
An extensible strategy language for
describing cognitive skills

Bastiaan Heeren1 Johan Jeuring1,2

1 Open University of the Netherlands
2 Utrecht University

May 5, 2017, Chalmers, Göteborg

2[An extensible strategy language for describing cognitive skills]

Intelligent tutoring system (ITS) §1

I Problem-solving procedures (cognitive skills/strategies) can
be found in many domains:
• Solving equations (mathematics)
• Constructing programs (computer science)
• Practicing communication skills (e.g. pharmacy)
• . . .

I ITSs can help students to practice such tasks
I ITSs are almost as effective as human tutors (VanLehn, 2011)

I ITSs have an inner loop for solving tasks step by step

How can we specify problem-solving procedures and automati-
cally calculate feedback and hints?

⇒ We define an extensible strategy language (DSL).

2[An extensible strategy language for describing cognitive skills]

Intelligent tutoring system (ITS) §1

I Problem-solving procedures (cognitive skills/strategies) can
be found in many domains:
• Solving equations (mathematics)
• Constructing programs (computer science)
• Practicing communication skills (e.g. pharmacy)
• . . .

I ITSs can help students to practice such tasks
I ITSs are almost as effective as human tutors (VanLehn, 2011)

I ITSs have an inner loop for solving tasks step by step

How can we specify problem-solving procedures and automati-
cally calculate feedback and hints?

⇒ We define an extensible strategy language (DSL).

3[An extensible strategy language for describing cognitive skills]

Axiomatic proofs (Lodder et al.) §1

I Construct proofs by applying rules (forward and backward)
I Feedback after each step (also for common mistakes)
I Hints and worked-out solutions available

4[An extensible strategy language for describing cognitive skills]

Functional programming tutor (Gerdes et al.) §1

I Develop programs by step-wise refining holes (?)
I Feedback and hints calculated from model solutions

5[An extensible strategy language for describing cognitive skills]

Communicate! serious game (Jeuring et al.) §1

I Game for practicing interpersonal communication skills
I Final score and feedback afterwards

6[An extensible strategy language for describing cognitive skills]

Example: adding fractions §2

Problem-solving procedure
1. Find lowest common denominator (LCD)
2. Convert fractions to LCD as denominator
3. Add resulting fractions
4. Simplify final result

1
2 + 4

5

FindLCD
=⇒ 1

2 + 4
5

Convert
=⇒ 5

10 + 4
5

Convert
=⇒ 5

10 + 8
10

Add
=⇒ 13

10

Simplify
=⇒ 1 3

10 X

Procedure specified as a strategy:

FindLCD;many (somewhere Convert); Add; try Simplify

6[An extensible strategy language for describing cognitive skills]

Example: adding fractions §2

Problem-solving procedure
1. Find lowest common denominator (LCD)
2. Convert fractions to LCD as denominator
3. Add resulting fractions
4. Simplify final result

1
2 + 4

5

FindLCD
=⇒ 1

2 + 4
5

Convert
=⇒ 5

10 + 4
5

Convert
=⇒ 5

10 + 8
10

Add
=⇒ 13

10

Simplify
=⇒ 1 3

10 X

Procedure specified as a strategy:

FindLCD;many (somewhere Convert); Add; try Simplify

7[An extensible strategy language for describing cognitive skills]

Strategy language §2

What are the requirements for the strategy language?

1. Universal: not for one particular domain (reusable)
2. Extensible: easy to extend language with new patterns
3. Feedback and hints: should be available at any time
4. Compositional: combine simple procedures into more

complex procedures
5. Adaptable: possible to customize procedures
6. Efficient: hints and feedback can be calculated in a

reasonable amount of time

The strategy language needs a rigorous semantics

8[An extensible strategy language for describing cognitive skills]

Core grammar §3

I Starting point: a minimal language
• Support for choice: <|>
• Left-hand side of prefix (→) is restricted to rules (r)

s, t ::= succeed | fail | s <|> t | r → s

I Approach: define which traces are allowed by a strategy
I Trace set includes partial traces and unsuccessful traces
I Example of a successful trace:

