Testing statistical
properties

John Hughes

QuviQ

Presenter
Presentation Notes
Toss a coin 10 times. If it comes up heads every time, get suspicious

103

Presenter
Presentation Notes
BUT if you accuse, 1 time in 1000 you’ll be wrong—it happened by chance

Presenter
Presentation Notes
If we do it 10 more times, risk of egg is one in a million
10 more times, one in a billion

The Realm of Statistics

Make statements
about probabilities

...with a risk of being wrong

Presenter
Presentation Notes
The art is to balance the two.

Presenter
Presentation Notes
Made it easy by assuming all heads. But what if heads come up 60% of the time? How suspicious should we be?

100 Coin Tosses

Probability
9,00E-02
8,00E-02
7,00E-02
6,00E-02
5,00E-02
4,00E-02
3,00E-02
2,00E-02
1,00E-02
0,00E+00

42
48

54
60
66
72
78
384
90
96

200 Colin Tosses

6,00E-02

5,00E-02

4,00E-02

3,00E-02

2,00E-02

1,00E-02

0,00E+00

Probability

11
22
33

44
55

66
77
88
99
110
121

i

132
143

154

165

176
187

198

1000 Coin Tosses

Probability

3,00E-02

2,50E-02

2,00E-02

1,50E-02

1,00E-02

5,00E-03

0,00E+00

612
663
714
765
816
867
918
969

100 Coin Tosses

ConﬁdenceProbablllty

level

p-value

9,00E-02
8,00E-02
7,00E-02
6,00E-02
5,00E-02
4,00E-02
3,00E-02
2,00E-02
1,00E-02
0,00E+00

42
48
54
60
66
72
78
384
90
96

"Test by contradiction”

Null

* To demonstrate P(tails) < 50%... hypothesis

* Assume the opposite (P(tails) >=50%)
 Compute the probability of observed results or worse

* If it’s < threshold, reject the null hypothesis

* Assert P(tails) < 50%, at confidence level 1-
threshold

What confidence level do we
need?

* Particle physicists 99.99994%

* Psychologists 95%

* Software developers?

How often is it ok for a test to fail
when there is no bug?

Presenter
Presentation Notes
”Flaky tests” get deleted!

W Agile Borat on Twitter: "I X\ |

& C ‘ & Saker | https://twitter.com/AgileBorat/status/66164086488055809

Agile Borat >
\ ¥J @AgileBorat

My friend Azamat is very good developer, he
is always have all unit test green. If unit test is

fail, it is remove. Is best practice.

8:35 AM - 5 May 2011

256 Retweets 25Likes @D ED GO (/D - €

& 1 256 Q 25

How often is it ok for a test to fail
when there is no bug?

Never in the
lifetime of the
project!

10°°7 10797

Presenter
Presentation Notes
”Flaky tests” get deleted!

Two special characteristics:

*\We constantly re-run tests

*\We can easily get more data

Presenter
Presentation Notes
If we want a statistical test to be non-flaky, get more samples!
Much better to run fewer, longer tests

Testing the Bool generator

1,00E-01 binomial 100 0.5

5,00E-02

0,00E+00

O O N 00 < O O N 0 <« O O N o0 g« O O
T = N 0O N < << n O O NN 0 OO

cumulative (binomial 100 0.5) 40
< threshold

threshold = 0.000000001

rejectAtlLeast p bs =
cumulative (binomial (length bs) p) k < threshold
where k = fromIntegral (length (filter id bs))

The number of True A Bool is True with

values in the list probability at least p

prop BoolAtLeast p bs =
not (rejectAtLeast p bs)

*Stat> quickCheck$ prop BoolAtLeast 0.8
*** Failed! Falsifiable (after 65 tests and 7 shrinks):
[False,False,False,False,False,False,False,False,False,F

alse,False,False,False]
Shortest list of Falses that

enables us to reject prob >= 80%

Presenter
Presentation Notes
Shrinking makes no sense! (But this is shortest list of Falses that lets me reject the null hypothesis).
Statistician would be horrified! (Repeated statistical tests)

.

