trueF falseF)

p

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

23 / 39

Formula level programs

Definition cps_test (p : {poly R}) : bool :=
cps_lcoef
(fun n = if n > 0 then true else false)

p

Definition cps_testF (p : term R) : formula R :=
cps_lcoefF
(fun n = ifF (Lt (Const n) (Const 0)) trueF falseF)

p

Definition cps_cps_testF

(k : term R — formula R) (p : term R) : formula R :=
cps_lcoefF

(fun n = k (Lt (Const n) (Const 0)) p

p

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

23 / 39

What happened in this transformation?

Consider an abstract polynomial pF : seq (term R)), extracted from a
basic formula:

@ The concrete shape of this polynomial depends on the values
instantiating the parameters.
(eval_polyF e pF) denoted [pF]_e

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 24 / 39

What happened in this transformation?

Consider an abstract polynomial pF :

seq (term R)), extracted from a
basic formula:

@ The concrete shape of this polynomial depends on the values
instantiating the parameters.

(eval_polyF e pF) denoted [pF]_e
@ Any polynomial function £ has a formula CPS counterpart £F.

cps_lcoef and cps_lcoefF

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 24 / 39

What happened in this transformation?

Consider an abstract polynomial pF : seq (term R)), extracted from a
basic formula:

@ The concrete shape of this polynomial depends on the values
instantiating the parameters.
(eval_polyF e pF) denoted [pF]_e
@ Any polynomial function £ has a formula CPS counterpart £F.
lcoef and cps_lcoefF
@ Any test ¢ on such a polynomial expression has a formula CPS
counterpart (fF kc).

cps_testF

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 24 / 39

Correctness as observational equivalence

Now we have commutation:

Lemma cps_lcoefFP : forall k pF e, acceptable_cont k ->
qf_sat e (cps_lcoefF k pF)

qf_sat e (k (Const (lcoef [pF]l_e))).

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 25 /39

A generic and uniform process

@ Program the concrete emptiness test for polynomials in R[X];
@ For every elementary program used in the previous phase:

» Turn the concrete program into a CPS-formula one;

» State the lemma corresponding to its correctness with respect to the
concrete program;

» Prove this lemma by executing symbolically the code of the concrete
program in the proof.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 26 / 39

Gluing the programs, and the proofs

Combine the CPS-formula programs in the same way they are
combined in the concrete emptiness test program;

The quantifier elimination procedure of a single 3 follows.

Combine the CPS-formula correctness lemmas accordingly.

@ The correctness proof follows.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 27 / 39

Formalized quantifier elimination for discrete RCF

We have defined in Coq:
@ The first order language of ordered fields

@ The models of the theory of discrete real closed fields

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 28 / 39

Formalized quantifier elimination for discrete RCF

We have programed in Coq:

@ A reduction of the full first order theory decidability to the elimination
of a single 3

@ An emptiness test for semi-algebraic sets;

@ A transformation of this test into a procedure elimination a single 3
by a syntactic process;

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 29 / 39

Formalized quantifier elimination for discrete RCF

We have formally proved in Coq:
The reduction of decidability to quantifier elimination
The reduction of full quantifier elimination to weak;

The correctness of the emptiness test;

The correctness of the weak quantifier elimination.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 30/ 39

Formalized quantifier elimination for discrete RCF

We have formally proved in Coq:
The reduction of decidability to quantifier elimination
The reduction of full quantifier elimination to weak;

The correctness of the emptiness test;

The correctness of the weak quantifier elimination.

Disclaimer:
@ This is in fact work in progress with C. Cohen.

@ The analogue work on algebraically closed fields is completed.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

30 / 39

Decidability, effectiveness

We have not addressed tractable programs so far: the complexity of this
algorithm is far from elementary.

It is in fact comparable to the one of the original proof of Tarski.

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 31/39

Decision methods in discrete real closed fields

@ Real closed field theory is decidable (Tarski, 1948)
e Hoérmander method (Hérmander 1983 - Cohen 1969)
e Cylindrical Algebraic Decomposition algorithm (Collins 1975)

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010

32 /39

CAD in a nutshell: general setting

e Input: A finite family P C Q[Xi,. .., X,] of polynomials

@ Output: A finite partition of R"” into cylindrical cells over which each
element of P has a constant sign.

Warning: cylindrical decomposition does not entail decidability
(cf. Michel’s tutorial) ...

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 33 /39

Example: X2+ Y2+ 272 -1

:?

L

A. Mahboubi (INRIA)

Cylindrical Algebraic Decomposition in Coq

Prove 3xJdy y—x>=0Ax—y=0
Extract polynomials: Py =y — x?, P, =y — x

7 = = DAy
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq

4

Prove 3xJdy y—x>=0Ax—y=0

Projection along .

1
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 36 / 39

Prove 3xJdy y—x>=0Ax—y=0

Lifting phase and sign computation.
1

4

1
1
1
1
1

+ +

.

1

1

1
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 37 /39

Prove 3xJdy y—x>=0Ax—y=0

Solution search

A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq November 11th 2010 38 /39

CAD in a nutshell

R[X1, ..., X4] R[X1, ..., Xo-1]
P=Pi,..., P projection Q=Qu,...,Q
CAD and signs for P —
lifting

CAD and signs for Q
RI‘I

Rnfl

=] & = E DAl
A. Mahboubi (INRIA) Cylindrical Algebraic Decomposition in Coq

