Guarded recursion in type theory

Rasmus Ejlers Mggelberg
IT University of Copenhagen

December 11, 2014

Joint work with Lars Birkedal, Jan Schwinghammer, Kristian Stgvring

Overview

Guarded recursion applications

e Computing with streams
e Modelling higher order store

Model: the topos of trees

Recursive types

Intensional models

Coinduction via guarded recursion

Motivation

Motivation 1. Computing with streams

e Which of the following streams are well-defined:

zeros = 0::zeros

XS = XS
e Much less obvious when higher types are involved

mergef : (int — int — S(int) — S(int))
— S(int) — S(int) — S(int)
mergef f x::xs y::ys = £ x y (mergef f xs ys)

e A nonproductive example:

badf x y xs = xs

mergef badf x::xs y::ys = mergef badf xs ys

e (example due to Bob Atkey)

Capturing productivity in types

e Introduce modal operator »

S(int) = pX.int x » X
hd: S(int) — int
tail: S(int) — » S(int)
cons: int X » S(int) — S(int)

e Fixed points

fix: (»S(int) — S(int)) — S(int)

zeros = fix(A\xs.0::xs)

Capturing productivity in types

e » is an applicative functor

next: X —- p X
R: P> X—=>Y)>pX—>p»Y

e Typing mergef

mergef :(int — int — » S(int) — S(int))
— S(int) — S(int) — S(int)
mergef f = fix(Ag. A(x::xs)A(y::ys).f x y (g®xs®ys))

e where

g: »(S(int) — S(int) — S(int))

Note: mergef badf is not well typed

Motivation 2: Modelling higher-order store

Would like to solve (but can not)

W=N —a T T =W —mon P(Value)

Suffices to solve this equation

T 2 (N =g T) = mon P(Value))

Can model higher-order store in expressive type theory with
guarded recursion

Synthetic presentation of step-indexed model!

The topos of trees

The topos of trees

S = Set”
Objects

Morphism

Y(1) ~— Y(2) ~— Y(3) ~— ...

Example: object of streams of integers S(int)

s s s

Ze— TP 73— ..

An endofunctor

e Define » X
{x} ~— X(1) ~— X(2) ~— ...
e Note that S(int) = Z x » S(int):

Z x| 7 X T 7 X T

7 x 1 7 X7, < Zx 72—~ .

e Definenext : X — » X

X(1) <2 X(2) <2 X(3) ~— ...

o

(4} X(1) <2 X(2) ~— ...

Fixed points
e Fixed point operator
fixx : (X = X) = X
e Fixpoint property
f(next(fixx(f))) = fixx(f)

e This fixed point is unique.

Fixed points
e Fixed point operator

fixx : (X = X) = X

Fixpoint property

f(next(fixx(f))) = fixx(f)

This fixed point is unique.

A morphism factoring through next is called contractive

Contractive morphisms have unique fixed points

Construction of fixed points

e Given f:p X — X:

()« X(1) <2 X(2) ~— ...
o s
X(1) & X(2) 2 X(3) ~—
e Construct fixx(f) : 1 — X:
1« 1<«

s

X(1) ~— X(2)

-—

fzofl fsofoh

/-\<7|_1

Guarded recursive types

Example

e Consider type constructor F
FX=» X XZ

e F(S(int)) = s(int)

FX 1XZ+— X(1)xZ +~— X(2)xZ +— X(3) X Z...

F2X 1XZ ~——1x7Z%«—— X(1) x 2% «— X(2) x Z2...

o If n> k then F"(X)(k) = 1 x Z* = S(int) (k)

e F is a productive type constructor!

Productive type constructors

e Plan: capture productive type constructors as contractive
morphisms on universe

next F

vV >V 4

e Alternative approach: use that F's action on morphisms is
contractive

next
—_—

G
yX »(YX) 2N Fy X

e (say F locally contractive)

Recursive domain equations

Recall F: S — S strong (enriched) if exists
Fxy:YX — Fy™
Say F locally contractive if each Fx y contractive:

next

G
yX > (YX) 2N py X

and Gx,y respects composition and identity
Generalises to mixed variance functors of many variables

Theorem: If F: S°P x § — S is locally contractive then
there exists X such that F(X, X) = X. Moreover, X unique
up to isomorphism

Solutions are initial dialgebras

Proof of algebraic compactness (sketch)

e First: existence of solutions to covariant equations

e Lemma: Suppose F : S — S is locally contractive and n > k.
Then F"(X)(k) = F"(Y)(k) for all X, Y.

