
Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Towards numerical integration in Coq

Bas Spitters (jww Eelis van der Weegen)

Radboud University Nijmegen

November 10, 2010

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Context

Gap between theory and implementation of numerics.
The interval community started to narrow this gap.
Mathematically correct, but not formally provably so.
Are open to help from formal mathematics.

We need computations in formal proofs.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Context

Gap between theory and implementation of numerics.
The interval community started to narrow this gap.
Mathematically correct, but not formally provably so.
Are open to help from formal mathematics.
We need computations in formal proofs.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Kantorovich
The Newton-Kantorivich theorem gives sufficient conditions
for the convergence of Newton ’s method.
Theorem: Let X and Y be Banach spaces and
F : D ⊂ X → Y . Suppose that on an open convex set
D0 ⊂ D, F is Frechet differentiable and

||F ′(x)− F ′(y)|| ≤ K ||x − y ||, x , y ∈ D0.

For some x0 ∈ D0, assume that Γ0 = [F ′(x0)]−1 is defined on
all of Y and that h := βKη ≤ 1

2 where ||Γ0|| ≤ β and
||Γ0Fx0|| ≤ η. Set

t∗ =
1

βK
(1−

√
1− 2h), t∗∗ =

1

βK
(1 +

√
1− 2h)

and suppose that S := {x | ||x − x0|| ≤ t∗} ⊂ D0. Then the
Newton iterates xk+1 := xk − [F ′(xk)]−1Fxk , k = 0, 1, . . . ,
are well defined, lie in S and converge to a solution x∗ of
Fx = 0 which is unique in D0 ∩ {x | ||x0 − x || < t∗∗}.
Moreover, if h < 1

2 the order of convergence is quadratic.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Methodology

Bishop: use contructive analysis as a programming language
for numerical analysis
Martin-Löf: type theory as a language for constructive
mathematics
Verified exact numerical analysis running inside Coq
Clean implementation first, speed up later

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Overview

I Experiment building a library using type classes

I Faster real computation

I Numerical integration

I Picard method

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Experiment building a library

Request for input
Three libraries: stdlib, corn, ssr.
ssr: solves many problems, but discrete
corn: computational continuous structures, needs updating

Experiment using type classes.
To be integrated with canonical structures → unification
hints?

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Dyadics

Improve efficency of the reals.
The current implementation (O’Connor) is fast, but can be
improved.
Use dyadics instead of rationals, use machine integers
(Krebbers)
Code refactoring, data structures ...
Example: verified plot of a circle.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Numerical integration

Riemann very slow, but general and verified!

Newton-Cotes:
Approximate a function by a polynomial and integrate this.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Numerical integration

Riemann very slow, but general and verified!
Newton-Cotes:
Approximate a function by a polynomial and integrate this.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Lagrange polys

Definition
Let x1, . . . , xn be distinct and y1, . . . , yn arbitrary, then a
unique polynomial L of degree at most n − 1 exists with
L(xk) = yk .
This polynomial is called the Lagrange polynomial.
Explicitly, L(x) :=

∑
j yj
∏

i ,j 6=i
x−xi
xj−xi .

Definition L: cpoly CRasCRing :=
Sigma (map (fun p => let ’((x, y), rest) := p in

C y [∗] Pi (map (fun xy’ => (’ (− fst xy’) [+X∗] One)
[∗] C (’ (/ (x − fst xy’)))) rest)) (separates qpoints)).

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Theorem (Lagrange error formula)

Let f be n times differentiable. Then for all x,
|f (x)− Pn(x)| 6

∏
(x−xk)
n! sup |f (n)|.

Proof uses generalized Rolle’s theorem.
This is a paradigmatic example.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Generalized Rolle

Theorem (Classical Rolle’s theorem)

Let f be differentiable and have two zeroes in an interval
[a, b]. Then f ′ has a zero in (a, b).

Theorem (Classical generalized Rolle’s theorem)

Let f be n times differentiable and have n + 1 zeroes in an
interval [a, b]. Then f (n) has a zero in [a, b].

Is not constructive, i.e. does not compute inside Coq.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Generalized Rolle

Three solutions:

I Approximate (ε) version
Was used before in corn, Ugly
The reason we have two libraries for reals in Coq?

I Generic zeroes using sheaf models
Computational interpretation of classical logic a la
Hilbert program
Beautiful, but too early

I Divided differences (Thanks Henri)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Generalized Rolle

Three solutions:

I Approximate (ε) version
Was used before in corn, Ugly
The reason we have two libraries for reals in Coq?

