
Strongly Typed Generic Libraries

Patrik Jansson

1 Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop reusable software components with matching spec-
i�cations. The main goal of this research project is to improve the understanding, im-
plementation and theory of strongly typed, generic programming. We work towards two
sub-goals:

• E�cient generic libraries: benchmarking and e�cient compilation

• Correct generic libraries: speci�cation-driven development and parametricity

2 Research area overview

An important part of computer science research is about developing systems supporting the
construction of correct and reusable software. This project is about systems which make
it possible to develop programs which work uniformly over many di�erent datastructures:
generic programs. Since generic programs work for many di�erent types, such as lists,
database tables, and family trees, they can be used and reused as building blocks in all
kinds of software development.

A simple example is a program which counts the number of elements in a datastructure.
Without generic programming we have to use one version for each structure (tables, search
trees, matrices, etc.) while a generic program directly works for all these.

Generic programming o�ers a number of bene�ts:

Reusability: Generics extend the power of polymorphism to allow classes of related algo-
rithms to be described in one de�nition. Thus generic programs are very well suited
for building program libraries � a very successful form of software reuse.

Adaptivity: Generic programs automatically adapt to changing datatypes. For example,
even after adding or removing a constructor of a datatype, the same generic algorithm
can still be applied. This adaptivity reduces the need for time consuming and boring
rewrites of trivial methods and reduces the associated risk of making mistakes.

1



Appendix A P. Jansson, 720311�7515, StrongLib

Applications: Some algorithms are naturally generic � to traverse a datastructure and
perform the same transformation on all parts, to print, parse, compress or decompress
datastructures, to compare two structures for equality, etc. Each of these can be
described informally in a datatype-independent way, and with generic programming
this informal description can be turned into a formal de�nition (program code).

Speci�cations: More general algorithms mean more general speci�cations. If we consider
generic speci�cations, then each of the earlier bene�ts obtains an additional interpre-
tation: we get reusable speci�cations, adaptive speci�cations, and if one can verify
that a generic application conforms to its speci�cation, then the resulting evidence
holds for many instances.

Some international projects and research groups have worked or work on generic program-
ming under di�erent names:

• Standard Template Library (STL) is a generic software library for C++ containing
containers, iterators, algorithms, and functors. Two in�uential projects building on
STL are Boost [Boost] and Adobe Source Libraries [Parent and Marcus].

• C++ Concepts [Gregor et al., 2006] provide a way to express the syntactic and semantic
behaviour of types and to constrain the type parameters in a C++ template. Language
support for concepts have been recently voted out from the upcoming version of C++,
but with a clear intention of reconsidering the future in only a few years. Our
detailed comparison of concepts with type classes [J6, J14] is a useful tool in the
future discussion.

• Datatype-Generic Programming (DGP) [Backhouse, 2006, Gibbons, 2007] in Oxford
and in Nottingham. This work grew out of the earlier work on Algebra of Program-

ming [Bird and de Moor, 1997]. We have collaborated closely with this group for
many years [J2, J8, J17]1.

• The Generic Haskell project in Utrecht led by Johan Jeuring extended the purely
functional language Haskell [Peyton Jones and Hughes, 1999] with type indexed func-

tions [Hinze, 2000]. This project started from the applicant's (well cited) earlier work
on Polytypic Programming [J1, J2, J3].

• The work on Intensional Type Analysis [Harper and Morrisett, 1995] applies generic
programming to compilation of functional languages. They aim at e�cient code
by specialisation and later work has applied generic programming ideas to obtain
type-safe run-time generic programming [Weirich, 2006].

1We use [Jnn] to cite papers in Jansson's publication list (appendix C) to avoid duplication.

2



Appendix A P. Jansson, 720311�7515, StrongLib

3 Project description and preliminary �ndings

In the project we will work towards the goals of e�cient and correct generic libraries. For
each goal we present both the proposed work and our preliminary �ndings.

3.1 E�cient generic libraries

Currently, among main-stream languages, Haskell has the best support for generic pro-
gramming [Garcia et al., 2007] while C++ has the most e�cient generic libraries.