e Construct solution to F as diagonal of

Foym) 21 Py 2O payny £OL pagy gy

F2) 22 Py £O2 Py 202 pagy o)

| | | F() | F() |

F)E3) 22 P1)e) « 12 BayE) S8 prayE)

Universal properties for locally contractive functors

e Let F be locally contractive

e All solutions to F(X) = X are initial algebras and final
coalgebras

e because h: X — Y is algebra map from F(X) = X to g iff

o

F(Y) —
i.e. iff h fixed point of contractive map

yX - yX

Guarded recursive types via universes

Universes in type theory

e Universe type U : Type

r-A: U
[+ EI(A) : Type

e Basic elements Z : U, El(Z) = Z

rMN-A:U I=B:U
rN-AxB:U

El(A x B) = El(A) x EI(B)

Guarded recursion

e Universe closed under »
r-A:U
oAU
El(>(A)) = » El(A)

Guarded recursion

e Universe closed under »
r=A:»U
oAU
El(>(next(A))) = » EI(A)

Guarded recursion

e Universe closed under »
r=A:» U
rN-c AU
El(>(next(A))) = » EI(A)
e Type of streams as fixed point for universe map
S(int) = fix(AX : » U.Z x > X)
e Then

El(S(int)) = El(Z x >(next(S(int))))
=7 x » El(S(int))

Universes in the topos of trees

. ,op

A universe in Set”

e Assume given universe U in Set

. . op
e Construct universe V in Set®

rY ry ry
V(1) «— V(2) <= V(3) < V(4) — ...

e Define V(1) = U
fl fn .
V(n + 1) = {X1<—X2 e Xng1 | Vi.X; € U}
fnfl

f f, f
V(XX X)) = (XX ... £2X)

e (Construction due to Hofmann and Streicher)

Global elements of the universe

°
<
o

©
»
—
i
<

Correspond to objects

X(1) «— X(2) ~— X(3) ~— X(4) ~— ...

Such that X(n) € U

(Generalises to statement about dependent types)

Later operator

e Need >:pV — V

1 V(1) ~— V(2) « V(3) ~— ...

]

V(1) ~— V(2) ~— V(3) ~— V(4) ~— ...

e Define

?(*) =1

f o |
B (XX .. £70X,) = (16X X ... &

n+1

Later operator

e Need >:pV — V

1 V(1) ~— V(2) « V(3) ~— ...

]

V(1) ~— V(2) ~— V(3) ~— V(4) ~— ...

e Define

?(*) =1

f o |
B (XX .. £70X,) = (16X X ... &

n+1
e If A corresponds to A:1— V then

A t
1 Y nex;>v >

corresponds to » A.

Intensional models

Intensional type theory

e Identity types
Fr’-M,N:A

I'+1Ida(M, N) : Type

o Extensional type theory

M- —:1da(M, N)
r-M=N

Guarded recursion in intensional type theory

e Fixed point property is judgemental equality
Frf:»A—-A
I f(next(fix x.f(x))) = fix x.f(x)

e Uniqueness of fixed points is propositional

rEf:»A—=A TEM:A TFp:Ida(M,f(next(M)))
'+ UFP(p) : Ida(M, fix x.f(x))

Intensional models

e Theorem (Shulman): If C is a model of intensional type
theory, so is C+".

e Theorem: C**" models guarded recursion plus UFP

Intensional models

Theorem (Shulman): If C is a model of intensional type
theory, so is C+".

Theorem: C“"" models guarded recursion plus UFP

Model construction uses Reedy model structure on C¥”

Closed types are sequences

A1) 4 A(2) 2 A@3) A A(4) ~— ...

where each r/\ is a fibration

ie. rA

7' models

x:A(n—1)F A(n)(x) : Type

Univalence

e Voevodsky's univalence axiom
Idy(A,B) ~ (A~ B)

e Theorem (Shulman): If U in C is univalent, so is V in C**"

e Univalence plus UFP implies

(F(A) ~ A) «— (A~ fix X.F(X))

Coinductive types via guarded recursive types

Computing with guarded recursive streams

e Recall guarded recursive streams

S(int) = pX.int x B X
hd: S(int) — int
tail: S(int) — » S(int)
cons: int X » S(int) — S(int)

e Encoding productivity in types!

Computing with guarded recursive streams

e Recall guarded recursive streams

S(int) = pX.int x B X
hd: S(int) — int
tail: S(int) — » S(int)
cons: int X » S(int) — S(int)

e Encoding productivity in types!
e Computing the second element

snd = (A(x:xs).next(hd) ® xs): S(int) — » int

e How to get rid of »7

Guarded recursion vs coinduction in model

e Guarded recursive streams

s ™ ™

T TP 73— .

e Coinductive streams
ZNLZNLZNL...

e All maps £: S(int) — S(int) are causal

s

B Zz‘ Z3‘ﬂ—

k 4l

v v T
73— ...

