
Playing with type classes
Based on the paper “Generic Libraries in C++ with Concepts

from High-Level Domain Descriptions in Haskell —
A Domain-Specific Library for Computational Vulnerability

Assessment”

Patrik Jansson, fp.set.cse.chalmers.se

Chalmers FP workshop 2009

(Joint work with M. Zalewski (was at Chalmers), D. Lincke and C.

Ionescu at PIK = Potsdam Institute for Climate Impact Research.)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Application area: Computational Vulnerability Assessment

I Complex models: ocean, atmosphere, biosphere, economy etc.

I Provide basic data for political decisions in the climate area.

I Measure the possible harm of future evolutions

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Application area: Computational Vulnerability Assessment

I Complex models: ocean, atmosphere, biosphere, economy etc.

I Provide basic data for political decisions in the climate area.

I Measure the possible harm of future evolutions

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Measure possible harm

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

type Evolution = [State]
possible :: State -> M Evolution
harm :: Evolution -> Harm
measure :: M Harm -> V

Examples:

type M = Id -- Deterministic system
type M = [] -- Non -deterministic system
type M = SimpleProb -- Probabilistic system
newtype SimpleProb a = SP [(a, Double)]

type Harm = (LivesLost , EconomicLoss)
type V = Harm

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Measure possible harm

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

type Evolution = [State]
possible :: State -> M Evolution
harm :: Evolution -> Harm
measure :: M Harm -> V

Examples:

type M = Id -- Deterministic system
type M = [] -- Non -deterministic system
type M = SimpleProb -- Probabilistic system
newtype SimpleProb a = SP [(a, Double)]

type Harm = (LivesLost , EconomicLoss)
type V = Harm

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Measure possible harm

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

type Evolution = [State]
possible :: State -> M Evolution
harm :: Evolution -> Harm
measure :: M Harm -> V

Examples:

type M = Id -- Deterministic system
type M = [] -- Non -deterministic system
type M = SimpleProb -- Probabilistic system
newtype SimpleProb a = SP [(a, Double)]

type Harm = (LivesLost , EconomicLoss)
type V = Harm

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Measure possible harm

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

type Evolution = [State]
possible :: State -> M Evolution
harm :: Evolution -> Harm
measure :: M Harm -> V

Examples:

type M = Id -- Deterministic system
type M = [] -- Non -deterministic system
type M = SimpleProb -- Probabilistic system
newtype SimpleProb a = SP [(a, Double)]

type Harm = (LivesLost , EconomicLoss)
type V = Harm

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Calculate possible evolutions

possible :: State -> M [State]

possible = micro_trj sys inputs
micro_trj :: (Monad m) => (i -> (x -> m x)) ->

[i] -> x -> m [x]

We model a monadic dynamic system (MDS) as a function

sys :: (Monad m) => i -> (x -> m x)

where i is for input (for example greenhouse gas emission / year)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Calculate possible evolutions

possible :: State -> M [State]

possible = micro_trj sys inputs
micro_trj :: (Monad m) => (i -> (x -> m x)) ->

[i] -> x -> m [x]

We model a monadic dynamic system (MDS) as a function

sys :: (Monad m) => i -> (x -> m x)

where i is for input (for example greenhouse gas emission / year)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

From Haskell to C++

sys :: (Monad m) => i -> (x -> m x)

This Haskell model uses

I a constructor class Monad m,

I a type constructor application m x,

I a monadic transition function x -> m x and

I currying i -> (x -> m x).

We represent all of these in C++ + concepts (with some effort. . .).

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Functions / arrows in C++ and Haskell

We model a type like a -> b with some Arr in the concept
Arrow1.

concept Arrow1 <class Arr > { // in C++0x
typename Domain;
typename Codomain;
Codomain operator () (Arr , Domain);

};

or with a type class

class Arrow1 arr where -- in Haskell
type Domain arr
type Codomain arr
(!) :: arr -> (Domain arr -> Codomain arr)

I will mainly use Haskell syntax but the library is written in C++.

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Functions / arrows in C++ and Haskell

We model a type like a -> b with some Arr in the concept
Arrow1.

concept Arrow1 <class Arr > { // in C++0x
typename Domain;
typename Codomain;
Codomain operator () (Arr , Domain);

};

or with a type class

class Arrow1 arr where -- in Haskell
type Domain arr
type Codomain arr
(!) :: arr -> (Domain arr -> Codomain arr)

I will mainly use Haskell syntax but the library is written in C++.

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions

We have three types (t, dom, cod) where t = dom -> cod.

