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Goal

I Formalize constructive algebra in Coq

I Executable within Coq - can be used for computation in
proofs



Overview

I Rings with explicit divisibility

I GCD rings
I Bezout rings
I Euclidean rings

I Some polynomial theory

I Smith normal form

I Constructive PIDs

I Standard examples: Z and k[x ] where k is a field



Formalization

I Formalized using the SSReflect extension to Coq

I Based on chapter 4, Divisibility in discrete domains, in A
course in constructive algebra by Mines, Richman and
Ruitenburg



Rings with explicit divisibility

I A ring R has explicit divisibility if it has a divisibility test that
give witnesses:

a | b ↔ ∃x .b = xa



DvdRing

CoInductive div_spec (a b : R) : option R -> Type :=

| Dvd x of a = x * b : div_spec a b (Some x)

| NDvd of (forall x, a != x * b) : div_spec a b None.

Record mixin_of (R : ringType) : Type := Mixin {

div : R -> R -> option R;

_ : forall a b, div_spec a b (div a b)

}.



GCD rings

I A ring R is a GCD ring if every pair of elements have a
greatest common divisor

∀ab.∃g .(g | a) ∧ (g | b) ∧ (∀g ′.g ′ | a ∧ g ′ | b → g ′ | g)



GcdRing

Record mixin_of (R : dvdRingType) : Type := Mixin {

gcd : R -> R -> R;

_ : forall a b g,

g %| gcd a b = (g %| a) && (g %| b)

}.



Bezout rings

I Non-Noetherian analogue of principal ideal domains

I Principal ideal domains: Every ideal is principal

I Bezout ring: Every finitely generated ideal is principal

I Equivalent definition:

∀ab.∃xy .ax + by = gcd(a, b)



BezoutRing

CoInductive bezout_spec (a b : R) : R * R -> Type :=

BezoutSpec x y of

gcdr a b %= x * a + y * b : bezout_spec a b (x, y)

Record mixin_of (R : gcdRingType) : Type := Mixin {

bezout : R -> R -> (R * R);

_ : forall a b, bezout_spec a b (bezout a b)

}.



Euclidean rings

I Euclidean norm: f : R → N
I Euclidean division: ∀ab.∃qr .a = bq + r and either f (r) < f (b)

or r = 0.

I Examples: Z with absolute value and k[x ] with degree



Some polynomial theory

I If R has explicit divisibility then R[x ] also has

I If R is a GCD ring then R[x ] also is a GCD ring

I This proof is based on the presentation in The Art of
Computer Programming by Knuth and it doesn’t use the
field of fractions of R as in Mines, Richman, Ruitenburg

I Give GCD algorithm for Z[x1, . . . , xn] and k[x1, . . . , xn]



Smith normal form

I Generalization of Gauss elimination algorithm to work over
any principal ideal domain instead of field

I Given a matrix M compute invertible matrices L and R such
that LMR is diagonal and aii | a(i+1)(i+1)

I Motivation: Computation of homology groups of simplicial
complexes from algebraic topology



Constructive PIDs

I In order to formalize the Smith normal form algorithm we
need constructive approximation of principal ideal domains

I Mines, Richman, Ruitenburg: A constructive PID is a Bezout
domain such that if we have a sequence of u(n):s with
u(n + 1) | u(n) then there is some k such that u(k) | u(k + 1)

I Formalized in type theory by having that strict divisibility is
well founded



Constructive PIDs

Definition sdvdr (R : dvdRingType) (x y : R) :=

(x %| y) && ~~(y %| x).

Record mixin_of (R : dvdRingType) : Type := Mixin {

_ : well_founded (@sdvdr R)

}.



Constructive PIDs

I This has been used to implement GCD algorithm showing that
constructive PIDs are GCD rings

I Vincent Siles used this to implement Smith normal form
algorithm in SSReflect



Overview

IntegralDomain

DvdRing

GcdRing

BezoutRing

PrincipalRing

EuclideanRing



Examples

I Have proved that Z and k[x ] where k is a field are Euclidean
rings and hence the other structures as well

> Time Eval compute in (gcdr 11466 1428)%Z.

= 42%Z

Finished transaction in 0. secs (0.109993u,0.s)

> Time Eval compute in (123123 %/ 1234)%Z.

= 99%Z

Finished transaction in 0. secs (0.013333u,0.s)



Future work

I Efficient implementation of polynomials

I Implement executable version of Smith normal form algorithm

I Certified computation of homology groups of simplicial
complexes



Questions?
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