™

72

Guarded recursion vs coinduction in model

Guarded recursion useful when constructing streams

Would like to use coinductive streams when taking them apart

Observation: Limit of guarded recursive streams is set of real
streams!

™ ™

T TP 73— .

One type theory for both Set and Set*””

D
Set 1 Set*”
lim

Multiple clocks

Idea due to Atkey and McBride (simply typed setting only)

| extended it to dependent types using topos of trees model

Clock variable context A = K1,...,kp

A;THA:Type ke A

A;FI—iA:Type
£ix" (b X = X) = X

e etc

Universal quantification over clocks

Ak THA:Type k¢ fe(lN)
A; T FVk.A: Type

AkiTEE:A K ¢&fe(lN
AT FAk.t:Vk.A

k,k' @ fc(MVe.A) Ak THA:Type AT MHt:Vk.A
ALK T T tR] Al /K]

e Clock quantification is right adjoint to clock weakening

Type isomorphisms

Vk. A A (k ¢ fc(A))
ViV A2 VK Vk.A
Vk.(A x B) = (Vk.A) x (Vk.B)
(Vk.A) + (Vk.B) 2 Vk.(A+ B)

Y. x:AVk.B=VEK.) x:AB (k ¢ fc(A))

V. [[x:AB=]][x:AVk.B (k ¢ fc(A))

> Vi A Vk b A (k # k')
Vi.A X Vi p A

e Can all be proved sound wrt model

Coinduction via guarded recursion

int X : S"(int)
Vk.S" (int)

S¥(int)
S(int)

e Type isomorphism provable using isomorphisms from last slide:

S(int) = Vk.(int X » S"(int))

~ (Vk.int) x (Ve » S5(int))
>~ int x (Vk.S"(int))
= int x S(int)

e Can prove this is a final coalgebra

Coinduction via guarded recursion

S*(int) = int x » S%(int)
S(int) = Vk.S"(int)
S(int) = int x S(int)

e Example: define function
odd: S(int) — S(int)

selecting the elements at odd indices of input stream

Example

e Need indexed fixed point operator
pfix®: ((A— »B) — (A —B)) — (A —B)
o Defined as
pfix"(£) = £ix"(\g: » (A — B).£(A\x: A.g®" (next" (x))))
e Satisfies equation

f(next” o pfix"(f)) = pfix™(f)
p p

Example

e Define

oddrec”: (S(int) — > S®(int)) — (S(int) — S"(int))
oddrec” g x::y::xs = x::"g(xs)

0odd”: S(int) — S"(int)

0dd” = pfix"(oddrec”)

odd: S(int) — S(int)

odd xs = Ak.odd"(xs)

Coinduction via guarded recursion, general theorem

Theorem. if F functorial and
F(VEX)=VEFX) k¢A

Then .
VX.F(X) =qet V. Fix"X.F(»X)

carries a final coalgebra structure for F.

Semantics

Multidimensional topos of trees

GR[A] =qef Set@*)”
GR[—] = Set
CR[x] = Set*™”

e Object of GRJx, ~/]

X1,2 Xop = X3

))

X1 +~—— Xo1 ~— X31

Interpretation of clock quantification

D
GR[A] 1 GRIA,K]
lim
e Interpretation of clock quantification
[A; — - Vk.A: Type] = lim([A, k; — = A Type])
e Crucial invariant

[A, k;—F A:Type] =2 D([A; —F A: Type]) & ¢ fc(A)

A category subsuming all GR[A]

Let CV countable set of all clock variables

GR[A] ~ GR[A] = GR[CV] =gt Set@")™

Interpret types, contexts and terms in GR[CV]
Prove that [A; — = A : Type] in GR[A]

Crucial invariant becomes equality

[Ak;—F A:Type] = [A;—F A:Type] & ¢ fc(A)

Universes

e Assume universe U in Set

Can construct universe Va in GR[A] (Hofmann-Streicher)
e But

[A;—F U : Type] = Va
[A, k;—F U: Type] 2 D[A; — F U : Type]

Instead
AN CA

A;THUas: Type

e Semantics

[A;TEUar: Type] = Dara(Var)

Conclusions

Guarded recursive types useful for

e modelling higher-order store
e computing with streams (encoding productivity in types)

Model: topos of trees

Intensional variant shows g.r. consistent with univalence

Coinductive types can be encoded using guarded recursive
types

Thanks!

	Overview