Each t uniquely determines dom and cod

class Arrow1 t where type Dom t; type Cod t
(!) :: arr -> (Domain arr -> Codomain arr)

Exercise: write the same with functional dependencies, without
associated types.

class Arrow1 t dom cod | t -> dom cod where
(!) :: t -> dom -> cod

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions

We have three types (t, dom, cod) where t = dom -> cod.
Each t uniquely determines dom and cod

class Arrow1 t where type Dom t; type Cod t
(!) :: arr -> (Domain arr -> Codomain arr)

Exercise: write the same with functional dependencies, without
associated types.

class Arrow1 t dom cod | t -> dom cod where
(!) :: t -> dom -> cod

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions

We have three types (t, dom, cod) where t = dom -> cod.
Each t uniquely determines dom and cod

class Arrow1 t where type Dom t; type Cod t
(!) :: arr -> (Domain arr -> Codomain arr)

Exercise: write the same with functional dependencies, without
associated types.

class Arrow1 t dom cod | t -> dom cod where
(!) :: t -> dom -> cod

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Examples of ArrowFrom instances

class ArrowFrom dom where
type Tab dom :: * -> *
(!) :: (Tab dom cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Examples of ArrowFrom instances

class ArrowFrom dom where
type (:->) dom :: * -> *
(!) :: (dom :-> cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Examples of ArrowFrom instances

class ArrowFrom dom where
type (:->) dom :: * -> *
(!) :: (dom :-> cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Examples of ArrowFrom instances

class ArrowFrom dom where
type (:->) dom :: * -> *
(!) :: (dom :-> cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Examples of ArrowFrom instances

class ArrowFrom dom where
type (:->) dom :: * -> *
(!) :: (dom :-> cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

More ArrowFrom instances

data Both f g c = Both (f c) (g c)
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (Either a b) where
type (:->) (Either a b) = Both ((:->) a)

((:->) b)
Both l r ! e = either (l!) (r!) e

newtype Compose f g c = Compose (f (g c))
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (a, b) where
type (:->) (a, b) = Compose ((:->) a)

((:->) b)
Compose x ! (a, b) = x ! a ! b

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

More ArrowFrom instances

data Both f g c = Both (f c) (g c)
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (Either a b) where
type (:->) (Either a b) = Both ((:->) a)

((:->) b)
Both l r ! e = either (l!) (r!) e

newtype Compose f g c = Compose (f (g c))
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (a, b) where
type (:->) (a, b) = Compose ((:->) a)

((:->) b)
Compose x ! (a, b) = x ! a ! b

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Other concepts / type classes

class (Arrow carr , Arrow (Codomain carr)) =>
CurriedArrow carr

instance (Arrow carr , Arrow (Codomain carr)) =>
CurriedArrow carr

class ConstructedType t where
type Inner t

instance Functor f => ConstructedType (f a)
where type Inner (f a) = a

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Monads get ugly

class (Arrow arr
, ConstructedType mx
, ConstructedType (Codomain arr)
, SameType (Inner mx) (Domain arr)
, SameTypeConstructor mx (Codomain arr)
) => MBindable mx arr where

mbind :: mx -> arr -> Codomain arr

-- sanity check
instance (Functor m, Monad m) =>

MBindable (m a) (a -> m b) where
mbind = (>>=)

class ConstructedType mx => MReturnable mx where
mreturn :: Inner mx -> mx

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Contributions

I a simple model for vulnerability assessment

I concepts (type classes) for functions, functors, monads, etc.

I deeper understanding of generic programming by contrasting
Haskell and C++

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Algebra of monadic dynamical systems

(or an Algebra of indexed co-algebras)

Given sx :: x -> m x and sy :: y -> m y we define
lockstep sx sy :: (x,y)-> m (x,y)
(forward) Kleisli composition
(>=>) :: (x -> m y)-> (y -> m z)-> (x -> m z)

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

Communicating systems

compose_sys :: Monad m =>
((t,t1) -> (x1 -> m x1)) ->
((t,t2) -> (x2 -> m x2)) ->
(x1 -> t2) -> (x2 -> t1) ->
t -> (x1,x2) -> m (x1, x2)

compose_sys sys1 sys2 p1 p2 t (x1, x2) =
liftM2 (,) (sys1 (t, p2 x2) x1)

(sys2 (t, p1 x1) x2)

The two systems sys1 and sys2 share a dependency on t. They
both have their own “local” input ti and state xi. The two
projection functions p1 and p2 implement a coupling between the
two systems. In the combined systems the “local” inputs are
hidden and the only remaining input is the global input t.

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes

