Constructive Algebra in Functional Programming and Type Theory

Anders Mörtberg

Introduction

- Master thesis: Haskell implementation of constructive algebra
- Current work:
 - ► Bézout and GCD domains in type theory
 - Gauss elimination in Haskell and type theory
 - Smith normal form in Haskell

Haskell

- Functional
- ▶ Pure Easier to reason about programs
- ► Lazy Infinite datastructures
- ► Type classes

Type classes

```
class Eq a where (==) :: a \rightarrow a \rightarrow Bool class Ring a where (<+>) :: a \rightarrow a \rightarrow a (<*>) :: a \rightarrow a \rightarrow a neg :: a \rightarrow a zero :: a one :: a
```

Specification

Specify with computable boolean functions

```
propAddAssoc :: (Ring a, Eq a) \Rightarrow a \rightarrow a \rightarrow a \rightarrow Bool propAddAssoc x y z = (x \leftrightarrow> y) \leftrightarrow> z == x \leftrightarrow> (y \leftrightarrow> z)
```

- ▶ (Ring a, Eq a) ⇒ Means that the type a is a "discrete ring"
- ► Can be tested using software testing techniques

Example

```
type Z = Integer  
instance Ring Z where  
(<*>) = (*)  
(<+>) = (+)  

neg = negate  
one = 1  
zero = 0  
> quickCheck (propAddAssoc :: Z \rightarrow Z \rightarrow Z \rightarrow Property)  
+++ OK, passed 100 tests.
```

Linear algebra over a field

Solving systems of linear equations

$$MX = 0$$
 $MX = A$

Gauss elimination

Coherent rings

- Generalize the notion of solving equations to finding generators of solutions over rings
- ightharpoonup Given a vector M there exist a matrix L such that ML=0 and

$$MX = 0 \Leftrightarrow \exists Y. X = LY$$

Representation in Haskell

```
type Vector a = [a]
type Matrix a = [[a]]

class Ring a ⇒ Coherent a where
  solve :: Vector a → Matrix a

propCoherent :: (Coherent a, Eq a) ⇒ Vector a → Bool
propCoherent m = isSolution (solve m) m
```

Properties of coherent rings

Theorem

In a coherent ring it is possible to solve homogenous systems of equations

$$MX = 0$$

 ${\tt solveMxN}$:: Coherent a \Rightarrow Matrix a \rightarrow Matrix a

Properties of coherent rings

Theorem

Let R be an integral domain and $I, J \subseteq R$ two f.g. ideals then

 $I \cap J$ f.g. $\Rightarrow R$ coherent

```
type Ideal a = [a] solveInt :: (Ideal a \rightarrow Ideal a \rightarrow (Ideal a,[[a]],[[a]])) \\ \rightarrow Vector a \\ \rightarrow Matrix a
```

Strongly discrete rings

► A ring is strongly discrete if we can decide ideal membership, i.e. we can solve

$$a_1x_1+\cdots+a_nx_n=b$$

class Ring a \Rightarrow StronglyDiscrete a where member :: a \rightarrow Ideal a \rightarrow Maybe [a]

Bézout domains

- Non-Noetherian analogue of principal ideal domains
- ► PID: Every ideal is principal
 - Quantification over all ideals
- Bézout domain: Every finitely generated ideal is principal
- Equivalent definition:

$$\forall a\ b. \exists g\ a_0\ b_0\ x\ y.\ a=ga_0\wedge b=gb_0\wedge a_0x+b_0y=1$$

Bézout domains

Theorem

Every Bézout domain is coherent

Theorem

Every Bézout domain is strongly discrete iff division is explicit

Theorem

Every Euclidean domain is a Bézout domain. In particular $\mathbb Z$ and k[x] are Bézout domains

Prüfer domains

- ▶ Non-Noetherian analogue of Dedekind domains
- ► Every f.g. ideal is invertible: Given a f.g. ideal I there exists (f.g.) J such that IJ is principal
- First order characterization:

$$\forall x \ y. \ \exists u \ v \ w. ux = vy \land (1-u)y = wx$$

Theorem

Given f.g. ideal I and J, we can find generators of $I \cap J$

Examples of Prüfer domains

Theorem

Every Bézout domain is a Prüfer domain (compare: Every PID is a Dedekind domain)

Theorem

Let R be a Bézout domain and L an algebraic extension of its field of fractions K. The integral closure of R inside L is a Prüfer domain.

- $ightharpoonup \mathbb{Z}[\sqrt{-5}]$
- k[x, y] with $y^2 = 1 x^4$

Current work

- Bézout and GCD domains in type theory
- Gauss elimination over field in Haskell
 - ► Formalized in type theory using SSReflect by Cyril Cohen
- Smith normal form in Haskell

GCD domains

- ► Non-Noetherian analogue of unique factorization domains
- ► GCD domain: Every pair of elements have a greatest common divisor

$$\forall a \ b. \exists g \ x \ y. \ a = gx \land b = gy \land \forall g'. \ g' \mid a \land g' \mid b \rightarrow g' \mid g$$

GCD domains in SSReflect

- Based of integral domain with decidable equality and explicit units
- ▶ In a GCD domain this give explicit divisibility

$$\forall a \ b. \ a \nmid b \lor \exists x. \ b = ax$$

GCD domains in SSReflect

Theorem

Every Bézout domain is a GCD domain

Theorem

Euclids lemma: If $a \mid bc$ and gcd(a,b) = 1 then $a \mid c$

Future work

- ► Gauss lemma
- ▶ If R is a GCD domain then R[x] is also a GCD domain
- Implement Euclidean rings and prove that they are Bézout domains

Smith normal form

Let A be a nonzero $m \times n$ matrix over a PID. There exists invertible $m \times m$ and $n \times n$ matrices S.T such that

$$SAT = \begin{pmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ 0 & \alpha_2 & 0 & \cdots & 0 \\ 0 & 0 & & & 0 \\ & & & \alpha_r & & \vdots \\ & & & 0 & & \\ 0 & & \cdots & & 0 \end{pmatrix}$$

and $\alpha_i \mid \alpha_{i+1}$

ightharpoonup The α_i are called the invariant factors of the matrix

Representation in Haskell

Future work: Smith normal form in SSReflect

- ► Convert Haskell implementation to type theory
- Need constructive PIDs

Future work: Constructive PIDs

- Mines, Richman, Ruitenburg: Bézout domains such that if we have a sequence u(n) with $u(n+1) \mid u(n)$ then there exists k such that $u(k) \mid u(k+1)$
- ▶ In type theory this can be represented as that the relation

$$R(a,b) := a \mid b \&\& not(b \mid a)$$

is well-founded

Questions?

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework program of the European Commission