
Implementing
Software Product Lines in

Python

Alejandro Russo
russo@chalmers.se

FP Workshop, Jun 2nd, 2010
Chalmers

Python?

➢ Is it a functional language?
– Functions are first-class citizens
– High order functions
– List comprehension
– But no static types

➢ What esle?
– Imperative, Object-oriented

Software Product Lines

➢ A set of software systems with well-
defined commonalities and variabilities
– Ultimate goal: reuse of code
– Holy grail: automatic assembly of products

SPL and OO Programming

➢ “... The main idea is to overcome the
limitations of class-based inheritance
with respect to code reuse by replacing it
with trait composition” [Bettini, Damiani,
Schaefer 2009]
– Trait = set of methods
– Class = register (state) + trait (interface),

where + is substitution

SPL and Python

➢ In Python, with a little bit of programming,
it is possible to precisely control what is
inherited from a class
– No need for new concepts in order to build

programs
– I will show a set of combinators specifically

design to build SPL
– This is a very work-in-progress

Demo

Implementing SPL
@inherits(c

1
,c

2
,..,c

n
)

class user_class:
 …

c' = exclude(c,m
1
,...,m

n
)

c' = rename(c,(m
1
, m'

1
), ...,(m

n
,m'

n
))

c' = alias(c,(m
1
, m'

1
), ...,(m

n
,m'

n
))

c' = line(str)(exclude(c,m
1
,...,m

n
))

@inherits(exclude(c,m),
 rename(exclude(c,m

2
),(m

1
, m'

1
))

class user_class:

 …

products_id(p
1
,..., p

n
)

produce(p
1
,..., p

n
)

is_produced(p)

@line_class
class user_class:
 …
 @exclude_func(p)
 def f(...):

 @alias_func(p,str')
 def f(...):

 @rename_func(p,str')
 def f(...):

Excluding methods

exclude(c,m
2
)

class c(A,B):
x = v

def m
1
(...):

…
def m

2
(...):

class A:
...

class B:
…

class klass:
x = None

def m
1
(...):

…
def __init__(self):

t = c()
self.x = t.x

Excluding methods
(similar to pre-processors)

@line_class
class user_class:
 …
 @exclude_func(p)
 def f(...):

…

 @rename_func(p,'w')
 def g(...):

...

(EXCLUDE,p, 'f'), (RENAME, p, 'g', 'w')

user_class

class klass:
...

 def w(...):
 ...

Final remarks
➢ It is possible to provide decorators specifically

design for building SPL in Python
– Provided as a library
– 150 LOC

➢ Inheritance is not bad in presence of
Python's expressiveness (other languages?)

➢ No need to adapt an existing programming
language or propose new ones!

➢ Different from other approaches for SPL
– We do not provide static guarantees

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Security on web applications and information-flow
	Slide 7
	Slide 8
	Slide 9
	Slide 10

