Shortcut Fusion and Tuples

Josef Svenningsson

Talk Overview

= Crash course on Shortcut Fusion

= Wintermeeting talk:
Fusion with functions returning multiple lists in

tuples

= Today:
Removing tuples from recursive functions,
Shortcut fusion style

Shortcut Fusion Crash Course

= A common functional programming idiom:
composing highly reuseable components

= This incurs an overhead, the intermediate data
structure

= Shortcut Fusion aim to remove this overhead
= Classical (toy) example

sum (map square [1l..n])

foldr ¢ n (build g) = g c n

= foldr iIs a common function in functional
programming

= |t is a very powerful function for consuming lists.
It can be used to define many list processing
functions

foldr :: (a » b >b) » b > [a] » b

= build is a special function used only in
shortcut fusion.

= build is used for constructing lists

= Given a function which takes to arguments and
constructs something with them, build will
give that function (:) and [] so that it produces
lists

build :: (forall b . (a » b - Db) » b - b) - [a]
build g = g (:) []

The rule again

= The rule removes the list produced by build
and consumed by foldr

foldr ¢ n (build g) = g c n

Making the rule useful

= But the rule looks utterly useless! It only
involves two functions. Do we have to define
new rules for all pairs of functions?

= |dea: Define functions in terms of foldr and
build. Then inline the function definitions

= foldr and build are particularly good in this
respect because many functions can be defined
In terms of them

Defining list functions

= As many list processing function as possible
should be defined in terms of foldr and

build

map :: (a -» b) =» [a] - [b]
map £ xs = build (\¢ n -» foldr (c

filter :: (a -» Bool) -» [a] - [a]
filter p xs = build (\¢ n -
foldr (\a b - if p a
then ¢ a b
else b) n xs)

length :: [a] - Int

. f) n xs)

length xs = foldr (\ 1In - 1 + 1n) 0 xs

Good Producers and Consumers

= We call functions which produce lists using
build Good Producers.

= We call functions which consume lists using
foldr Good Consumers.

= Example: map is both a good producer and a
good consumer

map £ xs = build (\¢ n - foldr (¢ . f) n xs)

= words IS a good producer and length is a
good consumer

Good Producers and Consumers

= Whenever a Good Consumer is applied to a
Good Consumer the intermediate list is
removed

= The reason is that when the definitions of the
functions are inlined then foldr will be applied
to build and the foldr/build rule can fire

Example Fusion

map £ (map g xs)

Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . f) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

build (\cl nl -
(\c2 n2 -» foldr (c2 . g) n2 xs) (cl . f£f) nl)

Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2
build (\cl nl -
(\c2 n2 -» foldr (c2 . q)

build (\cl n2 - foldr (cl

- g) n2 xs)))

n2 xs) (cl . f£f) nl)

. £ . g) nl xs)

Example Fusion

map £ (map g xs)
build (\cl nl -
foldr (¢l . £) nl (build
(\c2 n2 - foldr (c2 . g) n2 xs)))

build (\cl nl -
(\c2 n2 -» foldr (c2 . g) n2 xs) (cl . £f) nl)

build (\cl n2 - foldr (cl . £ . g) nl xs)

Thesame as map (f . g) xs

Implementing Fusion

= GHC, the standard Haskell compiler provides a
way for the programmer to add new
optimizations to the compiler

= This Is specified using rewrite rules

{-# RULES
"foldr/build"
forall ¢ n (g :: forall 1. (a -> 1 ->1) ->1 -> 1) .
foldr ¢ n (build g) = g cn

#-}

End of Crash Course

= Any questions so far?

Main Subject

Removing tuples from recursive functions,
Shortcut fusion style

Recursion and Tuples

= Recursive functions returning tuples are difficult
to make efficient

= There are several papers on how to improve
such programs

partition :: (a - Bool) - [a] - ([a]l,[a])
partition p [] = ([1,[])
partition p (a:as) =
let (bs,cs) = partition p as
in if p a
then (a:bs,cs)
else (bs,a:cs)

Removing tuples

= One way to deal with these tuples is to remove
them completely whenever possible

= In this example we don't actually need to
compute the whole tuple

snd (partition p 1ls)
= This situation doesn't come up in programmers'
code but might show up during optimizations in
the compiler

Build for Tuples

= How should we formulate build for tuples?

= Here's a first stab

buildP :: (forall p . a - b -» p) - (a,b)
buildP g = g (,)

= The idea is to try to transfer the intuition from
the list case where we pass the constructors of

the data type

Failed first attempt

= QOur first attempt fails because in the recursive
call we need to take apart the tuple

partition :: (a - Bool) - [a] - ([a]l,[a])
partition p [] = ([1,[1)
partition p (a:as) =

let (bs,cs) = partition p as

in if p a
then (a:bs,cs)
else (bs,a:cs)

Second attempt

= Ok, so our build function must provide a way to
deconstruct tuples

buildP :: (forall p . (a » b -» p) -
(p - a) -
(p = b))
- (a,b)

buildP g = g (,) fst snd

= S0, what should our fusion rule look like now?

{-# RULES
"buildP/fst"
forall (g :: forall p . (a » b -» p) -
(p = a) -~
(p » b) -
P)
fst (buildP g) = g const i1d (error "snd”)
#-}

It we want to remove the second part of the
pair, there is no way to project it out. We must
return error.

Failed second attempt

= However, this rules is not correct in the
presence of seq.

= |n order to make this rule correct we would
have to make severe restrictions on how it can
be used.

= Proving it correct with Free Theorems is out of
the question

= Can we do better?

Key Insight

= Our second attempt was not that far off

= The key insight about the functions we are
trying to transform is this:

Whenever we take the pair apart we put it back
together immediately

Third Attempt

= Instead of taking the pair apart completely we
can simply provide a way to change the
components of the pair

buildP ::
(forall p .
(a » b - p)
» ((a »a) » (b->Db) »p - p)
~ P)
- (a,b)
buildP g = g (,) (***)

= Here are some fusion rules

fst (buildP g) = g const (\mapA a -> mapA a)

swap (buildP g)
= g (\a b -> (b,a))
(\mapA mapB (b,a) -> (mapB b,mapA a))

Fusable Functions

partP pair mapP p [] = pair [] []
partP pair mapP p (a:as)
| pa = mapP (a:) id (partPM pair mapP p as)

| True = mapP id (a:) (partPM pair mapP p as)

partition p 1ls
= buildP (\pair mapP - partP pair mapP p 1ls)

uz pair mapP [] = pair [] []
uz pair mapP ((a,b):1ls)
= mapP (a:) (b:) (uz palir mapP 1s)

unzip ls = buildP (\pair mapP - uz pair mapP 1ls)

Coexisting with list fusion

= The functions | have shown operates on lists

= Can we apply list fusion at the same time as
tuple fusion?

= YES!
= List fusion and tuple fusion are orthorgonal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