I Generic zeroes using sheaf models
Computational interpretation of classical logic a la
Hilbert program
Beautiful, but too early

I Divided differences (Thanks Henri)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Generalized Rolle

Three solutions:

I Approximate (ε) version
Was used before in corn, Ugly
The reason we have two libraries for reals in Coq?

I Generic zeroes using sheaf models
Computational interpretation of classical logic a la
Hilbert program
Beautiful, but too early

I Divided differences (Thanks Henri)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Generalized Rolle

Three solutions:

I Approximate (ε) version
Was used before in corn, Ugly
The reason we have two libraries for reals in Coq?

I Generic zeroes using sheaf models
Computational interpretation of classical logic a la
Hilbert program
Beautiful, but too early

I Divided differences (Thanks Henri)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula

Replace Generalized Rolle by Hermite-Genocchi.
Let R be a field and f : R → R. The interpolation
polynomial in the Newton form is a linear combination of
Newton basis polynomials

N(x) :=
k∑

j=0

ajnj(x)

with the Newton basis polynomials defined as

nj(x) :=

j−1∏
i=0

(x − xi)

and the coefficients defined as aj := f [x0, ..., xj], where
f [x0, ..., xj] is the notation for divided differences:

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula

divided differences defined recursively by:

f [a] = f (a)

f [a, b] = f (a)− f (b)/a− b

f [a, b, c] = f [a, c]− f [b, c]/a− b

and in general, f [a : b : l] := f [a : l]− f [b : l]/a− b.

Would like: induction-recursion.
Program at Type level (=Equations?)
Separate logic and computation:
lists without duplication, dummy values :-(
The Newton polynomial can be written as

N(x) := f [x0]+f [x0, x1](x−x0)+· · ·+f [x0, ..., xk](x−x0) · · · (x−xk−1)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula

divided differences defined recursively by:

f [a] = f (a)

f [a, b] = f (a)− f (b)/a− b

f [a, b, c] = f [a, c]− f [b, c]/a− b

and in general, f [a : b : l] := f [a : l]− f [b : l]/a− b.
Would like: induction-recursion.
Program at Type level (=Equations?)

Separate logic and computation:
lists without duplication, dummy values :-(
The Newton polynomial can be written as

N(x) := f [x0]+f [x0, x1](x−x0)+· · ·+f [x0, ..., xk](x−x0) · · · (x−xk−1)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula

divided differences defined recursively by:

f [a] = f (a)

f [a, b] = f (a)− f (b)/a− b

f [a, b, c] = f [a, c]− f [b, c]/a− b

and in general, f [a : b : l] := f [a : l]− f [b : l]/a− b.
Would like: induction-recursion.
Program at Type level (=Equations?)
Separate logic and computation:
lists without duplication, dummy values :-(

The Newton polynomial can be written as

N(x) := f [x0]+f [x0, x1](x−x0)+· · ·+f [x0, ..., xk](x−x0) · · · (x−xk−1)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula

divided differences defined recursively by:

f [a] = f (a)

f [a, b] = f (a)− f (b)/a− b

f [a, b, c] = f [a, c]− f [b, c]/a− b

and in general, f [a : b : l] := f [a : l]− f [b : l]/a− b.
Would like: induction-recursion.
Program at Type level (=Equations?)
Separate logic and computation:
lists without duplication, dummy values :-(
The Newton polynomial can be written as

N(x) := f [x0]+f [x0, x1](x−x0)+· · ·+f [x0, ..., xk](x−x0) · · · (x−xk−1)

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Newton polynomial

Notation QPoint := (Q ∗ CR).
Fixpoint divdiff l (a: QPoint) (xs: list QPoint): CR :=
match xs with
| nil => snd a
| cons b l => (divdiff l a l − divdiff l b l) ∗ ’ / (fst a −

fst b)
end.

Definition divdiff (l: ne list QPoint): CR :=
divdiff l (head l) (tail l).

Let an (xs: ne list QPoint): cpoly CRasCRing :=
C (divdiff xs) [∗] Pi (map (fun x => ’ (− fst x) [+X∗]

One) (tl xs)).

Definition N: cpoly CRasCRing := Sigma (map an (tails
qpoints)).

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula
The Newton polynomial coincides with the Lagrange
polynomial.
The divided difference f [a1, . . . , an] is the coefficient of xn in
the (Newton) polynomial that interpolates f at a1, . . . , an.

f [a, b] =
f (a)− f (b)

a− b
=

∫ 1

0
f ′(a + (b − a)t)dt.