*Stat> quickCheck.withMaxSuccess 10000% prop BoolAtlLeast 65.17

*** Fajled! Falsifiable (after 898 tests and 9 shrinks):
[False,False,False,False,False,False,False,False,False,False,F
alse,False,False,False,False,False,False,False]

*Stat> quickCheck.withMaxSuccess 10000% prop BoolAtLeast 0. 6
+++ OK, passed 10000 tests.

Presenter
Presentation Notes
70%: harder to find; more tests, longer list.
60% not found at all! Need LONGER lists of samples.

Generate an infinite list of
samples

prop BoolAtLeastInf p (InfiniteList bs) =
not (rejectAtLeastInf p bs)

rejectAtLeastInf p bs =
or [rejectAtLeast p pbs
| pbs <- prefixes bs]

prefixes bs =
[take n bs | n <- iterate (2*) 100]

*Stat> quickCheck $ prop BoolAtLeastInf @ ° 55

*** Failed! Falsifiable (after 1 test and 81 shrinks):
[False,False,False,False,False,False,False,False,False,False,False,Fals
e,False,False,False,False,False,False,False,False,False,False,False,Fal
se,False,False,False,False,False,False,False,False,False,False,False,Fa
lse,False,False,False,False,False,False,False,False,False,False,False,F
alse,False,False,False,False,False,False,False,False,False,False,False,
False,False,False,False,False,False,False,False,False,False,False,False
,False,False,False,False,False,False,False,False,False,False,False,Fals
e,False,False,False,False,False,False,False,False,False,False,False,Fal
se,False,False,False,False,False] ++ ...

Should terminate
for any p>0.5

Presenter
Presentation Notes
But what if I choose p<0.5??? This property only terminates by REJECTING the null hypothesis.

Two-sided test

* | reject the null hypothesis if there are too few True
values in the sequence

* so | know actual probability <p

 When should | accept the null hypothesis?
* When | know the actual probability >p?

* What if the actual probability ==p?

We'll be able to say actual probability is definitely
>p’, or <p (or possibly both)

Presenter
Presentation Notes
Suppose I want to demonstrate actual prob >p. Keep testing until egg area is small enough.
If actual prob is lower, keep testing until egg is small enough.
The closer together p’ and p are, the more expensive the test.

Probability is <p

checkProbability p' p bs

| rejectAtLeast p bs = Just False
| rejectAtlLeast (1-p') (map not bs) = Just True
| otherwise = Nothing

Probability is >p’

checkProbabilityInf p' p bs =
fromJust $§ head $§ filter (/=Nothing) $
map (checkProbability p' p) $
prefixes bs

A property to test booleans

More convenient
to pass a tolerance

))) =
p bs

Don’t print
or shrink the
infinite list!

*Main> quickCheck $ prop CheckProbability 0.9 0.4
+++ OK, passed 100 tests:

657% 800 Instrumented to show how

31% 400 many booleans were needed
4% 1600

*Main> quickCheck $ prop CheckProbability 0.9 0.6
*** Failed! Falsifiable (after 1 test):

(*)
800

*Main> quickCheck $ prop CheckProbability 0.9 0.5

+++ OK, passed 100 tests:
64% 6400

33% 3200

2% 1600

1% 800

*Main> quickCheck .
+++ OK, passed 6400
*Main> quickCheck .
+++ OK, passed 3200
*Main> quickCheck .
+++ OK, passed 6400
*Main> quickCheck .
+++ OK, passed 6400

checkCoverage $ \b ->
tests (49.11% True).
checkCoverage $ \b ->
tests (50.62% True).
checkCoverage $ \b ->
tests (50.00% True).
checkCoverage $ \b ->
tests (49.88% True).

64% 6400
33% 3200
2% 1600
17% 800

cover

cover

cover

cover

50 b

50 b

50 b

50 b

"True

"True"

"True"

"True"

True

True

True

True

checkCoverage =

checkCoverageWith
(Confidence{confidence = 1000000000,
tolerance = 0.9})

Presenter
Presentation Notes
checkCoverage is doing just this: but ONE statistical check for the entire run.

