_ From Program to Mixed
SW/HW Implementation:
» How to Get It Right

0

Carl Seger

Feb. 17, 2017

Outlme

° Pr:w]r US work

3 ugc ,,_,;o solution
’- Research Questions

B

-

A

Moore’s Law

10,000,000,000

Sandy Bridge
iy’

3 t-yf{

100,000,000

1,000,000

LTy
L
O
]
2
W
c
o
[

~40%/year

0
100,000 (double every 2 years)

1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Source: University of Wisconsin-Madlison

Power Wall

CPU Architecture Today
Heat becoming un unmanageable problem

Sun's Surface .

Rocket Nozzle

Nuclear Reactor
———
Pentium®
8086

Hot Plate
8085 ot Plate

10

Figure 1. In CPU architecture today, heat is becoming an unmanageable problem.
(Courtesy of Pat Gelsinger, Intel Developer Forum, Spring 2004)

As a Result

I Stuttering

Chip introduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w

dates, selected

Transistors bought per $, m

| Pentium 4 Xeon Core 2 Duo

20
Log scale

15 Pentium III 107

10 | PU[ILiLII"l[‘

5

Pentium

T — 1T 710
200204 06 08 10 12 15

28086

I T T T T T | T T T lﬂ-l
1970 90 95 2000 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

In Practice

Mac Pro CPU/GPU Performance Evolution

- |
o
)
)
- |
o
Q
Y=}
=]
=]
o~
[=]
it
o
[}
1]
=
1}
v
4]
om
[=]
e
Q
%]}
c
1]
£
=
o
‘t
[T}
o
[T}
2
=]
E
[T}
o

Mid 2006 Early 2008 Early 2009 Mid 2010 Mid 2012 Late 2013

e===Slowest GPU Option em==Fastest GPU Option
Single Threaded CPU Perf (Fastest CPU)====Nuyltithreaded CPU Perf (Fastest CPU)

Single-Treaded Performance

Single-Threaded Integer Performance

+52%

per year

per year

m |ntel Xeon
* |ntel Core
Intel Pentium
& Intel Itanium
Intel Celeron
AMD FX
u AMD Opteron
AMD Phenom
= AMD Athlon
|BM POWER
* PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha
MIPS .
» HP PA-RISC peryear

Single-Threaded Floating-Point Performance

+21%

per year

m Intel Xeon

* Intel Core
Intel Pentium

& Intel Iltanium
Intel Celeron
AMD FX

u AMD Opteron
AMD Phenom

* AMD Athlon
IEM POWER

* PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha
MIPS

HP PA-RISC

Who Cares: Just Parallelize...

* Theoretical problem:

> IFNC = P, then there are problems that cannot be
parallelized efficiently!

s Practical proeblem:

> Only known algorithms are inherently sequential

-~ The choice of computation depends critically (and immediately) on
the result just computed.

* Even more practical problem:

> A lot of useful and practical algorithms are highly
sequential but need to be sped up!

NC = Nick’s class; problems solvable on O(nk) machines in O((log(n))°) time.

How to Increase ST-Performance

* Higher clock frequency

> None: power wall has stopped this...

Higher instructions-per-cycle (IPC)

> Marginal: architects have pretty much wrung out most of it

Better branch-prediction

> Marginal: modern branch-predictors are about as good as it gets

More advanced compilers

> Marginal: “It's the actual data, stupid”

Off-load work onto (specialized) hardware

> Potentially huge impact (2-3 orders of magnitude speed up)

Hardware Acceleration

e Alternatives:

> New Iinstructions in CPU

- E.g., The AES-class instructions in x86 architecture

> Specialized HW support in CPU (“custom CPU")
- E.g., Intel builds special CPUs for Facebook/Microsoft/...

> Custom chip

- GPUs, video codecs in chipsets

> Fleld Programmable Gate Array (FPGA)
- Traditionally on the PCle bus, but now integrated with CPU

10

HW Acceleration cont.

e By 2020, It Is projected that:
> Every person will create ~1.5Gbyte of data per day
> Al autonomous car will create ~40Gbyte of data per hour

> 3-D sports casts will create 2000Gbyte of data per minute

e [t IS clear that HW acceleration Is critical!

o At the same time, the algorithms used are changing
and improving rapidly.

> Fixed HW Is unlikely to keep up

11

Today:

* Microsoft Azure (cloud services) combines 1 server
CPU with 1 FPGA and all communication from the
CPU to the network goes via the FPGA.

s Many algorithms have been sped up by factors
between 10 and1000 times!

12

Today:

* Microsoft Azure (cloud services) combines 1 server
CPU with 1 FPGA and all communication from the
CPU to the network goes via the FPGA.

s Many algorithms have been sped up by factors
between 10 and1000 times!

* HOWeVer:

At the same time, this design introduces new risks, since a
bug or fault impacts the whole system. That, said [Microsoft
Distinguished Engineer] Burger, has been the key challenge.
"You are putting an alien technology into a very mature
system. All of the network traffic runs through this thing. You
screw it up, you can do some real damage.

13

Recall:

. ".pi"‘ah
Archltect k‘ Micro- Design Mask Test
. - Architect Engineer Designer Engineer

Architecture Deve [tﬁ;':ny?z:(d ng SliEien Original

B alysis : : : transistors Product

. : and wires Target
) { C Layout/

(=]

Validation

MAS: Micro-Architecture Specification
RTL: Register-Transfer Language This is the theory“.

14

Or More Realistically...

. Micro-
Architect
. rchltect Design
g U O 1 U ' ngineer

On 0 I 01 j Mask En.;?:;er
Designer

Original
Product
Target

) A .J100 “ \\’ ‘ .
:) .)\%/g
W\l e N O

30-50% ‘- i i ._I!I_ Repainted
; Validation to fit
~ of effort .I! Reality

arget

2-3 years!

15

Challenge

* Create a good algorithm
» Partition/it into SW and HW parts
* |Implement SW part

> Remember the critical communication link with the HW accelerator!
* |mplement HW version
> Re-design several times to achieve needed performance & size

* Debug HW

e Debug SW/HW system

* Profile resulting system

* |Improve HW, improve SW, re-think partition, re-think algorithm
 Repeat...Repeat...Repeat...

16

Bad News

* To venfy HW designs is:

Dante’s Inferno

The Nine Circles of Hell
> Hard o o

W il y
Circle I: Limbo

‘The souls of Pagans and the unbaptized wander the caves of
Limbo tn loneliness with the desperation to meet God.

> TIme consuming

B Circle 11: Lust
The souls lust are endléssly blown and spiraling in the winds
of a violent storm.

W Circle 111: Gluttony
Because of their cold nature, the souls of gluttony suffers the
Coldpess of a ceaseléss fcy rain

» To debug a HW design:

W Circle V: Greed
"Mestuls of greed are consumed in a pit of smelting gold. as
theyclaw thelr way to escape; only to be swept back into the
pit
Circle V: Anger
An@ndlss hattle of wailing souls takes place on a murky
swamp.

~ IS even worse!
s Todebug combined SW/HW:

> |s cause of short life span...

B Circle VI: Heresy
areentrapped tn a flaming pit, guarded by demons for
those who attempt (o escape.

Circle VII: Violence
Those who possessed a thirst for violence are condemned to
drown in a lake of bolling blood.

Circle VIII: Fraud
Souls are thrown into a pit of darkness, endlessly beaten and
tortured by demons.

W Circle IX: Treachery
: Satan Is fmprisoned 1n ice from the waist down in the very
center of Circle IX, displayed as a trophy of treachery

> ..and lots of grey hair!

17

Good News!

* |t could be worse...

18

What Can be Done?

Separate “what” from “how”

> Il practice, capture the algorithm at a high level of abstraction

Use property driven verification/testing to ensure high-
level'model is “correct”.

Rely.on “correct-by-construction” for common tasks

> Intreducing the interface code between SW and HW is (almost)

always the same. Automate its generation!

Incorporate verification as part of the design process

> No “design first, verify later” (if at all)!

19

Questions to be Answered

* How to capture desired functionality?

> Language / level of abstraction

» How. to ensure correct capture?

> Property verification / validation

» How!'to refine the spec. to an imp?

> Transformations / manual re-write

* How to ensure valid refinement?

> FEV / correct by design

>

Implementation bugs
v \
pecification bugs

Abstraction Level

>

Total # of bugs

Time

Integrate Design and Verification

o All validation work is reactive; the .
design gets created somehow ¢

and now we need to figure out If it [Firvgey .
IS correct - Verification step

Transformation step

» Rather than trying to do post-
design verification, verify each

step aleng the way. Tool guarantees that
il . .. only valid transformations
» Can mix “correct-by-construction and/or verification steps are Layout
and “trust-but-verify” parts. performed

» Can use different verification
engines at different levels of
abstraction

Selectod Edgos: _Add Transitive Eago | Roplay | €t Commants

> Imposes a relatively modest
overhead on the design process for
a big payoft.

> A system can be built to track the s]
“quality” of a design from Yo -
correctness point of view.