Generally,

f [a1, ..., an] =

∫∫
n−1

f (n−1)(u1a1 + ...+ unan)du1 · · · dun−1

with u1 + · · ·+ un = 1 and 0 6 ui 6 1.
Corollary,

f (x)−Pnf (x) =
n∏

i=1

(x−xi)

∫∫
n−1

f (n−1)(u1a1+ ...+unan)d~u

Replace differentiation by integration.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula
The Newton polynomial coincides with the Lagrange
polynomial.
The divided difference f [a1, . . . , an] is the coefficient of xn in
the (Newton) polynomial that interpolates f at a1, . . . , an.

f [a, b] =
f (a)− f (b)

a− b
=

∫ 1

0
f ′(a + (b − a)t)dt.

Generally,

f [a1, ..., an] =

∫∫
n−1

f (n−1)(u1a1 + ...+ unan)du1 · · · dun−1

with u1 + · · ·+ un = 1 and 0 6 ui 6 1.

Corollary,

f (x)−Pnf (x) =
n∏

i=1

(x−xi)

∫∫
n−1

f (n−1)(u1a1+ ...+unan)d~u

Replace differentiation by integration.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula
The Newton polynomial coincides with the Lagrange
polynomial.
The divided difference f [a1, . . . , an] is the coefficient of xn in
the (Newton) polynomial that interpolates f at a1, . . . , an.

f [a, b] =
f (a)− f (b)

a− b
=

∫ 1

0
f ′(a + (b − a)t)dt.

Generally,

f [a1, ..., an] =

∫∫
n−1

f (n−1)(u1a1 + ...+ unan)du1 · · · dun−1

with u1 + · · ·+ un = 1 and 0 6 ui 6 1.
Corollary,

f (x)−Pnf (x) =
n∏

i=1

(x−xi)

∫∫
n−1

f (n−1)(u1a1+ ...+unan)d~u

Replace differentiation by integration.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Hermite-Genocchi formula
The Newton polynomial coincides with the Lagrange
polynomial.
The divided difference f [a1, . . . , an] is the coefficient of xn in
the (Newton) polynomial that interpolates f at a1, . . . , an.

f [a, b] =
f (a)− f (b)

a− b
=

∫ 1

0
f ′(a + (b − a)t)dt.

Generally,

f [a1, ..., an] =

∫∫
n−1

f (n−1)(u1a1 + ...+ unan)du1 · · · dun−1

with u1 + · · ·+ un = 1 and 0 6 ui 6 1.
Corollary,

f (x)−Pnf (x) =
n∏

i=1

(x−xi)

∫∫
n−1

f (n−1)(u1a1+ ...+unan)d~u

Replace differentiation by integration.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

Corollary (Simpson’s rule)
If |f (4)| 6 M, then

|
∫ b

a

f (x)dx − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
| 6 (b − a)5

2880
M.

The right hand side is the integral of the Lagrange
polynomial P3 at a, a+b

2 , b. For the error we adopt the
classical proof, but replace the use of Rolle’s theorem and
the Mean Value Theorem by the Hermite-Genocchi formula.

Define F (t) := f (a+b
2 + b−a

2 t). This reduces the problem to

showing that |
∫ 1

−1
F (τ)dτ − 1

3 (F (−1) + 4F (0) + F (1)]| 6 N/90,

where |F (4)| 6 N

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

Corollary (Simpson’s rule)
If |f (4)| 6 M, then

|
∫ b

a

f (x)dx − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
| 6 (b − a)5

2880
M.

The right hand side is the integral of the Lagrange
polynomial P3 at a, a+b

2 , b. For the error we adopt the
classical proof, but replace the use of Rolle’s theorem and
the Mean Value Theorem by the Hermite-Genocchi formula.
Define F (t) := f (a+b

2 + b−a
2 t). This reduces the problem to

showing that |
∫ 1

−1
F (τ)dτ − 1

3 (F (−1) + 4F (0) + F (1)]| 6 N/90,

where |F (4)| 6 N

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

Define

G (t) =

∫ t

−t
F (τ)dτ − t

3
(F (−t) + 4F (0) + F (t)]

We need to prove that 90G (1) 6 ‖F (4)‖.

To do so, define
H(t) := G (t)− t5G (1). Then

H(0) = H(1) = H ′(0) = H ′′(0) = 0.