We will set up an open benchmark suite of generic algorithms with realistic test data and we
will use this to investigate what can be improved to obtain better run-time behaviour. We
will draw examples and benchmark code both from our generic programming expressivity
benchmark suite [J7, J13] and from generic libraries for modelling complex systems [J12]
(in collaboration with the Potsdam Institute for Climate Impact Research�PIK). An
important aspect to explore is to what extent we can make use of concurrency in general
and multi-cores in particular.

Our recent work on expressivity benchmarks for generic libraries in Haskell [J7, J13] in-
cludes a small performance analysis where the big run-time di�erences between the libraries
indicate a large potential for improvement. No library is uniformly most e�cient over the
di�erent tests and the overhead compared to hand-specialised code ranges from none to
over 50 times! Preliminary investigation indicates that the main sources of ine�ciency are
unnecessary data conversion and the run-time passing of dictionaries (representing types
the generic function should have been specialised to). Recent work by our colleagues in
Utrecht [Magalhães et al., 2010] show promising results which we aim to build on.

Applying partial evaluation, deforestation and specialisation techniques to the compila-
tion of generic programs should result in optimised code as good as (or better than)
hand-written instances. Combining the expertise in generic programming (Jansson) with
Chalmers' strength in functional programming and partial evaluation we are con�dent
that we can make rapid progress. Concretely, there is existing infrastructure for rewrite
rules [Chakravarty and Keller, 2001] and specialisation in the Glasgow Haskell compiler
which provides a good starting-point.

We will explore how type classes (concepts) with associated types (a technique used in
many e�cient generic C++ libraries) can be used in Haskell and Agda [Norell, 2007, Norell
et al., 2008]. The dependently typed language Agda (developed at Chalmers) is the natural
setting for generic programming, but the full expression of generic programming in Agda
has only just started. We believe that the stronger type system guarantees of pure func-
tional languages can make the library code both safer and more e�cient. Positive examples
include the tag-free interpreters made possible by dependent types (available as GADTs
in Haskell and natively in Agda), and in general stronger types means more possibilities
for powerful compiler optimisations [Brady, 2005, Nilsson, 2005, Xi and Pfenning, 1999].
We believe there is a close correspondence between a tag-free interpreter and a properly

3



Appendix A P. Jansson, 720311�7515, StrongLib

specialised generic library, and we hope to use this as one way to obtain e�cient generic
libraries.

Jansson has been doing research on generic programming since 1995 with di�erent col-
laborators in a strong international network. Based on the long experience with generic
programming in Haskell [J1, J4, J10, J16, J19, J20, J21] and the more recent investigations
of concepts in Haskell and C++ [J6, J12, J13, J14] we have the right background for prac-
tical and theoretical work on e�cient generic libraries. We will also build on theoretical
results about generic programs and proofs [J8, J9, J15, J17].

3.2 Correct generic libraries

For many practical applications software libraries need to be e�cient, but speed does not
help if the computed result is wrong! We will explore di�erent techniques (QuickCheck
and Agda) to obtain correct generic libraries. QuickCheck [Claessen and Hughes, 2000] is a
successful concept (developed in the FP group at Chalmers) for speci�cation and automatic
random testing of program code, but it is not directly applicable to generic programs. The
language Agda [J22] supports the Curry-Howard isomorphism between programs + types
on the one hand, and speci�cations + proofs on the other hand. Agda thus works as a
unifying language supporting speci�cation-driven development of programs, properties and
correctness proofs.

To use random testing for generic algorithms, we need generic executable speci�cations and
generic generators of input data. We will develop executable speci�cations and generators
for the algorithms in the benchmark suite mentioned above and we will use them to search
for (and correct) bugs. Preliminary results on generic testing [J16] are promising, but have
shown that there is much left to do. We have recently started to use parametricity results
to pick the right types for testing generic functions [J11] and we will work on extending and
implementing this method to improve the data generators (to obtain good test coverage
from fewer tests).

Parametricity Wadler [1989] and in general Reynolds' abstraction theorem [Reynolds, 1983]
shows how a typing judgement in System F can be translated into a theorem about func-
tions of that type. This is a very powerful method of obtaining useful correctness guarantees
for typed functional programs. But many generic programs need dependent types, which
are not available in System F, so the parametricity results need to be strengthened. In this
project we will strengthen parametricity and the abstraction theorem to work for languages
with dependent types. We will then apply these results to generic libraries in Haskell and
Agda. Two typical examples of generic functions that we tackle are:

catamorphism fold : ((F ,map) : Functor)→ (t : ?)→ (F t → t)→ µF → t , which is a
generic evaluator function de�ned within a dependently-typed language.

generic cast gcast : (F : ? → ?) → (u t : U ) → Maybe (F (El u) → F (El t)), which
comes from a modelling of representation types with universes.

