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Application area: Computational Vulnerability Assessment

I Complex models: ocean, atmosphere, biosphere, economy etc.

I Provide basic data for political decisions in the climate area.

I Measure the possible harm of future evolutions

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible
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Measure possible harm

vulnerability :: State -> V
vulnerability = measure . fmap harm . possible

type Evolution = [State]
possible :: State -> M Evolution
harm :: Evolution -> Harm
measure :: M Harm -> V

Examples:

type M = Id -- Deterministic system
type M = [ ] -- Non -deterministic system
type M = SimpleProb -- Probabilistic system
newtype SimpleProb a = SP [(a, Double)]

type Harm = (LivesLost , EconomicLoss)
type V = Harm
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Calculate possible evolutions

possible :: State -> M [State]

possible = micro_trj sys inputs
micro_trj :: (Monad m) => (i -> (x -> m x)) ->

[i] -> x -> m [x]

We model a monadic dynamic system (MDS) as a function

sys :: (Monad m) => i -> (x -> m x)

where i is for input (for example greenhouse gas emission / year)
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From Haskell to C++

sys :: (Monad m) => i -> (x -> m x)

This Haskell model uses

I a constructor class Monad m,

I a type constructor application m x,

I a monadic transition function x -> m x and

I currying i -> (x -> m x).

We represent all of these in C++ + concepts (with some effort. . . ).
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Functions / arrows in C++ and Haskell

We model a type like a -> b with some Arr in the concept
Arrow1.

concept Arrow1 <class Arr > { // in C++0x
typename Domain;
typename Codomain;
Codomain operator () (Arr , Domain);

};

or with a type class

class Arrow1 arr where -- in Haskell
type Domain arr
type Codomain arr
(!) :: arr -> (Domain arr -> Codomain arr)

I will mainly use Haskell syntax but the library is written in C++.
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Arrow instances
Exercise: Normal functions are arrows . . .

instance Arrow1 (a->b) where
type Domain (a->b) = a
type Codomain (a->b) = b
f ! x = f x

. . . Exercise: pairs can also be seen as arrows (from Bool)

instance Arrow1 (a,a) where
type Domain (a,a) = Bool
type Codomain (a,a) = a
(f,t) ! b = if b then t else f

. . . and finite maps are arrows

import qualified Data.Map as FM
instance Ord a => Arrow1 (FM.Map a b) where

type Domain (FM.Map a b) = a
type Codomain (FM.Map a b) = b
(!) = (FM.!)
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Other encodings of functions

We have three types (t, dom, cod) where t = dom -> cod.

Each t uniquely determines dom and cod

class Arrow1 t where type Dom t; type Cod t
(!) :: arr -> (Domain arr -> Codomain arr)

Exercise: write the same with functional dependencies, without
associated types.

class Arrow1 t dom cod | t -> dom cod where
(!) :: t -> dom -> cod
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Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other encodings of functions, contd.

Exercise: Each pair t, dom determines cod

class Arrow2 t dom where type Cod t dom

Exercise: All combinations of t, dom, cod possible

class Arrow3 t dom cod where

Exercise: Each q determines the mapping from dom, cod to t

class Arrow (q::*->*->*) where -- t = q a b

Exercise: Each dom determines the mapping from cod to t

class ArrowFrom dom where type Tab dom :: * -> *

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Examples of ArrowFrom instances

class ArrowFrom dom where
type Tab dom :: * -> *
(!) :: (Tab dom cod) -> (dom -> cod)

Exercise: ArrowFrom Bool

data Two a = Two a a
instance ArrowFrom Bool where

type (:->) Bool = Two
Two f t ! False = f
Two f t ! True = t

Exercise: ArrowFrom Nat

data Nat = Z | S Nat
data Stream a = a :< Stream a
ones = 1 :< ones
instance ArrowFrom Nat where

type (:->) Nat = Stream
a :< _ ! Z = a
_ :< as ! S n = as ! n
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More ArrowFrom instances

data Both f g c = Both (f c) (g c)
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (Either a b) where
type (:->) (Either a b) = Both ((:->) a)

((:->) b)
Both l r ! e = either (l!) (r!) e

newtype Compose f g c = Compose (f (g c))
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (a, b) where
type (:->) (a, b) = Compose ((:->) a)

((:->) b)
Compose x ! (a, b) = x ! a ! b

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



More ArrowFrom instances

data Both f g c = Both (f c) (g c)
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (Either a b) where
type (:->) (Either a b) = Both ((:->) a)

((:->) b)
Both l r ! e = either (l!) (r!) e

newtype Compose f g c = Compose (f (g c))
instance (ArrowFrom a, ArrowFrom b) =>

ArrowFrom (a, b) where
type (:->) (a, b) = Compose ((:->) a)

((:->) b)
Compose x ! (a, b) = x ! a ! b

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Other concepts / type classes

class (Arrow carr , Arrow (Codomain carr)) =>
CurriedArrow carr

instance (Arrow carr , Arrow (Codomain carr)) =>
CurriedArrow carr

class ConstructedType t where
type Inner t

instance Functor f => ConstructedType (f a)
where type Inner (f a) = a

Patrik Jansson, fp.set.cse.chalmers.se Playing with type classes



Monads get ugly

class ( Arrow arr
, ConstructedType mx
, ConstructedType (Codomain arr)
, SameType (Inner mx) (Domain arr)
, SameTypeConstructor mx (Codomain arr)
) => MBindable mx arr where

mbind :: mx -> arr -> Codomain arr

-- sanity check
instance (Functor m, Monad m) =>

MBindable (m a) (a -> m b) where
mbind = (>>=)

class ConstructedType mx => MReturnable mx where
mreturn :: Inner mx -> mx
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Contributions

I a simple model for vulnerability assessment

I concepts (type classes) for functions, functors, monads, etc.

I deeper understanding of generic programming by contrasting
Haskell and C++
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Algebra of monadic dynamical systems

(or an Algebra of indexed co-algebras)

Given sx :: x -> m x and sy :: y -> m y we define
lockstep sx sy :: (x,y)-> m (x,y)
(forward) Kleisli composition
(>=>) :: (x -> m y)-> (y -> m z)-> (x -> m z)
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Communicating systems

compose_sys :: Monad m =>
((t,t1) -> (x1 -> m x1)) ->
((t,t2) -> (x2 -> m x2)) ->
(x1 -> t2) -> (x2 -> t1) ->
t -> (x1,x2) -> m (x1, x2)

compose_sys sys1 sys2 p1 p2 t (x1, x2) =
liftM2 (,) (sys1 (t, p2 x2) x1)

(sys2 (t, p1 x1) x2)

The two systems sys1 and sys2 share a dependency on t. They
both have their own “local” input ti and state xi. The two
projection functions p1 and p2 implement a coupling between the
two systems. In the combined systems the “local” inputs are
hidden and the only remaining input is the global input t.
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