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10 Years of Partiality and General Recursion in Type Theory

Claims and Disclaims

I know that I know nothing

Socrates
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10 Years of Partiality and General Recursion in Type Theory

Claims and Disclaims

I know that I know nothing

Socrates

Thanks to Andreas Abel, Yves Bertot, Alexander Krauss, Guilhem Moulin,

Milad Niqui, Matthieu Sozeau, . . .
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10 Years of Partiality and General Recursion in Type Theory

Partiality and General Recursion in Type Theory

For decidability and consistency reasons, type theory is a theory of total

functions.

Mainly (total) structural recursive functions are allowed.

No immediate way of formalising partial or general recursion functions.
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Partiality and General Recursion in Type Theory

For decidability and consistency reasons, type theory is a theory of total

functions.

Mainly (total) structural recursive functions are allowed.

No immediate way of formalising partial or general recursion functions.

How can one formalise (and prove correct) partial and general

recursion functions in a natural way in type theory?
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10 Years of Partiality and General Recursion in Type Theory

Partial Functions

Functions not “defined” on a certain argument are not that problematic.
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Partial Functions

Functions not “defined” on a certain argument are not that problematic.

Some common solutions:

Un-interesting result:

tail : {A : Set} → List A → List A

tail [] = []

tail (x :: xs) = xs
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Partial Functions

Functions not “defined” on a certain argument are not that problematic.

Some common solutions:

Un-interesting result:

tail : {A : Set} → List A → List A

tail [] = []

tail (x :: xs) = xs

What would we return for head?
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10 Years of Partiality and General Recursion in Type Theory

Partial Functions

Functions not “defined” on a certain argument are not that problematic.

Some common solutions:

Un-interesting result:

tail : {A : Set} → List A → List A

tail [] = []

tail (x :: xs) = xs

What would we return for head?

Maybe result:

tail : {A : Set} → List A → Maybe (List A)

tail [] = nothing

tail (x :: xs) = just xs

Ana Bove DTP’10 – July 9th 2010 Slide 3



10 Years of Partiality and General Recursion in Type Theory

Partial Functions (Cont.)

Restricted domain:

data NonEmpty {A : Set} : List A → Set where

_::_ : (x : A) (xs : List A) → NonEmpty (x :: xs)

tail : {A : Set} → {xs : List A} → NonEmpty xs → List A

tail (y :: ys) = ys

(Some of the methods we will see later produce similar results on this case.)
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I Will not Talk About . . .
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I Will not Talk About . . .

• Functions not “defined” on a certain argument

• Recursion on co-inductive functions

See for example Bertot’s and Komendantskaya’s work
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I Will not Talk About . . .

• Functions not “defined” on a certain argument

• Recursion on co-inductive functions

See for example Bertot’s and Komendantskaya’s work

• Solutions using co-inductive types

For example Capretta’s work:

-- The partiality monad.

data _⊥ (A : Set) : Set where

now : (x : A) → A ⊥

later : (x : ∞ (A ⊥)) → A ⊥
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10 Years of Partiality and General Recursion in Type Theory

I Will Talk About . . .

Some methods to deal with (non-structural) recursive functions in

• Agda and Coq (based on constructive type theory)

• Isabelle (based on higher-order classical logic)
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10 Years of Partiality and General Recursion in Type Theory

I Will Talk About . . .

Some methods to deal with (non-structural) recursive functions in

• Agda and Coq (based on constructive type theory)

• Isabelle (based on higher-order classical logic)

Two kind of methods:

• Using the existing type system

• Modifying the existing type system (if time allows)
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10 Years of Partiality and General Recursion in Type Theory

Recursion Must Terminate!

To guarantee termination, we require each recursive call to be performed on a

smaller argument.

For inductive data, structure is the standard measure used in the systems.