4



Appendix A P. Jansson, 720311�7515, StrongLib

In both cases, the derived parametricity condition yields useful properties to reason about
the correctness of the function (or, in fact, any function of the same type).

Some generic algorithms are inherently di�cult to test due to the rich structure of the pa-
rameters and a promising approach is to instead express the speci�cation and the algorithm
in the same logical framework and use computer-aided veri�cation. We will investigate how
the speci�cation language (QuickCheck) can be adapted to allow for two back-ends: testing
and proving. We will use Agda as the proof technology infrastructure keeping track of the
top level correctness.

Jansson has worked on speci�cation [Jansson and Jeuring, 1998] & [J4, J5, J18], testing
[J14, J19] and correctness proofs [J10, J12, J13] of generic libraries. We will bene�t from
techniques and tools developed in the Cover project �Combining Veri�cation Methods
in Software Development� at Chalmers (funded by the Swedish Foundation for Strate-
gic Research (SSF), 2002�2005). The Cover tool set is based on Haskell and consists of
QuickCheck [Claessen and Hughes, 2000], Agda [Norell et al., 2008] and CoverTranslator,
a prototype translator from Haskell to First Order Logic.

We have already extended Reynolds abstraction theorem and parametricity results to work
for pure type systems (paper in submission) and within this project we will explore, extend
and apply this result to correctness of generic libraries.

4 Project plan and funding

The project is led by Patrik Jansson in the Functional Programming (FP) group of the
Computer Science and Engineering (CSE) department at Chalmers. The work will be
carried out by Jansson (30%), Jean-Philippe Bernardy (now a 3rd year PhD student, not
paid by the project), one new PhD student (80%), and several MSc thesis students (not
paid by the project). We apply for 80% of the total project cost from VR, the rest is covered
by Chalmers. We will bene�t from work on generic libraries and high-level modelling done
at (and funded by) PIK (Daniel Lincke, Cezar Ionescu). Jansson is co-applicant on a
multi-project grant about Programming with Dependent Types (PI is T. Coquand) which
would complement this project well.

For the �rst two years of the project Jansson will start up and supervise the new PhD
student towards the E�cient Generic Libraries goal, while Jansson & Bernardy will work
on the Correct Generic Libraries goal (and in the end, Bernardy gets his PhD). In the last
two years, the two goals converge in using strong types for e�ciency and correctness, and
Jansson supervises the new PhD student towards her PhD on �Strongly Typed Generic
Libraries�. We work towards the following milestones:

Y1�2 E�cient Setting up the e�ciency benchmark suite (in collaboration with Utrech
and PIK) and evaluating the e�ciency of the compiled code in di�erent scenarios.

Y1�2 Correct Develop the parametricity results for dependent types and implement a
prototype tool based on Agda (in collaboration with the programming logic group).

5



Appendix A P. Jansson, 720311�7515, StrongLib

Y3�4 E�cient Partial evaluation and optimisations based on strong types means selected
generic libraries are now as e�cient as hand-written code. Exploring parallellisation
possibilities.

Y3�4 Correct Develop speci�cations and automatic random testing for generic algo-
rithms and datastructures (case study on graph algorithms). Speci�cations and
proofs for higher order constructions like monads, applicative functors and cata-
morphisms.

Jansson and Bernardy are partially funded (20%) by J. Hughes' �Software Design and Ver-
i�cation using Domain Speci�c Languages� (VR, multi-project grant in ICT, 2009�2012).
Hughes' project applies functional programming techniques, especially DSLs embedded
in Haskell and Erlang, to the design and veri�cation of complex software, taking moti-
vating examples from the telecom domain. The current project proposal, on the other
hand, explores strongly typed generic libraries in general and compilation techniques and
parametricity in particular.