Hence, H[0, 0, 0, 1] = −(H[0, 0, 0]− H[0, 0, 1]) =
0 + (−H[0, 0] + H[0, 1]) = 0.
Moreover, H(3)(t) = − t

3(F (3)(t)− F (3)(−t))− 60t2G (1) =

− t
3(
∫ t
−t F (4))− 60t2G (1).

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

Define

G (t) =

∫ t

−t
F (τ)dτ − t

3
(F (−t) + 4F (0) + F (t)]

We need to prove that 90G (1) 6 ‖F (4)‖.To do so, define
H(t) := G (t)− t5G (1). Then

H(0) = H(1) = H ′(0) = H ′′(0) = 0.

Hence, H[0, 0, 0, 1] = −(H[0, 0, 0]− H[0, 0, 1]) =
0 + (−H[0, 0] + H[0, 1]) = 0.
Moreover, H(3)(t) = − t

3(F (3)(t)− F (3)(−t))− 60t2G (1) =

− t
3(
∫ t
−t F (4))− 60t2G (1).

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

Define

G (t) =

∫ t

−t
F (τ)dτ − t

3
(F (−t) + 4F (0) + F (t)]

We need to prove that 90G (1) 6 ‖F (4)‖.To do so, define
H(t) := G (t)− t5G (1). Then

H(0) = H(1) = H ′(0) = H ′′(0) = 0.

Hence, H[0, 0, 0, 1] = −(H[0, 0, 0]− H[0, 0, 1]) =
0 + (−H[0, 0] + H[0, 1]) = 0.
Moreover, H(3)(t) = − t

3(F (3)(t)− F (3)(−t))− 60t2G (1) =

− t
3(
∫ t
−t F (4))− 60t2G (1).

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

This shows that

0 = H[0, 0, 0, 1] =

∫ 1

0
H(3)

=

∫ 1

0
− t

3
(

∫ t

−t
F (4))− 60t2G (1)

>
∫ 1

0
− t

3
2tN − 60t2G (1)

= −2

3
(N + 90G (1))

∫ 1

0
t2

= −2

3
(N + 90G (1))

1

3
.

Hence, N > −90G (1). Similarly, 0 6 −2
9(−N + 90G (1)).

Consequently, 90G (1) 6 N. We conclude that
|90G (1)| 6 N.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Simpson’s rule

This shows that

0 = H[0, 0, 0, 1] =

∫ 1

0
H(3)

=

∫ 1

0
− t

3
(

∫ t

−t
F (4))− 60t2G (1)

>
∫ 1

0
− t

3
2tN − 60t2G (1)

= −2

3
(N + 90G (1))

∫ 1

0
t2

= −2

3
(N + 90G (1))

1

3
.

Hence, N > −90G (1). Similarly, 0 6 −2
9(−N + 90G (1)).

Consequently, 90G (1) 6 N. We conclude that
|90G (1)| 6 N.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Differentiation over general fields [Bertrand, Glöckner, Neeb]

The proofs are ‘algebraic’ in nature and in this
way become often simpler and more transparent
even than the usual proofs in Rn because we avoid
the repeated use of the Mean Value Theorem (or
of the Fundamental Theorem) which are no longer
needed once they are incorporated in [the definition
of the derivative by a difference quotient].

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Picard existence theorem

Given the initial value problem:

y ′(t) = f (t, y(t)), y(t0) = y0, t ∈ [t0 − α, t0 + α]

Suppose f is Lipschitz continuous in y and continuous in t.
Then, for some ε > 0, there exists a unique solution y(t) to
the initial value problem within the range [t0 − ε,t0 + ε].

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Proof of Picard method

Picard iteration:
Set ϕ0(t) = y0 and

ϕi (t) = y0 +

∫ t

t0

f (s, ϕi−1(s)) ds.

The sequence of Picard iterates ϕi is convergent and that
the limit is a solution to the problem. The width of the
interval where the local solution is defined is entirely
determined by the Lipschitz constant.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Picard iteration

Consider a concrete C∞ function, say λx .sin(sinx)
To compute the integral we need an upper bound on the
derivative.
Cruz-Filipe’s tactic automatically finds a provable derivative.
The sup function (O’Connor/S) computes bound.
Finally, we apply Simpson’s rule.

Towards numerical
integration in Coq

Bas Spitters (jww
Eelis van der
Weegen)

Integration

Experiment building a
library

Faster real
computation

Numerical integration

Picard method

Demo

Simpson’s rule in Coq.

	Integration
	Experiment building a library
	Faster real computation
	Numerical integration
	Picard method