Otherwise we need to give the measure explicitly and show it is well-founded.
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10 Years of Partiality and General Recursion in Type Theory

Well-Founded Recursion via Acc

Given a set A and a (well-founded) binary relation < over A:

a : A (x : A) → x < a → Acc(A, <, x)

Acc(A, <, a)

Acc(A, <, a) (x : A) → Acc(A, <, x) → ((y : A) → y < x → P (y)) → P (x)

P (a)
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Well-Founded Recursion via Acc

Given a set A and a (well-founded) binary relation < over A:

a : A (x : A) → x < a → Acc(A, <, x)

Acc(A, <, a)

Acc(A, <, a) (x : A) → Acc(A, <, x) → ((y : A) → y < x → P (y)) → P (x)

P (a)

Known problems:

• Structure of the algorithm is often not the natural one

• Logical information is mixed with the computational one

• Often results in long and complicated programs (and proofs)
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10 Years of Partiality and General Recursion in Type Theory

Smarter Termination Checkers

ack : N → N → N

ack 0 m = suc m

ack (suc n) 0 = ack n 1

ack (suc n) (suc m) = ack n (ack (suc n) m)

merge : List N → List N → List N

merge [] ys = ys

merge xs [] = xs

merge (x :: xs) (y :: ys) = if (x < y)

then (x :: merge xs (y :: ys))

else (y :: merge (x :: xs) ys)
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10 Years of Partiality and General Recursion in Type Theory

Smarter Termination Checkers (Cont.)

f : {A : Set} → List A → List A → List A

f [] ys = []

f (x :: xs) ys = f ys xs

g : {A : Set} → List A → List A

g [] = []

g (x :: []) = []

g (x :: y :: xs) = g (x :: xs)
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates (Bove/Capretta) in Agda

We define a predicate that characterises the domain of the function...

... and the function by structural rec. on the (proof of the) domain predicate.
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Domain Predicates (Bove/Capretta) in Agda

We define a predicate that characterises the domain of the function...

... and the function by structural rec. on the (proof of the) domain predicate.

data dom : List N → Set where

dom-[] : dom []

dom-:: : ∀ {x} {xs} →

dom (filter (λ y → y < x) xs) →

dom (filter (λ y → not (y < x)) xs) →

dom (x :: xs)
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates (Bove/Capretta) in Agda

We define a predicate that characterises the domain of the function...

... and the function by structural rec. on the (proof of the) domain predicate.

data dom : List N → Set where

dom-[] : dom []

dom-:: : ∀ {x} {xs} →

dom (filter (λ y → y < x) xs) →

dom (filter (λ y → not (y < x)) xs) →

dom (x :: xs)

quicksort : ∀ xs → dom xs → List N

quicksort [] dom-[] = []

quicksort (x :: xs) (dom-:: p q) =

quicksort (filter (λ y → y < x) xs) p ++

x :: quicksort (filter (λ y → not (y < x)) xs) q
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates and Partiality

For total functions we can “get rid” of the domain predicate:

all-dom : ∀ xs → dom xs

Quicksort : List N → List N

Quicksort xs = quicksort xs (all-dom xs)
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates and Partiality

For total functions we can “get rid” of the domain predicate:

all-dom : ∀ xs → dom xs

Quicksort : List N → List N

Quicksort xs = quicksort xs (all-dom xs)

But we can still talk about partial functions:

data dom-f : N → Set where

dom-f-1 : dom-f 1

dom-f-s : ∀ {n} → dom-f (suc (suc n)) → dom-f (suc (suc n))

f : ∀ n → dom-f n → N

f .1 dom-f-1 = 0

f (suc (suc n)) (dom-f-s p) = f (suc (suc n)) p
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates and Nested Recursion

Using the schema for induction-recursion definitions (Dybjer) we can define

nested recursive functions. Consider McCarthy f91 function:

mutual

data dom91 : N → Set where

dom100< : ∀ {n} → 100 < n → dom91 n

dom≤100 : ∀ {n} → n ≤ 100 → (p : dom91 (n + 11)) ->

dom91 (f91 (n + 11) p) → dom91 n

f91 : ∀ n → dom91 n → N

f91 n (dom100< h) = n - 10

f91 n (dom≤100 h p q) = f91 (f91 (n + 11) p) q
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates and Proofs

The domain predicate gives us the right induction principle!

