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Presentation Notes
Toss a coin 10 times. If it comes up heads every time, get suspicious
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BUT if you accuse, 1 time in 1000 you’ll be wrong—it happened by chance
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If we do it 10 more times, risk of egg is one in a million
10 more times, one in a billion


The Realm of Statistics

Make statements
about probabilities

...with a risk of being wrong
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The art is to balance the two.




Presenter
Presentation Notes
Made it easy by assuming all heads. But what if heads come up 60% of the time? How suspicious should we be?


100 Coin Tosses

Probability
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200 Colin Tosses
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1000 Coin Tosses

Probability
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100 Coin Tosses

ConﬁdenceProbablllty
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"Test by contradiction”

Null

* To demonstrate P(tails) < 50%... hypothesis

* Assume the opposite (P(tails) >=50%)
 Compute the probability of observed results or worse

* If it’s < threshold, reject the null hypothesis

* Assert P(tails) < 50%, at confidence level 1-
threshold



What confidence level do we
need?

* Particle physicists 99.99994%

* Psychologists 95%

* Software developers?



How often is it ok for a test to fail
when there is no bug?
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”Flaky tests” get deleted!


W Agile Borat on Twitter: "I X\ |

& C ‘ & Saker | https://twitter.com/AgileBorat/status/66164086488055809

Agile Borat >
\ ¥J @AgileBorat

My friend Azamat is very good developer, he
is always have all unit test green. If unit test is

fail, it is remove. Is best practice.
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How often is it ok for a test to fail
when there is no bug?

Never in the
lifetime of the
project!

10°°7 10797
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”Flaky tests” get deleted!


Two special characteristics:

*\We constantly re-run tests

*\We can easily get more data


Presenter
Presentation Notes
If we want a statistical test to be non-flaky, get more samples!
Much better to run fewer, longer tests


Testing the Bool generator

1,00E-01 binomial 100 0.5
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threshold = 0.000000001

rejectAtlLeast p bs =
cumulative (binomial (length bs) p) k < threshold
where k = fromIntegral (length (filter id bs))

The number of True A Bool is True with

values in the list probability at least p

prop BoolAtLeast p bs =
not (rejectAtLeast p bs)

*Stat> quickCheck$ prop BoolAtLeast 0.8
*** Failed! Falsifiable (after 65 tests and 7 shrinks):
[False,False,False,False,False,False,False,False,False,F

alse,False,False,False]
Shortest list of Falses that

enables us to reject prob >= 80%
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Shrinking makes no sense! (But this is shortest list of Falses that lets me reject the null hypothesis).
Statistician would be horrified! (Repeated statistical tests)


.

*Stat> quickCheck.withMaxSuccess 10000% prop BoolAtlLeast 65.17

*** Fajled! Falsifiable (after 898 tests and 9 shrinks):
[False,False,False,False,False,False,False,False,False,False,F
alse,False,False,False,False,False,False,False]

*Stat> quickCheck.withMaxSuccess 10000% prop BoolAtLeast 0. 6
+++ OK, passed 10000 tests.
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70%: harder to find; more tests, longer list.
60% not found at all! Need LONGER lists of samples.


Generate an infinite list of
samples

prop BoolAtLeastInf p (InfiniteList bs ) =
not (rejectAtLeastInf p bs)

rejectAtLeastInf p bs =
or [rejectAtLeast p pbs
| pbs <- prefixes bs]

prefixes bs =
[take n bs | n <- iterate (2*) 100]



*Stat> quickCheck $ prop BoolAtLeastInf @ ° 55

*** Failed! Falsifiable (after 1 test and 81 shrinks):
[False,False,False,False,False,False,False,False,False,False,False,Fals
e,False,False,False,False,False,False,False,False,False,False,False,Fal
se,False,False,False,False,False,False,False,False,False,False,False,Fa
lse,False,False,False,False,False,False,False,False,False,False,False,F
alse,False,False,False,False,False,False,False,False,False,False,False,
False,False,False,False,False,False,False,False,False,False,False,False
,False,False,False,False,False,False,False,False,False,False,False,Fals
e,False,False,False,False,False,False,False,False,False,False,False,Fal
se,False,False,False,False,False] ++ ...

Should terminate
for any p>0.5
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But what if I choose p<0.5??? This property only terminates by REJECTING the null hypothesis.


Two-sided test

* | reject the null hypothesis if there are too few True
values in the sequence

* so | know actual probability <p

 When should | accept the null hypothesis?
* When | know the actual probability >p?

* What if the actual probability ==p?



We'll be able to say actual probability is definitely
>p’, or <p (or possibly both)


Presenter
Presentation Notes
Suppose I want to demonstrate actual prob >p. Keep testing until egg area is small enough.
If actual prob is lower, keep testing until egg is small enough.
The closer together p’ and p are, the more expensive the test.