5 Collaboration

The local research environment within the CSE department is excellent�we collaborate
with several world class researchers in areas related to this project: Functional program-
ming and automatic testing (J. Hughes, K. Claessen); Domain Speci�c Languages (J.
Hughes, M. Sheeran); programming logic (T. Coquand, P. Dybjer); language technology
(A. Ranta, B. Nordström); formal methods in software engineering (R. Hähnle). The
proposed project will bene�t from other already awarded related grants involving the
CSE department: J. Hughes' ProTest: Property-based Testing (FP7-ICT-2007.1.2, started
2008, www.protest-project.eu), R. Hähnle's HATS: Highly Adaptable and Trustworthy
Software using Formal Methods (FP7-ICT-2007-3, started 2009). Th. Coquand's Adv.
Investigator's grant and his EU project �ForMath: Formalization of Mathematics�.

The international contacts most relevant for this project are: J. Jeuring (Utrecht Univ.,
NL), S. Schupp (TU Hamburg, DE), R. Backhouse (Univ. of Nottingham, UK), J. Gibbons
(Oxford Univ., UK), S.-C. Mu (Academia Sinica, Taiwan), C. Ionescu (Potsdam Institute
for Climate Impact Research, DE).

We feel that even in this world of reliable and inexpensive means of long distance electronic
communication, personal meetings between researchers are still very important for the
advancement of the �eld. We have had very good experience from my research visits to
di�erent departments and from the visits of other researchers to Chalmers. We therefore
apply for money so that we can travel to meet researchers at other sites and for inviting
other researchers to visit us to do collaborative work.

6



Appendix A P. Jansson, 720311�7515, StrongLib

6 Importance

In broad terms, our research centres around technologies that support the development of
long-lasting software systems and their safe usage by end users. One particularly interesting
question is how such support can be provided in the presence of changes, customisation, and
software evolution, and what technologies and theories thus need to be devised. Analyses
and tools that can continue to work robustly and e�ciently in the presence of change
typically require some collaboration on part of the software systems themselves. Many
successful approaches are therefore naturally related to the design of generic software and
software libraries, where extensibility is a major design force.

Software libraries have long been recognised as vehicles for increased software productivity.
First, they capture domain knowledge in terms of software solutions to the problems a user
wants to solve. Second, they add a layer of abstraction to the underlying computation,
which allows developers to write software in terms closer to their problem domain and
usually results in improved quality and robustness. In the last �fteen years, generic libraries
which introduce the aspects of reusability and strict performance guarantees to library
design have gained attention [Musser and Stepanov, 1994].

Generic programming has become most used in the programming language C++, where
now most cutting-edge development takes place in the form of libraries and where the
in�uential Boost organisation for library standardisation controls overall software quality
[Boost]. Key for the success of libraries in C++ are the compile-time features of the language
(�templates�), which allow, at least in theory, eliminating the overhead that otherwise
comes along with high-level abstractions [Gregor et al., 2005]. Templates are powerful, but
unrestricted use often results in very complex error messages or (worse) silently accepted
incorrect behaviour. Language support for concepts in C++ has been proposed to resolve
these problems and we have been active in evaluating this proposal.

Generic programming today will shape �normal programming� in the future. We can
already see this in modern functional programming languages like Haskell, OCaml and
Erlang. What C++ calls concepts are basically the same [J6, J14] as Haskell's type classes,
which have been used for generic programming for at least 15 years. An increasing number
of companies, large and small, are using functional languages to gain competitive advan-
tage. Many of these companies now need to expand, creating opportunities for skilled
functional programmers to work with this exciting technology. Here in Gothenburg, both
Chalmers and the IT faculty have taught functional languages for many years, and there
is a pool of available talent that is attractive to commercial users. The FP group arranged
the very successful �rst �Jobs in Functional Programming� event in 2007 and we have good
contacts with industrial partners interested in technology transfer.

Both C++ and Haskell are in the process of working out the next language revision (C++0x
and Haskell-prime) and we hope to a�ect relevant design decisions in the generic program-
ming area. We are also in a position to actively take part in the evolution of Agda towards
a next-generation language for e�cient and correct generic libraries.

7



Appendix A P. Jansson, 720311�7515, StrongLib

To summarise�the impact of �Strongly Typed Generic Libraries� outside the academic
world will be through companies and researchers bene�ting from e�cient generic libraries,
users and programmers obtaining correct generic libraries, and students and software en-
gineers learning to use new language features in main-stream languages.