It follows the definition of the function.
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Domain Predicates and Proofs

The domain predicate gives us the right induction principle!

It follows the definition of the function.

data Sorted : List N → Set where

sort-[] : Sorted []

sort-:: : ∀ {x} {xs} → ... → Sorted (x :: xs)

sorted-qs : ∀ {xs} → ∀ d → Sorted (quicksort xs d)

sorted-qs dom-[] = sort-[]

sorted-qs (dom-:: {x} {xs} p q) =

exp [x, xs, sorted-qs p, sorted-qs q]
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10 Years of Partiality and General Recursion in Type Theory

Advantages of this Method

• Formalisations are easy to understand; close to functional programming

style

• Separates logical and computational parts of a definition

∗ Produces short type-theoretic functions

∗ Allows the formalisation of partial functions

∗ Simplifies formal verification

• Can be automatise

• Nested and mutually recursive functions present no problem

(on type systems that support induction-recursion)
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10 Years of Partiality and General Recursion in Type Theory

Nested Functions via the Graph

We define the graph, the domain and the function in a non-mutually

dependent way (Bove 2009):

data _↓_ : N → N → Set where

100< : ∀ n → 100 < n → n ↓ n - 10

≤100 : ∀ n x y → n ≤ 100 → n + 11 ↓ x → x ↓ y → n ↓ y

Dom91 : N → Set

Dom91 n = ∃ (λ y → n ↓ y)

F91 : ∀ n → Dom91 n → N

F91 n (y , _) = y
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10 Years of Partiality and General Recursion in Type Theory

A Few Simple Results

unique-res : ∀ n r l → n ↓ r → n ↓ l → r ≡ l

dom-prf-ind : ∀ n → ∀ p q → F91 n p ≡ F91 n q

result : ∀ n → ∀ p → F91 n p ≡ proj1 p

im-↓ : ∀ n → ∀ p → n ↓ F91 n p

res-↓ : ∀ n → (p : Dom91 n) → n ↓ proj1 p
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10 Years of Partiality and General Recursion in Type Theory

Recursive Equations

eq-100< : ∀ n → ∀ p → 100 < n → F91 n p ≡ n - 10

eq-≤100 : ∀ n → ∀ p → n ≤ 100 →

∃ (λ p1 -> ∃ (λ p2 -> F91 n p ≡

F91 (F91 (n + 11) p1) p2))
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10 Years of Partiality and General Recursion in Type Theory

Graphs and Proofs

Step 1:

<result : ∀ {n} → ∀ p → n < (F91 n p) + 11

<result (x , h) = ?

where p : Dom91 n and h : n ↓ x.
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10 Years of Partiality and General Recursion in Type Theory

Graphs and Proofs

Step 1:

<result : ∀ {n} → ∀ p → n < (F91 n p) + 11

<result (x , h) = ?

where p : Dom91 n and h : n ↓ x.

Step 2:

<result : ∀ {n} → ∀ p → n < (F91 n p) + 11

<result (.(n - 10) , 100< n h) = exp1

<result (x , ≤100 n y .x h1 h2 h3) =

exp2 [<result (y , h2), <result (x , h3)]

where exp1 : n < n - 10 + 11

and <result (y , h2) : n + 11 < F91 (n + 11) + 11,

<result (x , h3) : F91 (n + 11) < F91 (F91 (n + 11) ) + 11
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10 Years of Partiality and General Recursion in Type Theory

Advantages as Disadvantages

• . . . basically as in the original domain predicate method

• As powerful as the original domain predicate method

• ... but a bit less direct

• However, no need for support for inductive-recursive definitions

• Needs some more case studies
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates in Coq

In Coq, one can define (non-nested) recursive functions with a domain

predicate of type

dom : A → Set

in the same way as in Agda.
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10 Years of Partiality and General Recursion in Type Theory

Domain Predicates in Coq

In Coq, one can define (non-nested) recursive functions with a domain

predicate of type

dom : A → Set

in the same way as in Agda.