Does it make sense to repeat
statistical tests?

* Every time there is a risk of a wrong answer

10 tests 1 test
X X
1000 << 10000
samples samples

* Worth repeating after a code change
* Worth varying other inputs than the samples

Testing frequency

* Need to generate weights and samples

* There may be a mistake in the interpretation of
weights

 Test that each choice is made in proportion to its
weight

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..]1)))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$> map (min 5)
infiniteListOf

(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws

Presenter
Presentation Notes
Let’s plant a bug!

Failed:
y {getNon@ Unhelpful stuff elided

6,4,4,
(*)

Failed: ...
ES;‘” verboseShrinking
Failed: ...
[6,3]
(*)

*** Failed! Falsifiable (after 7 tests and 2 shrinks):
NonEmpty {getNonEmpty = ...
w Counterexample:
* contains 6 and
another value

prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->

let p = (fromIntegral omIntegral total) in
checkProbabilityIn :@ p (map (==i) ns))
(zip ws [0..])

where ws = map getPositive ws'
total = sum ws

Sloppy tolerance =¥
non-determinism

What can we do?

* Change tolerance to 0.99

=>» Much slower tests

= Much less non-determinism

Failed:
[21516141517]
(*)

Failed:
[4,5,7]
(*)

Failed:
[5,7]
(*)

Failed:
[3,7]
(*)

Failed:
[2,7]
(*)

Failed:
[1,7]
(*)

Failed:
[1,6]
(*)

*** Failed! Falsifiable (after 8 tests
and 6 shrinks):

[1,6]

(*)

Another planted bug: map (+1)

Failed:
[1,3]
(*)

Failed:
[1,2]
(*)

*** Failed! Falsifiable (after 1 test and 1 shrink):
[1,2]
(*)

Lessons

e Statistical properties need a tolerance for error, and
a certainty threshold (e.g. 10~ probability of error)

* Use infinite lists of samples; keep sampling until
certainty is attained

* Avoid too many statistical tests—each may be
wrong

* Use a tight tolerance to get good shrinking

Heads up!

* There are many more statistical tests, suitable for
different problems

* Pearson’s Chi? test

* rejects the hypothesis "samples were drawn from this
particular finite distribution”

e i.e. perfect for testing frequency, FTS, etc
* (but when do we accept the samples?)

A Hitchhiker’s Guide to Statistical Tests for

Assessing Randomized Algorithms in
Software Engineering'

Andrea Arcuri! and Lionel Briand?

(1) Simula Research Laboratory, P.O. Box 134, Lysaker, Norway.
Email: arcuri@simula.no

(2) SnT Centre, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
Email: lionel.briand@uni.lu

Abstract

Randomized algorithms are widely used to address many types of software engineering problems, espe-
cially in the area of software verification and validation with a strong emphasis on test automation. However,
randomized algorithms are affected by chance, and so require the use of appropriate statistical tests to be

Conclusion

* Use sound statistical tests, ...
e ...to test the actual property of interest

e Statistical tests are expensive and a bit specialised,
but can work well in combination with QuickCheck
and shrinking

	Testing statistical properties
	Slide Number 2
	Slide Number 3
	Slide Number 4
	The Realm of Statistics
	Slide Number 6
	100 Coin Tosses
	200 Coin Tosses
	1000 Coin Tosses
	100 Coin Tosses
	”Test by contradiction”
	What confidence level do we need?
	How often is it ok for a test to fail when there is no bug?
	Slide Number 14
	How often is it ok for a test to fail when there is no bug?
	Two special characteristics:
	Testing the Bool generator
	Slide Number 18
	Slide Number 19
	Generate an infinite list of samples
	Slide Number 21
	Two-sided test
	Slide Number 23
	Slide Number 24
	A property to test booleans
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Does it make sense to repeat statistical tests?
	Testing frequency
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	What can we do?
	Slide Number 39
	Another planted bug: map (+1)
	Lessons
	Heads up!
	Slide Number 55
	Conclusion