1
2 + 4

5

FindLCD
=⇒ 1

2 + 4
5

Convert
=⇒ 5

10 + 4
5

Convert
=⇒ 5

10 + 8
10

Add
=⇒ 13

10

Simplify
=⇒ 1 3

10 X

8[An extensible strategy language for describing cognitive skills]

Core grammar §3

I Starting point: a minimal language
• Support for choice: <|>
• Left-hand side of prefix (→) is restricted to rules (r)

s, t ::= succeed | fail | s <|> t | r → s

I Approach: define which traces are allowed by a strategy
I Trace set includes partial traces and unsuccessful traces
I Example of a successful trace:

1
2 + 4

5

FindLCD
=⇒ 1

2 + 4
5

Convert
=⇒ 5

10 + 4
5

Convert
=⇒ 5

10 + 8
10

Add
=⇒ 13

10

Simplify
=⇒ 1 3

10 X

9[An extensible strategy language for describing cognitive skills]

Semantics: empty and firsts §3

I empty: is the strategy (successfully) finished?

empty(succeed) = true
empty(fail) = false
empty(s <|> t) = empty(s) ∨ empty(t)
empty(r → s) = false

I firsts: calculates which rules can be taken at this point,
together with their remainders (finite map):

firsts(succeed) = ∅
firsts(fail) = ∅
firsts(s <|> t) = firsts(s)] firsts(t)
firsts(r → s) = {r 7→ s }

10[An extensible strategy language for describing cognitive skills]

Traces §3

I Not all rules suggested by firsts can be applied to current
object a:

steps(s, a) = {(r , t, b) | r 7→ t ∈ firsts(s), b ∈ r(a)}

I Calculate the set of traces:

traces(s, a) = {a} ∪ {a X | empty(s)}
∪ {a r−→ x | (r , t, b) ∈ steps(s, a), x ∈ traces(t, b)}

11[An extensible strategy language for describing cognitive skills]

Equality §3

Two strategies are equal when their traces are equal:

(s = t) =def ∀a : traces(s, a) = traces(t, a)

I With equality, we can formulate algebraic laws, e.g.:
• Choice (<|>) is associative, and has fail as its unit element
• Prefix (→) is left-distributive over choice

I Laws help to reason about strategies
I Laws help to optimize strategies
I Laws help to extend the strategy language

12[An extensible strategy language for describing cognitive skills]

Extension: sequential composition §4

I s <?> t: first do s, then t
I Sequences can be compiled into the core language:

succeed <?> t = t
fail <?> t = fail
(s1 <|> s2) <?> t = (s1 <?> t) <|> (s2 <?> t)
(r → s) <?> t = r → (s <?> t)

I New laws follow from this definition:
• Sequence (<?>) is associative, and has succeed as its unit

element
• Sequence distributes over choice

13[An extensible strategy language for describing cognitive skills]

Extension: repetition §4

I Apply strategy s optionally, zero or more times, or one or
more times:

option s = s <|> succeed
many s = option (s <?> many s)
many1 s = s <?> many s

I For many we need a fixed-point combinator
I Also: greedy variants for option, many , and many1

14[An extensible strategy language for describing cognitive skills]

More extensions §4

I Traversal combinators: for domains with sub-terms
• somewhere, oncebu, innermost, etc.

I Interleaving: switch between strategies, e.g.
{a1a2} <%> {b1} = { a1a2b1, a1b1a2, b1a1a2 }

I Permutation
I Topological sorts: for re-ordering statements

• Based on a program’s data-flow graph

I Initial prefixes: allow a conversation to stop at any time
I Left-biased choice: do s, or else t
I Preference: prefer some traces (hints) over other traces

15[An extensible strategy language for describing cognitive skills]

Conclusions §5

We presented a strategy language that:
– is compositional
– is extensible (with new patterns)
– has a precise semantics (with laws)
– works for many domains

I Traces can be used for generating feedback and hints
I Similar to other formalisms (CSP, rewriting systems), but

specific for tools in education

I For more information, see the project websites:
http://ideas.cs.uu.nl/
http://ideastest.cs.uu.nl/

http://ideas.cs.uu.nl/
http://ideastest.cs.uu.nl/

	Introduction
	Problem-solving procedures
	Semantics
	Extensions
	Conclusions