Inductive dom : list Z -> Set :=

| dom_nil : dom nil

| dom_cons : forall (x:Z) (xs:list Z),

dom [ y | y <- xs , (Zlt_is_decidable x)] ->

dom [ y | y <- xs , (Zle_is_decidable x)] ->

dom (x::xs).
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10 Years of Partiality and General Recursion in Type Theory

The Definition of Quicksort

Fixpoint quicksort (l : list Z) (H_dom : dom l)

{struct H_dom} : list Z :=

match H_dom with

| dom_nil => nil (A:=Z)

| dom_cons x xs H_dom_lt H_dom_le =>

quicksort [y | y <- xs, Zlt_is_decidable x] H_dom_lt ++

x :: quicksort [y | y <- xs, Zle_is_decidable x] H_dom_le

end.

Theorem everylist_in_dom : forall l, dom l.

Definition Quicksort l := quicksort l (everylist_in_dom l).
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10 Years of Partiality and General Recursion in Type Theory

Problems with this Definition

• A domain of type dom : A → Set produces the wrong program after

extraction!
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Problems with this Definition

• A domain of type dom : A → Set produces the wrong program after

extraction!

• In accordance with program extraction, the right type for the domain

should be

dom : A → Prop
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10 Years of Partiality and General Recursion in Type Theory

Problems with this Definition

• A domain of type dom : A → Set produces the wrong program after

extraction!

• In accordance with program extraction, the right type for the domain

should be

dom : A → Prop

• But then we cannot pattern match on the proof that the list belongs to

the domain ...
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10 Years of Partiality and General Recursion in Type Theory

Problems and Solution with this Definition

• A domain of type dom : A → Set produces the wrong program after

extraction!

• In accordance with program extraction, the right type for the domain

should be

dom : A → Prop

• But then we cannot pattern match on the proof that the list belongs to

the domain ...

• Solution: for each recursive call we need an inversion lemma showing that

the proof arguments for the recursive calls can be deduced from the initial

proof argument
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10 Years of Partiality and General Recursion in Type Theory

New Domain Predicate in Coq

Inductive dom : list Z -> Prop :=

| dom_nil : dom nil

| dom_cons : forall (x:Z) (xs:list Z),

dom [ y | y <- xs , (Zlt_is_decidable x)] ->

dom [ y | y <- xs , (Zle_is_decidable x)] ->

dom (x::xs).
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10 Years of Partiality and General Recursion in Type Theory

New Domain Predicate in Coq

Inductive dom : list Z -> Prop :=

| dom_nil : dom nil

| dom_cons : forall (x:Z) (xs:list Z),

dom [ y | y <- xs , (Zlt_is_decidable x)] ->

dom [ y | y <- xs , (Zle_is_decidable x)] ->

dom (x::xs).

Lemma dom_cons_inv_1 : forall l x xs, dom l ->

l = x::xs -> dom [ y | y <- xs , (Zlt_is_decidable x) ].

Lemma dom_cons_inv_2 : forall l x xs, dom l ->

l = x::xs -> dom [ y | y <- xs , (Zle_is_decidable x) ].
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10 Years of Partiality and General Recursion in Type Theory

New Definition of Quicksort

Fixpoint quicksort (l : list Z) (H_dom : dom l)

{struct H_dom} : list Z :=

match l as l0 return (l = l0 -> list Z) with

| nil => fun _ : l = nil => nil

| x :: xs =>

fun H : l = x :: xs =>

quicksort [y | y <- rest, Zlt_is_decidable x]

(dom_cons_inv_1 l x xs H_dom H) ++

x :: quicksort [y | y <- rest, Zle_is_decidable x]

(dom_cons_inv_2 l x xs H_dom H)

end (refl_equal l).

Theorem everylist_in_dom : forall l, dom l.