IDV prototype system for abstract RTL

to layout with complete verification ’1

Logical Design Transformations

waddr

raddr -r

4 | .3\'
' Allow arbitrary design
changes when coupled with)
machine-checked justification i

valid

clk

e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
‘e

Example 1 From First IDV System

Graphics execution unit
High Level Model to Layout L S
HLW: 2k lines of code + 20 0 pages tables I L 51 E1=peai Tication

nal
nb0 [s :L 3
na2 32 7 ina_i (flt 7 ina float[XS 16] 1n+[24 17]),
nh2 = i 02 lngz_f%oat[Qo.lﬁ] 1nb% 11?[43 b2l I/ kll% this te
i 7 inb2_i32[7:0] ¢ (flt 7 inb2_float[7:0 h(2 3
7 inb2_132[7:0] ¢ (FLf 7 inb2_float[23:16] : inb2_i ; CONITE & CEZEE
? ina_int[31:24] : {(flt 7 ina_float[15:8]
1nb2 137[15 8] ¢ (flt 7 inb2_float[15:8]
7 nt[31:24] : (flt 7 ina_float[23:16]
nh231 = i32 7 1nb2 132[13 8]t (flt 7 inb2_float[23:16] : inbZ 116[31 74]\.

i32 7 ina_int[15:0] : { flt 7 ina_float[15:0] : ina_int[15:0]);
i32 7 inb2_i32[15:0] : {(flt 7 inb2_float[15:0] : inb2_il16[15:0]);

mals_0
nb15_0

Design and
verification
Final placed result in IDV

(4 multipliers)

New implementation algorithm ideas

~120, 000 gates
Converged to strict

FPU pipeline B = = S S e

‘I@I@i@i@l@ﬁ@‘@”@"

lock to the EBB (#62)

dded bi_en_hinput (£141

Bottom line: It actually works!

Example 2 From First IDV System
3 designers (instead of 8) EEKCTRIVIN=g NI =Iel{sY; (‘Early Design: RTL to netlist
25 FUBs —la

egrated Design and Verification System Gt Peforences | Osen G Integrated Design and Verification System

5> RF, 3 CAM EBBs e e
In production flow for : -
more than 1 year

Final Besign Sent to Router

mzm!l

>250,000 trans.
Converged to 250ps

Bottom line: During 13 months of design effort, no aRTL changes

were needed because of implementation considerations.

Example 3 From First System

e Integer multiplication unit
> RTL ("How”)

300 line HLM

B >3,000 |IneS B %CycData
EarlyCtrl 41,CycData
-~ HLM (“What”)
' 3CycFlags
3 <300 |IneS 3%CycData
SlowData

L]

\\

L/ Map_to_2_mults (#11) \ {:1a.;:._m_aamn_rwun @17
]

T

,rvlep_n:n«./erﬂn:nv_h:ngm (#12) Map_lza (#18)

Map_bitscan_op (#13) T\:Iapl:)\-emml.' (#19)

* Two Implementations derived inside IDV

.

1. Tothe existing RTL implementation

2. Newversion using a different
algoerithm and partitioning

{7101

Map_remaining (#14) Tﬁap_anstan (#20)

Balanced_Pipeline (#15) jﬂ:«p_ﬂenlau‘ling (#21)

Clk_Gating (#16) ?elan:e_ﬁpeine (#22)
i
I {)

P

> New version was 20% smaller than
original version

E | 2 [~

> Both provably equal to HLM and thus
HLM validation was shared.

Bottom line: Rapid design exploration is made possible
without extra verification cost.

Lessons Learned

* |ntegrating Design and Verification:
> Is technically entirely feasible

- Requires fairly: significant system to be built for approach to be practical.
- Rapidly changing specifications are challenging, but doable.

> Allewed far more design exploration

- First implementation took “normal” time
- Second, third, ... versions took only a fraction of initial design time.

> Reguires a completely different mentality

- Combines two roles (design engineer and verification engineer)
- Requires a new approach to teaching design & verification

* |DV idea failed to be widely deployed inside Intel

> Project eventually cancelled.
> Likely ahead of its time...

26

Why Do it Again?

“Insanity is doing the same thing, over and over again,
but expecting different results.”

- Narcotics Anonymous

* The short design cycle ideal for IDV
> Trying multiple alternatives not only useful, but necessary
* The user community is entirely different
> draiming in HW design is required from day one
> No legacy “style” in place to tear down.
* FPGA based design require much less physical design work
> A major part of the original IDV system devoted to physical design

> 2/3 of transformations were related to physical design aspects

* Great need for efficient techniques for developing these types of accelerated
applications!

27

Some Further Research Questions

 \What transformations do we need in the SW domain?

o \What decision procedures are needed for SW
refinements?

* How does an efficient “split into SW+HW” transformation
look like?

> Must it be “trusted” or can it be verified (added flexibility)

» How. do we train “vertical developers” that can move
seamlessly between SW and HW?

28

Conclusion

Integrate Design & Verification:

Catch the bugs as soon as
they are created!

. Thank you!

- Questions?

