
1

From Program to Mixed
SW/HW Implementation:

How to Get It Right

Carl Seger

Feb. 17, 2017

Outline

 Motivation

 Problem statement

 Previous work

 Suggested solution

 Research Questions

2

Moore’s Law

3

~40%/year

(double every 2 years)

Power Wall

4

As a Result

5

In Practice

6

Single-Treaded Performance

7

Who Cares: Just Parallelize…

 Theoretical problem:

 If NC != P, then there are problems that cannot be
parallelized efficiently!

 Practical problem:

 Only known algorithms are inherently sequential

- The choice of computation depends critically (and immediately) on
the result just computed.

 Even more practical problem:

 A lot of useful and practical algorithms are highly
sequential but need to be sped up!

8
NC = Nick’s class; problems solvable on O(nk) machines in O((log(n))c) time.

How to Increase ST-Performance

 Higher clock frequency

 None: power wall has stopped this…

 Higher instructions-per-cycle (IPC)

 Marginal: architects have pretty much wrung out most of it

 Better branch-prediction

 Marginal: modern branch-predictors are about as good as it gets

 More advanced compilers

 Marginal: “It’s the actual data, stupid”

 Off-load work onto (specialized) hardware

 Potentially huge impact (2-3 orders of magnitude speed up)

9

Hardware Acceleration

 Alternatives:

 New instructions in CPU

- E.g., The AES-class instructions in x86 architecture

 Specialized HW support in CPU (“custom CPU”)

- E.g., Intel builds special CPUs for Facebook/Microsoft/…

 Custom chip

- GPUs, video codecs in chipsets

 Field Programmable Gate Array (FPGA)

- Traditionally on the PCIe bus, but now integrated with CPU

10

HW Acceleration cont.

 By 2020, it is projected that:

 Every person will create ~1.5Gbyte of data per day

 An autonomous car will create ~40Gbyte of data per hour

 3-D sports casts will create 2000Gbyte of data per minute

 It is clear that HW acceleration is critical!

 At the same time, the algorithms used are changing
and improving rapidly.

 Fixed HW is unlikely to keep up

11

Today:

 Microsoft Azure (cloud services) combines 1 server
CPU with 1 FPGA and all communication from the
CPU to the network goes via the FPGA.

 Many algorithms have been sped up by factors
between 10 and1000 times!

12

Today:

 Microsoft Azure (cloud services) combines 1 server
CPU with 1 FPGA and all communication from the
CPU to the network goes via the FPGA.

 Many algorithms have been sped up by factors
between 10 and1000 times!

 However:

13

At the same time, this design introduces new risks, since a

bug or fault impacts the whole system. That, said [Microsoft

Distinguished Engineer] Burger, has been the key challenge.

"You are putting an alien technology into a very mature

system. All of the network traffic runs through this thing. You

screw it up, you can do some real damage.

14

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

Recall:

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

This is the theory…

Ideas

Validation

MAS: Micro-Architecture Specification

RTL: Register-Transfer Language

15

Or More Realistically…

Original

Product

Target

Test

EngineerMask

Designer

Design

Engineer

Micro-

Architect

Architect

Target

Repainted

to fit

Reality
Validation

2-3 years!

30-50%

of effort

Challenge

 Create a good algorithm

 Partition it into SW and HW parts

 Implement SW part

 Remember the critical communication link with the HW accelerator!

 Implement HW version

 Re-design several times to achieve needed performance & size

 Debug HW

 Debug SW/HW system

 Profile resulting system

 Improve HW, improve SW, re-think partition, re-think algorithm

 Repeat…Repeat…Repeat…

16

Bad News

 To verify HW designs is:

 Hard

 Time consuming

 To debug a HW design:

 Is even worse!

 To debug combined SW/HW:

 Is cause of short life span…

 ..and lots of grey hair!

17

Good News!

 It could be worse…

18

What Can be Done?

 Separate “what” from “how”

 In practice, capture the algorithm at a high level of abstraction

 Use property driven verification/testing to ensure high-
level model is “correct”.

 Rely on “correct-by-construction” for common tasks

 Introducing the interface code between SW and HW is (almost)
always the same. Automate its generation!

 Incorporate verification as part of the design process

 No “design first, verify later” (if at all)!

19

 How to capture desired functionality?

 Language / level of abstraction

 How to ensure correct capture?

 Property verification / validation

 How to refine the spec. to an imp?

 Transformations / manual re-write

 How to ensure valid refinement?

 FEV / correct by design

Questions to be Answered

Abstraction Level

Im
p

le
m

e
n

ta
ti

o
n

 b
u

g
s

S
p

e
c
if

ic
a
ti

o
n

 b
u

g
s

Time

T
o

ta
l
#
 o

f
b

u
g

s

Spec.

Layout

Integrate Design and Verification

 All validation work is reactive; the
design gets created somehow
and now we need to figure out if it
is correct

 Rather than trying to do post-
design verification, verify each
step along the way.

 Can mix “correct-by-construction”
and “trust-but-verify” parts.

 Can use different verification
engines at different levels of
abstraction

 Imposes a relatively modest
overhead on the design process for
a big payoff.

 A system can be built to track the
“quality” of a design from
correctness point of view.