The scienti�c contributions to the computer science area will be in the form of software
prototypes (the benchmark suite and associated code), conference talks/papers (on com-
pilation techniques and library correctness), journal papers and doctoral training. We aim
to go beyond state-of-the-art when it comes to expressivity, e�ciency and correctness of
generic programming and we hope to improve the software technology �eld in general.

References

R. Backhouse. Datatype-generic reasoning. In A. Beckmann et al., editors, Logical Approaches to
Computational Barriers, volume 3988 of LNCS, pages 21�34. Springer-Verlag, 2006.

R. Bird and O. de Moor. Algebra of Programming, volume 100 of International Series in Computer

Science. Prentice-Hall International, 1997.

Boost. The Boost initiative for free peer-reviewed portable C++ source libraries. http://www.

boost.org, 2009.

E. Brady. Practical Implementation of a Dependently Typed Functional Programming Language.
PhD thesis, University of Durham, 2005.

M. M. T. Chakravarty and G. Keller. Functional array fusion. In ICFP'01: Int. Conf. on

Functional Programming, pages 205�216, 2001.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell pro-
grams. In ICFP'00: Int. Conf. on Functional Programming, pages 268�279. ACM, 2000.

R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock. An extended comparative study of
language support for generic programming. J. Funct. Program., 17(2):145�205, 2007.

J. Gibbons. Datatype-generic programming. In R. Backhouse et al., editors, Spring School on

Datatype-Generic Programming, volume 4719 of LNCS. Springer-Verlag, 2007.

D. Gregor, J. Järvi, M. Kulkarni, A. Lumsdaine, D. Musser, and S. Schupp. Generic programming
and high-performance libraries. International J. of Parallel Programming, 33(2):145�164, 2005.

D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lumsdaine. Concepts: Linguistic
support for generic programming in C++. In OOPSLA: Object-Oriented Programming Systems,

Languages, and Applications, pages 291�310. ACM Press, 2006.

R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis. In
POPL'95: Principles of Programming Languages, pages 130�141, 1995.

R. Hinze. A new approach to generic functional programming. In POPL'00: Principles of Pro-

gramming Languages, pages 119�132. ACM Press, 2000.

P. Jansson. The WWW home page for polytypic programming. Available from http://www.cse.

chalmers.se/~patrikj/poly/, 2003.

8



Appendix A P. Jansson, 720311�7515, StrongLib

P. Jansson and J. Jeuring. PolyLib � a polytypic function library. Workshop on Generic Pro-
gramming, Marstrand, June 1998. Available from the Polytypic prog. page [Jansson, 2003].

J. P. Magalhães, S. Holdermans, J. Jeuring, and A. Löh. Optimizing generics is easy! In PEPM

'10: Proc. ACM SIGPLAN workshop on Partial evaluation and program manipulation, pages
33�42. ACM, 2010.

D. Musser and A. Stepanov. Algorithm-oriented generic libraries. Software�Practice and Expe-

rience, 27(7):623�642, Jul 1994.

H. Nilsson. Dynamic optimization for functional reactive programming using generalized algebraic
data types. In ICFP'05, pages 54�65. ACM Press, 2005.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden, 2007.

U. Norell et al. Agda � a dependently typed programming language. Implementation available
from Google Code: http://code.google.com/p/agda/, 2008.

S. Parent and M. Marcus. Adobe source libraries (ASL). http://stlab.adobe.com/.

S. Peyton Jones and J. Hughes, editors. Haskell 98 � A Non-strict, Purely Functional Language.
Available from http://www.haskell.org/definition/, Feb. 1999.

J. C. Reynolds. Types, abstraction and parametric polymorphism. Information processing, 83(1):
513�523, 1983.

P. Wadler. Theorems for free! In Functional Programming Languages and Computer Architecture,

FPCA '89, pages 347�359. ACM Press, 1989.

S. Weirich. Type-safe run-time polytypic programming. J. Funct. Program., 16(6):681�710, 2006.

H. Xi and F. Pfenning. Dependent types in practical programming. In POPL '99, pages 214�227.
ACM, 1999.

9


