Constructive Algebra in Functional
Programming and Type Theory

Anders Mortberg

Introduction

» Master thesis: Haskell implementation of constructive algebra

» Current work:

» Bézout and GCD domains in type theory
» Gauss elimination in Haskell and type theory
» Smith normal form in Haskell

Haskell

v

Functional

» Pure - Easier to reason about programs

v

Lazy - Infinite datastructures

v

Type classes

Type classes

class Eq a where
&> :: a - a — Bool

class Ring a where

(<) ::a—- a— a
(<*>) a— a— a
neg :a — a

zero a

one a

Specification

» Specify with computable boolean functions

propAddAssoc :: (Ring a, Eq a) = a —+ a — a — Bool
propAddAssoc x y z = (x <> y) <> z==x <> (y <> 2)

» (Ring a, Eq a) = Means that the type a is a “discrete ring”

» Can be tested using software testing techniques

Example

type Z = Integer

instance Ring Z where

(<%>) = (%)
(<) = B
neg = negate
one =1

zero =0

> quickCheck (propAddAssoc :: Z — Z — Z — Property)
+++ 0K, passed 100 tests.

Linear algebra over a field

» Solving systems of linear equations
MX =0 MX =A

» Gauss elimination

Coherent rings

» Generalize the notion of solving equations to finding generators
of solutions over rings

» Given a vector M there exist a matrix L such that ML =0 and

MX=0 « 3JY. X=LY

Representation in Haskell

type Vector a = [a]
type Matrix a = [[a]]

class Ring a = Coherent a where
solve :: Vector a — Matrix a

propCoherent :: (Coherent a, Eq a) = Vector a — Bool
propCoherent m = isSolution (solve m) m

Properties of coherent rings

Theorem

In a coherent ring it is possible to solve homogenous systems of
equations

MX =0

solveMxN :: Coherent a = Matrix a — Matrix a

Properties of coherent rings

Theorem
Let R be an integral domain and I, J C R two f.g. ideals then

INJ fg. = R coherent

type Ideal a = [a]

solvelnt :: (Ideal a — Ideal a — (Ideal a,[[all,[[all))

— Vector a
— Matrix a

Strongly discrete rings

» A ring is strongly discrete if we can decide ideal membership,
i.e. we can solve

aix1+---+anxp=>b

class Ring a = StronglyDiscrete a where
member :: a — Ideal a — Maybe [a]

Bézout domains

v

Non-Noetherian analogue of principal ideal domains

v

PID: Every ideal is principal

» Quantification over all ideals

v

Bézout domain: Every finitely generated ideal is principal

v

Equivalent definition:

Vab.dgagbygxy.a=gag N b=ghyg A agx + bgy =1

Bézout domains

Theorem
Every Bézout domain is coherent

Theorem
Every Bézout domain is strongly discrete iff division is explicit

Theorem
Every Euclidean domain is a Bézout domain. In particular 7 and
k[x] are Bézout domains

Priifer domains

» Non-Noetherian analogue of Dedekind domains

» Every f.g. ideal is invertible: Given a f.g. ideal | there exists
(f.g.) J such that 1J is principal

» First order characterization:

Vxy.Juvw.ux = vy A (1 — u)y = wx

Theorem
Given f.g. ideal | and J, we can find generators of I N J

Examples of Priifer domains

Theorem

Every Bézout domain is a Priifer domain (compare: Every PID is a
Dedekind domain)

Theorem
Let R be a Bézout domain and L an algebraic extension of its field
of fractions K. The integral closure of R inside L is a Priifer domain.

» 2[/=5]

> k[x,y] with y> =1 —x*

Current work

» Bézout and GCD domains in type theory
» Gauss elimination over field in Haskell

» Formalized in type theory using SSReflect by Cyril Cohen

» Smith normal form in Haskell

GCD domains

» Non-Noetherian analogue of unique factorization domains

» GCD domain: Every pair of elements have a greatest common
divisor

Vabidgxy.a=gxANb=gyAVg'. g |ang' |b—g'|g

GCD domains in SSReflect

» Based of integral domain with decidable equality and explicit
units

> In a GCD domain this give explicit divisibility

Vab.at bV dx.b=ax

GCD domains in SSReflect

Theorem
Every Bézout domain is a GCD domain

Theorem
Euclids lemma: If a | bc and ged(a, b) =1 then a| ¢

Future work

» Gauss lemma
» If Ris a GCD domain then R[x] is also a GCD domain

» Implement Euclidean rings and prove that they are Bézout
domains

Smith normal form

» Let A be a nonzero m x n matrix over a PID. There exists
invertible m x m and n x n matrices S, T such that

a; 0 O 0
0 a» O 0
0 0 0
SAT = o
: 0
0 . 0

and «; | ajt1

» The q; are called the invariant factors of the matrix

Representation in Haskell

data Matrix a = Cons a [a] [a] (Matrix a)

| Empty
1 2
3 4
ex :: Matrix Z

ex = Cons 1 [2] [3] (Cons 4 [1 [1 Empty)

Future work: Smith normal form in SSReflect

» Convert Haskell implementation to type theory

» Need constructive PIDs

Future work: Constructive PIDs

» Mines, Richman, Ruitenburg: Bézout domains such that if we
have a sequence u(n) with u(n+ 1) | u(n) then there exists k
such that u(k) | u(k +1)

» In type theory this can be represented as that the relation
R(a,b) :=a | b && not(b | a)

is well-founded

Questions?

This work has been partially funded by the FORMATH project, nr. 243847, of the

FET program within the 7th Framework program of the European Commission