Probability is <p

checkProbability p' p bs

| rejectAtLeast p bs = Just False
| rejectAtlLeast (1-p') (map not bs) = Just True
| otherwise = Nothing

Probability is >p’

checkProbabilityInf p' p bs =
fromJust $§ head $§ filter (/=Nothing) $
map (checkProbability p' p) $
prefixes bs



A property to test booleans

More convenient
to pass a tolerance

))) =
p bs

Don’t print
or shrink the
infinite list!



*Main> quickCheck $ prop CheckProbability 0.9 0.4
+++ OK, passed 100 tests:

657% 800 Instrumented to show how

31% 400 many booleans were needed
4% 1600

*Main> quickCheck $ prop CheckProbability 0.9 0.6
*** Failed! Falsifiable (after 1 test):

(*)
800

*Main> quickCheck $ prop CheckProbability 0.9 0.5

+++ OK, passed 100 tests:
64% 6400

33% 3200

2% 1600

1% 800



*Main> quickCheck .
+++ OK, passed 6400
*Main> quickCheck .
+++ OK, passed 3200
*Main> quickCheck .
+++ OK, passed 6400
*Main> quickCheck .
+++ OK, passed 6400

checkCoverage $ \b ->
tests (49.11% True).
checkCoverage $ \b ->
tests (50.62% True).
checkCoverage $ \b ->
tests (50.00% True).
checkCoverage $ \b ->
tests (49.88% True).

64% 6400
33% 3200
2% 1600
17% 800

cover

cover

cover

cover

50 b

50 b

50 b

50 b

"True

"True"

"True"

"True"

True

True

True

True



checkCoverage =

checkCoverageWith
(Confidence{confidence = 1000000000,
tolerance = 0.9})
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checkCoverage is doing just this: but ONE statistical check for the entire run.


Does it make sense to repeat
statistical tests?

* Every time there is a risk of a wrong answer

10 tests 1 test
X X
1000 << 10000
samples samples

* Worth repeating after a code change
* Worth varying other inputs than the samples



Testing frequency

* Need to generate weights and samples

* There may be a mistake in the interpretation of
weights

 Test that each choice is made in proportion to its
weight



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..]1)))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$> map (min 5)
infiniteListOf

(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->
let p = (fromIntegral w/fromIntegral total) in
checkProbabilityInf (0.9*p) p (map (==i) ns))
(zip ws [0..])
where ws = map getPositive ws'
total = sum ws
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Let’s plant a bug!


Failed:
y {getNon@ Unhelpful stuff elided

6,4,4,
(*)

Failed: ...
ES;‘” verboseShrinking
Failed: ...
[6,3]
(*)

*** Failed! Falsifiable (after 7 tests and 2 shrinks):
NonEmpty {getNonEmpty = ...
w Counterexample:
* contains 6 and
another value



prop Frequency :: (NonEmptyList (Positive Int)) -> _
prop Frequency (NonEmpty ws') =
forAll (Blind <$>
infiniteListOf
(frequency (zip ws (map return [0..])))) $
\ (Blind ns) ->
all (\(w,i) ->

let p = (fromIntegral omIntegral total) in
checkProbabilityIn :@ p (map (==i) ns))
(zip ws [0..])

where ws = map getPositive ws'
total = sum ws

Sloppy tolerance =¥
non-determinism



What can we do?

* Change tolerance to 0.99

=>» Much slower tests

= Much less non-determinism



Failed:
[21516141517]
(*)

Failed:
[4,5,7]
(*)

Failed:
[5,7]
(*)

Failed:
[3,7]
(*)

Failed:
[2,7]
(*)

Failed:
[1,7]
(*)

Failed:
[1,6]
(*)

*** Failed! Falsifiable (after 8 tests
and 6 shrinks):

[1,6]

(*)



Another planted bug: map (+1)

Failed:
[1,3]
(*)

Failed:
[1,2]
(*)

*** Failed! Falsifiable (after 1 test and 1 shrink):
[1,2]
(*)



Lessons

e Statistical properties need a tolerance for error, and
a certainty threshold (e.g. 10~ probability of error)

* Use infinite lists of samples; keep sampling until
certainty is attained

* Avoid too many statistical tests—each may be
wrong

* Use a tight tolerance to get good shrinking



Heads up!

* There are many more statistical tests, suitable for
different problems

* Pearson’s Chi? test

* rejects the hypothesis "samples were drawn from this
particular finite distribution”

e i.e. perfect for testing frequency, FTS, etc
* (but when do we accept the samples?)



A Hitchhiker’s Guide to Statistical Tests for

Assessing Randomized Algorithms in
Software Engineering'

Andrea Arcuri! and Lionel Briand?

(1) Simula Research Laboratory, P.O. Box 134, Lysaker, Norway.
Email: arcuri@simula.no

(2) SnT Centre, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
Email: lionel.briand@uni.lu

Abstract

Randomized algorithms are widely used to address many types of software engineering problems, espe-
cially in the area of software verification and validation with a strong emphasis on test automation. However,
randomized algorithms are affected by chance, and so require the use of appropriate statistical tests to be




Conclusion

* Use sound statistical tests, ...
e ...to test the actual property of interest

e Statistical tests are expensive and a bit specialised,
but can work well in combination with QuickCheck
and shrinking
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