21

IDV prototype system for abstract RTL

to layout with complete verification

HLM

Validation

M1

Transformation step

M2

M4

M2

Verification step

M5

Layout

Tool guarantees that

only valid transformations

and/or verification steps are

performed

50k

22

Logical Design Transformations

 Add correct-by-construction
implementation details

 Examples:

- Bypass

- Re-timing

- Duplication/merging of logic

- Changing state encoding

- Don’t care usage

- Introducing clock gating

- …

 Allow arbitrary design
changes when coupled with
machine-checked justification

waddr

Write ReadM
din

raddr

dout
ReadM

din

raddr

dout

waddr

0

1

=

Latch 1
Latch 2

Latch 3Latch 1 Latch 2

Latch 2

~12

~9~7

Latch 3

~4

Latch 1
Latch 2

Latch 3Latch 1 Latch 2

Latch 2

~12~12

~9~7

Latch 3

~4

f

a

b

valid

clk

f

a

b

valid

clk

Graphics execution unit
High Level Model to Layout
HLM: 2k lines of code + 20 pages tablesHLM/aRTL

Example 1 From First IDV System

Front

(4 multipliers)

Accumulator

Control & decoder Back

(dot+4 rnd)

High-level specification

New implementation algorithm ideas
#

17 16 15 14 13 12

17 16 15 14 13 12 11 10

17 16 15 14 13 12 11 10 9 8

17 16 15 14 13 12 11 10 9 8 7 6

15 14 13 12 11 10 9 8 7 6 5 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 inc6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 inc7

inc8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
75

1

Front:

1: Control decoding and data alignment

2: Partial products and CSA tree

3: CPA adder and (re-)assembly

2 3 4 5 6 8 9

Back:

4: FP-adder part 1

5: FP-adder part 2

6: Dot product

7: Rounder part 1

8: Rounder part 2

9: Rounder part 3 + re-assembly

100

Outside FPU:

≤0: Read from register file and send data

≥10: Send data back to register file and write

7

gclk

clk
dt_latchopen

dt_latchclosed

R
e

a
d

W
rite

FPU pipelineFPU pipeline

A
c

c
u

m
u

la
to

r

Design and
verification
in IDVFinal placed result

~120,000 gates
Converged to strict timing

Bottom line: It actually works!

SSCCLLC. Seger - Intel Confidential 19

Early Design: RTL to Early Design: RTL to netlistnetlist

SSCCLLC. Seger - Intel Confidential 24

Logic And Physical ViewLogic And Physical View

SSCCLLC. Seger - Intel Confidential 17

TopTop--level RTL Entrylevel RTL Entry

4k to 12k lines
of aRTL during

13 months

SSCCLLC. Seger - Intel Confidential 29

Final Design Sent to RouterFinal Design Sent to Router

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

>250,000 trans.
Converged to 250ps

Bottom line: During 13 months of design effort, no aRTL changes

were needed because of implementation considerations.

3 designers (instead of 8)

25 FUBs

5 RF, 3 CAM EBBs

In production flow for

more than 1 year

Example 2 From First IDV System

 Integer multiplication unit

 RTL (“How”)

- >3,000 lines

 HLM (“What”)

- <300 lines

 Two implementations derived inside IDV

1. To the existing RTL implementation

2. New version using a different
algorithm and partitioning

 New version was 20% smaller than
original version

 Both provably equal to HLM and thus
HLM validation was shared.

300 line HLM

Combinational

Specification

SlowData

MainData

EarlyCtrl
4½CycData

3½CycData

3CycFlags

[303h] [305l]

½CycData

Example 3 From First System

Bottom line: Rapid design exploration is made possible

without extra verification cost.

Lessons Learned

 Integrating Design and Verification:

 Is technically entirely feasible

- Requires fairly significant system to be built for approach to be practical.

- Rapidly changing specifications are challenging, but doable.

 Allowed far more design exploration

- First implementation took “normal” time

- Second, third, … versions took only a fraction of initial design time.

 Requires a completely different mentality

- Combines two roles (design engineer and verification engineer)

- Requires a new approach to teaching design & verification

 IDV idea failed to be widely deployed inside Intel

 Project eventually cancelled.

 Likely ahead of its time…

26

Why Do it Again?

 The short design cycle ideal for IDV

 Trying multiple alternatives not only useful, but necessary

 The user community is entirely different

 Training in HW design is required from day one

 No legacy “style” in place to tear down.

 FPGA based design require much less physical design work

 A major part of the original IDV system devoted to physical design

 2/3 of transformations were related to physical design aspects

 Great need for efficient techniques for developing these types of accelerated
applications!

27

“Insanity is doing the same thing, over and over again,

but expecting different results.”

- Narcotics Anonymous

Some Further Research Questions

 What transformations do we need in the SW domain?

 What decision procedures are needed for SW
refinements?

 How does an efficient “split into SW+HW” transformation
look like?

 Must it be “trusted” or can it be verified (added flexibility)

 How do we train “vertical developers” that can move
seamlessly between SW and HW?

28

Conclusion

Integrate Design & Verification:

==

Catch the bugs as soon as

they are created!

Thank you!

Questions?

