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Talk Overview

= Crash course on Shortcut Fusion

= Wintermeeting talk:
Fusion with functions returning multiple lists in

tuples

= Today:
Removing tuples from recursive functions,
Shortcut fusion style



Shortcut Fusion Crash Course

= A common functional programming idiom:
composing highly reuseable components

= This incurs an overhead, the intermediate data
structure

= Shortcut Fusion aim to remove this overhead
= Classical (toy) example

sum (map square [1l..n])



foldr ¢ n (build g) = g c n



= foldr iIs a common function in functional
programming

= |t is a very powerful function for consuming lists.
It can be used to define many list processing
functions

foldr :: (a » b >b) » b > [a] » b



= build is a special function used only in
shortcut fusion.

= build is used for constructing lists

= Given a function which takes to arguments and
constructs something with them, build will
give that function (:) and [] so that it produces
lists

build :: (forall b . (a » b - Db) » b - b) - [a]
build g = g (:) []



The rule again

= The rule removes the list produced by build
and consumed by foldr

foldr ¢ n (build g) = g c n



Making the rule useful

= But the rule looks utterly useless! It only
involves two functions. Do we have to define
new rules for all pairs of functions?

= |dea: Define functions in terms of foldr and
build. Then inline the function definitions

= foldr and build are particularly good in this
respect because many functions can be defined
In terms of them



Defining list functions

= As many list processing function as possible
should be defined in terms of foldr and

build

map :: (a -» b) =» [a] - [b]
map £ xs = build (\¢ n -» foldr (c

filter :: (a -» Bool) -» [a] - [a]
filter p xs = build (\¢ n -
foldr (\a b - if p a
then ¢ a b
else b) n xs)

length :: [a] - Int

. f) n xs)

length xs = foldr (\ 1In - 1 + 1n) 0 xs



Good Producers and Consumers

= We call functions which produce lists using
build Good Producers.

= We call functions which consume lists using
foldr Good Consumers.

= Example: map is both a good producer and a
good consumer

map £ xs = build (\¢ n - foldr (¢ . f) n xs)

= words IS a good producer and length is a
good consumer



Good Producers and Consumers

= Whenever a Good Consumer is applied to a
Good Consumer the intermediate list is
removed

= The reason is that when the definitions of the
functions are inlined then foldr will be applied
to build and the foldr/build rule can fire



Example Fusion

map £ (map g xs)



Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))



Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . f) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))




Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

build (\cl nl -
(\c2 n2 -» foldr (c2 . g) n2 xs) (cl . f£f) nl)



Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2
build (\cl nl -
(\c2 n2 -» foldr (c2 . q)

build (\cl n2 - foldr (cl

- g) n2 xs)))

n2 xs) (cl . f£f) nl)

. £ . g) nl xs)



Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

build (\cl nl -
(\c2 n2 -» foldr (c2 . g) n2 xs) (cl . £f) nl)

build (\cl n2 - foldr (cl . £ . g) nl xs)

Thesame as map (f . g) xs



Implementing Fusion

= GHC, the standard Haskell compiler provides a
way for the programmer to add new
optimizations to the compiler

= This Is specified using rewrite rules

{-# RULES
"foldr/build"
forall ¢ n (g :: forall 1. (a -> 1 ->1) ->1 -> 1) .
foldr ¢ n (build g) = g cn

#-}



End of Crash Course

= Any questions so far?



Main Subject

Removing tuples from recursive functions,
Shortcut fusion style



Recursion and Tuples

= Recursive functions returning tuples are difficult
to make efficient

= There are several papers on how to improve
such programs

partition :: (a - Bool) - [a] - ([a]l,[a])
partition p [] = ([1,[])
partition p (a:as) =
let (bs,cs) = partition p as
in if p a
then (a:bs,cs)
else (bs,a:cs)



Removing tuples

= One way to deal with these tuples is to remove
them completely whenever possible

= In this example we don't actually need to
compute the whole tuple

snd (partition p 1ls)
= This situation doesn't come up in programmers'
code but might show up during optimizations in
the compiler



Build for Tuples

= How should we formulate build for tuples?

= Here's a first stab

buildP :: (forall p . a - b -» p) - (a,b)
buildP g = g (,)

= The idea is to try to transfer the intuition from
the list case where we pass the constructors of

the data type



Failed first attempt

= QOur first attempt fails because in the recursive
call we need to take apart the tuple

partition :: (a - Bool) - [a] - ([a]l,[a])
partition p [] = ([1,[1)
partition p (a:as) =

let (bs,cs) = partition p as

in if p a
then (a:bs,cs)
else (bs,a:cs)



Second attempt

= Ok, so our build function must provide a way to
deconstruct tuples

buildP :: (forall p . (a » b -» p) -
(p - a) -
(p = b))
- (a,b)

buildP g = g (,) fst snd



= S0, what should our fusion rule look like now?

{-# RULES
"buildP/fst"
forall (g :: forall p . (a » b -» p) -
(p = a) -~
(p » b) -
P)
fst (buildP g) = g const i1d (error "snd”)
#-}

It we want to remove the second part of the
pair, there is no way to project it out. We must
return error.



Failed second attempt

= However, this rules is not correct in the
presence of seq.

= |n order to make this rule correct we would
have to make severe restrictions on how it can
be used.

= Proving it correct with Free Theorems is out of
the question

= Can we do better?



Key Insight

= Our second attempt was not that far off

= The key insight about the functions we are
trying to transform is this:

Whenever we take the pair apart we put it back
together immediately



Third Attempt

= Instead of taking the pair apart completely we
can simply provide a way to change the
components of the pair

buildP ::
(forall p .
(a » b - p)
» ((a »a) » (b->Db) »p - p)
~ P)
- (a,b)
buildP g = g (,) (***)



= Here are some fusion rules

fst (buildP g) = g const (\mapA a -> mapA a)

swap (buildP g)
= g (\a b -> (b,a))
(\mapA mapB (b,a) -> (mapB b,mapA a))



Fusable Functions

partP pair mapP p [] = pair [] []
partP pair mapP p (a:as)
| pa = mapP (a:) id (partPM pair mapP p as)

| True = mapP id (a:) (partPM pair mapP p as)

partition p 1ls
= buildP (\pair mapP - partP pair mapP p 1ls)

uz pair mapP [] = pair [] []
uz pair mapP ((a,b):1ls)
= mapP (a:) (b:) (uz palir mapP 1s)

unzip ls = buildP (\pair mapP - uz pair mapP 1ls)



Coexisting with list fusion

= The functions | have shown operates on lists

= Can we apply list fusion at the same time as
tuple fusion?

= YES!
= List fusion and tuple fusion are orthorgonal
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