
Constructive Algebra in Functional
Programming and Type Theory

Anders Mörtberg

Introduction

I Master thesis: Haskell implementation of constructive algebra

I Current work:

I Bézout and GCD domains in type theory
I Gauss elimination in Haskell and type theory
I Smith normal form in Haskell

Haskell

I Functional

I Pure - Easier to reason about programs

I Lazy - In�nite datastructures

I Type classes

Type classes

class Eq a where

(==) :: a → a → Bool

class Ring a where

(<+>) :: a → a → a

(<∗>) :: a → a → a

neg :: a → a

zero :: a

one :: a

Speci�cation

I Specify with computable boolean functions

propAddAssoc :: (Ring a, Eq a) ⇒ a → a → a → Bool

propAddAssoc x y z = (x <+> y) <+> z == x <+> (y <+> z)

I (Ring a, Eq a)⇒ Means that the type a is a �discrete ring�

I Can be tested using software testing techniques

Example

type Z = Integer

instance Ring Z where

(<∗>) = (∗)
(<+>) = (+)
neg = negate

one = 1

zero = 0

> quickCheck (propAddAssoc :: Z → Z → Z → Property)

+++ OK, passed 100 tests.

Linear algebra over a �eld

I Solving systems of linear equations

MX = 0 MX = A

I Gauss elimination

Coherent rings

I Generalize the notion of solving equations to �nding generators

of solutions over rings

I Given a vector M there exist a matrix L such that ML = 0 and

MX = 0 ↔ ∃Y . X = LY

Representation in Haskell

type Vector a = [a]

type Matrix a = [[a]]

class Ring a ⇒ Coherent a where

solve :: Vector a → Matrix a

propCoherent :: (Coherent a, Eq a) ⇒ Vector a → Bool

propCoherent m = isSolution (solve m) m

Properties of coherent rings

Theorem

In a coherent ring it is possible to solve homogenous systems of

equations

MX = 0

solveMxN :: Coherent a ⇒ Matrix a → Matrix a

Properties of coherent rings

Theorem

Let R be an integral domain and I , J ⊆ R two f.g. ideals then

I ∩ J f.g. ⇒R coherent

type Ideal a = [a]

solveInt :: (Ideal a → Ideal a → (Ideal a,[[a]],[[a]]))

→ Vector a

→ Matrix a

Strongly discrete rings

I A ring is strongly discrete if we can decide ideal membership,

i.e. we can solve

a1x1 + · · ·+ anxn = b

class Ring a ⇒ StronglyDiscrete a where

member :: a → Ideal a → Maybe [a]

Bézout domains

I Non-Noetherian analogue of principal ideal domains

I PID: Every ideal is principal

I Quanti�cation over all ideals

I Bézout domain: Every �nitely generated ideal is principal

I Equivalent de�nition:

∀a b.∃g a0 b0 x y . a = ga0 ∧ b = gb0 ∧ a0x + b0y = 1

Bézout domains

Theorem

Every Bézout domain is coherent

Theorem

Every Bézout domain is strongly discrete i� division is explicit

Theorem

Every Euclidean domain is a Bézout domain. In particular Z and

k[x] are Bézout domains

Prüfer domains

I Non-Noetherian analogue of Dedekind domains

I Every f.g. ideal is invertible: Given a f.g. ideal I there exists

(f.g.) J such that IJ is principal

I First order characterization:

∀x y .∃u v w .ux = vy ∧ (1− u)y = wx

Theorem

Given f.g. ideal I and J, we can �nd generators of I ∩ J

Examples of Prüfer domains

Theorem

Every Bézout domain is a Prüfer domain (compare: Every PID is a

Dedekind domain)

Theorem

Let R be a Bézout domain and L an algebraic extension of its �eld

of fractions K. The integral closure of R inside L is a Prüfer domain.

I Z[
√
−5]

I k[x , y] with y2 = 1− x4

Current work

I Bézout and GCD domains in type theory

I Gauss elimination over �eld in Haskell

I Formalized in type theory using SSRe�ect by Cyril Cohen

I Smith normal form in Haskell

GCD domains

I Non-Noetherian analogue of unique factorization domains

I GCD domain: Every pair of elements have a greatest common

divisor

∀a b.∃g x y . a = gx ∧ b = gy ∧ ∀g ′. g ′ | a ∧ g ′ | b → g ′ | g

GCD domains in SSRe�ect

I Based of integral domain with decidable equality and explicit

units

I In a GCD domain this give explicit divisibility

∀a b. a - b ∨ ∃x . b = ax

GCD domains in SSRe�ect

Theorem

Every Bézout domain is a GCD domain

Theorem

Euclids lemma: If a | bc and gcd(a, b) = 1 then a | c

Future work

I Gauss lemma

I If R is a GCD domain then R[x] is also a GCD domain

I Implement Euclidean rings and prove that they are Bézout

domains

Smith normal form

I Let A be a nonzero m × n matrix over a PID. There exists

invertible m ×m and n × n matrices S,T such that

SAT =



α1 0 0 · · · 0

0 α2 0 · · · 0

0 0
. . . 0

αr

...
... 0

. . .

0 · · · 0


and αi | αi+1

I The αi are called the invariant factors of the matrix

Representation in Haskell

data Matrix a = Cons a [a] [a] (Matrix a)

| Empty

(
1 2

3 4

)
ex :: Matrix Z

ex = Cons 1 [2] [3] (Cons 4 [] [] Empty)

Future work: Smith normal form in SSRe�ect

I Convert Haskell implementation to type theory

I Need constructive PIDs

Future work: Constructive PIDs

I Mines, Richman, Ruitenburg: Bézout domains such that if we

have a sequence u(n) with u(n + 1) | u(n) then there exists k

such that u(k) | u(k + 1)

I In type theory this can be represented as that the relation

R(a, b) := a | b && not(b | a)

is well-founded

Questions?

This work has been partially funded by the FORMATH project, nr. 243847, of the

FET program within the 7th Framework program of the European Commission