Definition Quicksort l := quicksort l (everylist_in_dom l).
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10 Years of Partiality and General Recursion in Type Theory

Comments

(See Chapter 15 of Bertot and Castéran book on Coq (2004).)

• Inversion lemmas should be proved in such a way that their definition are

seen as structurally smaller to the original proof argument

(not by inversion but by pattern matching on the original proof argument,

and returning a subproof)

• Their definition should also be transparent

• The standard induction principle for a predicate into Prop is usually not

enough; we need the dependent version (maximal induction principle)

Scheme dom_ind_dep := Induction for dom Sort Prop.

• Coq type system does not support inductive-recursive definitions, so

nested recursion cannot be defined using domain predicates
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10 Years of Partiality and General Recursion in Type Theory

The Function Command

(After work by Bertot and Balaa, and Barthe, Forest, Pichardie and Rusu.)

With the Function command one can define total non-nested functions:

• By structural recursion

• By giving a measure (into the Natural numbers) and proving that each

recursive call is on smaller arguments

• By giving a well-founded relation and proving that each recursive call is

on smaller arguments
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10 Years of Partiality and General Recursion in Type Theory

The Function Command

(After work by Bertot and Balaa, and Barthe, Forest, Pichardie and Rusu.)

With the Function command one can define total non-nested functions:

• By structural recursion

• By giving a measure (into the Natural numbers) and proving that each

recursive call is on smaller arguments

• By giving a well-founded relation and proving that each recursive call is

on smaller arguments

It generates an induction principle that follows the definition of the function.

In the back, the graph is generated.

Ana Bove DTP’10 – July 9th 2010 Slide 27



10 Years of Partiality and General Recursion in Type Theory

quicksort using Function

Function quicksort (l:list Z) {measure length} : list Z :=

match l with

nil => nil

| x::xs => let (ll,lg) := split x xs

in quicksort ll ++ x :: quicksort lg

end.
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10 Years of Partiality and General Recursion in Type Theory

quicksort using Function

Function quicksort (l:list Z) {measure length} : list Z :=

match l with

nil => nil

| x::xs => let (ll,lg) := split x xs

in quicksort ll ++ x :: quicksort lg

end.

Alternatively:

Definition lenR (l1 l2 : list Z) : Prop := length l1 < length l2.

Function quicksort (l:list Z) {wf lenR} : list Z :=

....

(In addition, we need to provide a proof that lenR is well-founded.)
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10 Years of Partiality and General Recursion in Type Theory

Proof Obligations

We are left with 2 proof obligations:

______________________________________(1/2)

forall (l : list Z) (x : Z) (xs : list Z),

l = x :: xs ->

forall ll lg : list Z, split x xs = (ll, lg) ->

length lg < length (x :: xs)

______________________________________(2/2)

forall (l : list Z) (x : Z) (xs : list Z),

l = x :: xs ->

forall ll lg : list Z, split x xs = (ll, lg) ->

length ll < length (x :: xs)
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10 Years of Partiality and General Recursion in Type Theory

Induction Principle

quicksort_ind =

fun P : list Z -> list Z -> Prop => quicksort_rect P

: forall P : list Z -> list Z -> Prop,

(forall l : list Z, l = nil -> P nil nil) ->

(forall (l : list Z) (x : Z) (xs : list Z),

l = x :: xs ->

forall ll lg : list Z,

split x xs = (ll, lg) ->

P ll (quicksort ll) ->

P lg (quicksort lg) ->

P (x :: xs) (quicksort ll ++ x :: quicksort lg)) ->

forall l : list Z, P l (quicksort l)

to be used with the tactic functional induction.
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10 Years of Partiality and General Recursion in Type Theory

Function Package in Isabelle/HOL

(By Krauss, based on work by Slind.)

From the specification of the function the functional package:

• Extracts the recursive calls

• Produces the graph of the function

• Defines the function in Isabelle

• Defines the domain of the function

• Produce the recursive equations

• Produces an induction principle that follows the definition of the function
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10 Years of Partiality and General Recursion in Type Theory

McCarthy f91 Function

Specification of the function given by the user:

fun f91 :: "nat => nat"

where

"f91 n = if 100 < n then n - 10 else f91 (f91 (n + 11))"
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10 Years of Partiality and General Recursion in Type Theory

McCarthy f91 Function

Specification of the function given by the user:

fun f91 :: "nat => nat"

where

"f91 n = if 100 < n then n - 10 else f91 (f91 (n + 11))"

Recursive calls and their contexts are extracted:

∼ (100 < n) n + 11 ∼ (100 < n) f91(n + 11)
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10 Years of Partiality and General Recursion in Type Theory

McCarthy f91 Function

Specification of the function given by the user:

fun f91 :: "nat => nat"

where

"f91 n = if 100 < n then n - 10 else f91 (f91 (n + 11))"

Recursive calls and their contexts are extracted:

∼ (100 < n) n + 11 ∼ (100 < n) f91(n + 11)

For all h, the graph G is defined:

∼ (100 < n) ⇒ (n + 11, h(n + 11)) ∈ G

∼ (100 < n) ⇒ (h(n + 11), h(h(n + 11))) ∈ G

(n, if 100 < n then n − 10 else h(h(n + 11))) ∈ G
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10 Years of Partiality and General Recursion in Type Theory

McCarthy f91 Function (Cont.)

The function is defined using HOL definite description operator :

f91 = λx. THE y. (x, y) ∈ G

That is, the function is defined to take the value given by the graph, whenever

the value exists and is unique.

Otherwise, the value of f91 is unspecified.
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McCarthy f91 Function (Cont.)

The function is defined using HOL definite description operator :

f91 = λx. THE y. (x, y) ∈ G

That is, the function is defined to take the value given by the graph, whenever

the value exists and is unique.

Otherwise, the value of f91 is unspecified.

The domain D is as in the domain predicate method (though formulated in a

different way):

∼ (100 < n) ⇒ (n + 11) ∈ D ∼ (100 < n) ⇒ f91(n + 11) ∈ D

n ∈ D

Ana Bove DTP’10 – July 9th 2010 Slide 33



10 Years of Partiality and General Recursion in Type Theory

McCarthy f91 Function (Cont.)

It should be proved that the graph G actually defines a function on D:

n ∈ D ⇒ ∃!y. (x, y) ∈ G
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McCarthy f91 Function (Cont.)

It should be proved that the graph G actually defines a function on D:

n ∈ D ⇒ ∃!y. (x, y) ∈ G

The recursive equation is now guarded by a domain condition:

n ∈ D ⇒ f91 n = if 100 < n then n − 10 else f91(f91(n + 11))
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McCarthy f91 Function (Cont.)

It should be proved that the graph G actually defines a function on D:

n ∈ D ⇒ ∃!y. (x, y) ∈ G

The recursive equation is now guarded by a domain condition:

n ∈ D ⇒ f91 n = if 100 < n then n − 10 else f91(f91(n + 11))

The induction principle follows the definition of the function:

∀n.n ∈ D ⇒ (∼(100 < n) ⇒ P (n + 11)) ⇒ (∼(100 < n) ⇒ P (f91(n + 11))) ⇒ Pn

n ∈ D ⇒ Pn
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Function Package and Partiality

To help proving that the function is total, a (nested) termination rule is

provided:

wf R ∼(100 < n) ⇒ (n + 11, n) ∈ R

∼(100 < n) ⇒ n + 11 ∈ D ⇒ (f91(n + 11), n) ∈ R

∀n. n ∈ D
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Function Package and Partiality

To help proving that the function is total, a (nested) termination rule is

provided:

wf R ∼(100 < n) ⇒ (n + 11, n) ∈ R

∼(100 < n) ⇒ n + 11 ∈ D ⇒ (f91(n + 11), n) ∈ R

∀n. n ∈ D

If the functions has been proved total, then the domain condition in the

recursive equations and in the induction principle can be removed.

This cannot be done neither in Agda nor in Coq!
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Comments

• As shown, the package works fine with nested functions

• To deal with higher order functions, one can provide the system with

congruence rules

For example, for the map function we have

xs = ys x ∈ xs ⇒ f x = g x

map f xs = map g ys

Then, the definition of the function

mirror (Node a ts) = Node a (map mirror (rev ts))

produces the right domain condition

t ∈ (rev ts) ⇒ mirror t

• Similar for evaluation order
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The PROGRAM Command (Sozeau)

Allows writing fully specified programs in a simple way.

Input terms are Coq term, but are typed in an weaker system call Russell

which does not require terms to contain proofs.

Terms are then interpreted into Coq.

This process may produce proof obligations which need to be resolved to

create the final term.
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The PROGRAM Command (Sozeau)

Allows writing fully specified programs in a simple way.

Input terms are Coq term, but are typed in an weaker system call Russell

which does not require terms to contain proofs.

Terms are then interpreted into Coq.

This process may produce proof obligations which need to be resolved to

create the final term.

Main distinction:

Γ ⊢ t : {x : T | P}

Γ ⊢ t : T

Γ ⊢ t : T Γ ⊢ P [t/x]

Γ ⊢ t : {x : T | P}
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Example PROGRAM: head

Program Definition head : { xs : list nat | xs <> [] } -> nat :=

fun xs => match xs with

| hd::tl => hd

| [] => !

end.

Generates the proof obligation

head_obligation_1

: forall xs : {xs : list nat | xs <> []},

let filtered_var := ‘xs in [] = filtered_var -> False

which is proved automatically.

Ana Bove DTP’10 – July 9th 2010 Slide 38



10 Years of Partiality and General Recursion in Type Theory

Example PROGRAM: head

Program Definition ex : nat := head [6 ; 9].

ex has type-checked, generating 1 obligation(s)

Solving obligations automatically...

ex_obligation_1 is defined

No more obligations remaining

ex is defined

Check ex_obligation_1.

ex_obligation_1

: [6; 9] <> []

Eval compute in ex.

= 6

: nat
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Example PROGRAM: Nested Recursion

Program Fixpoint foo (n : nat) {measure id} : { m : nat | m <= n } :=

match n with

| 0 => 0

| S p => foo (foo p)

end.

Generates the obligations:

1. ∀n.0 = n → 0 6 0 (proved automatically)

2. h1 : ∀n.∀p.S p = n → p < n (proved automatically)

3. h2 : ∀n.∀p.S p = n → foo (exists p h1) < n

4. ∀n.∀p.S p = n → foo (exists (foo (exists p h1)) h2) 6 n
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Sized Types: MiniAgda (Abel)

MiniAgda is an experimental prototype which implements a dependently

typed core language with sized types.

Sizes can be seen as the height of the tree representing the structure of an

element.

The idea is to annotate types with a size index representing the exact size of

the element or an upper bound of it.

For recursive calls, the type system should check that the size of the argument

decreases.

Sizes are irrelevant in the terms but not in the types.

Hence, types can depend on sizes but sizes should not influence the result of a

function.
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Example MiniAgda: foo

We have

• $: the successor function on sizes

• #: infinite size

• a size pattern i > j
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Example MiniAgda: foo

We have

• $: the successor function on sizes

• #: infinite size

• a size pattern i > j

sized data Nat : Size -> Set

{ zero : [i : Size] -> Nat $i

; succ : [i : Size] -> Nat i -> Nat $i

}

fun foo : [i : Size] -> Nat i -> Nat i

{ foo i (zero (i > j)) = zero j

; foo i (succ (i > j) n) = foo j (foo j n)

}
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More About Sized Types

• Sized types are especially good at higher-order functions

(these functions are usually a problem...)

• Not quite ready to use in practice

• Listen to Andreas Abel on July 15th at PAR-10

• In the Coq community: Barthe, Gregoire and Riba

A tutorial on type-based termination LerNet 2008, LNCS 5520
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Thanks for listening!

And come to PAR-10 on July 15th to hear what is going on in partiality and

recursion!
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