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Computer calculations and
mathematical proofs

Using computer calculations is the only way we know to prove:

• The Four Color Theorem (Appel-Haken, 1976)

• The Kepler conjecture (Hales, 1998)

• ...

• The ternary Goldbach conjecture (Helfgott, 2013)

• ...
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Summation/Integral identities

∑
k∈Z

(3k)!

k!(k + 1)!(k + 2)!27k
=

(81n2 + 261n + 200)(3n + 2)!

40(n + 2)!(n + 1)!n!27n
− 9

2

∑
k∈Z

(−1)k
(
a + b

a + k

)(
a + c

c + k

)(
b + c

b + k

)
=

(a + b + c)!

a!b!c!∫ +∞

0

e−pxTn(x)√
1− x2

dx = (−1)nπIn(p)
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Mathematical riddles

Some simple ones:

n∑
k=0

(
n

k

)
= 2n

n∑
k=0

(
n

k

)
(−1)k = 0

that can be obtained easily by specialization of the binomial
formula:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

considering (1 + 1)n = 2n and ((−1) + 1)n = 0 respectively.
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Answers as closed forms

By similar tricks:

n∑
k=0

(
n

k

)2

=

(
2n

n

) n∑
k=0

(
n

k

)2

(−1)k = 0

but there is no hope to obtain any such closed form for higher

powers of the binomial coefficients like
∑n

k=0

(
n
k

)3
, ...

Properties of sequences like un :=
∑n

k=0

(
n
k

)3
should be deduced

from other informations than a closed form.
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Answers as recurrences

A very informative data is a recurrence relation canceling the
sequence:

• Optimized evaluation of the terms

• Asymptotic

• ...
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Answers as recurrences: examples

• Our previous un :=
∑n

k=0

(
n
k

)3
is solution of:

(n+1)2an+1−(7n2+7n+2)an−8n2an−1 = 0 (Franel, 1894)

• The sequence un :=
∑n

k=0

(
n
k

)2(n+k
k

)2
is solution of:

n3an−(34n3−51n2+27n−5)an−1+(n−1)3an−2 = 0 (Apéry, 1978)

which is a crucial point in its proof that ζ(3) :=
∑

k>0
1
k3 is

irrational.
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Checking a conjecture: easy cases

In these problems, checking a conjecture can be much easier
than finding it. Example:

Let us prove the Cassini (1680) identity:

∀n ∈ N,Fn+2Fn − F 2
n+1 = (−1)n

where Fn is the n-th Fibonacci number:

∀n ∈ N,Fn+2 = Fn+1 + Fn, F (0) = 1, F (1) = 1
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Checking a conjecture: less easy cases

But checking a conjecture can also be extremely difficult:

Checking Apéry’s claim that un :=
∑

k

(
n
k

)2(n+k
k

)2
verifies

n3un − (34n3 − 51n2 + 27n − 5)un−1 + (n − 1)3un−2 = 0

took several months of effort to experts in number theory before
being proved correct by Cohen and Zagier (1979).
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Checking a conjecture: telescopes

In order to prove that un :=
∑

k vn,k with vn,k :=
(
n
k

)2(n+k
k

)2
verifies

n3un − (34n3 − 51n2 + 27n − 5)un−1 + (n − 1)3un−2 = 0

Cohen and Zagier construct wn,k such that:

n3vn,k−(34n3−51n2+27n−5)vn−1,k+(n−1)3vn−2,k = wn,k+1 − wn,k

Then they sum over k both hand sides:∑
k

(n3vn,k−(34n3−51n2+27n−5)vn−1,k+(n−1)3vn−2,k) =
∑
k

(wn,k+1 − wn,k)

n3un − (34n3 − 51n2 + 27n − 5)un−1 + (n − 1)3un−2 = wn,∞ − wn,0 = 0
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More than recipes

The collection of proofs we have seen so far is not a bag of
tricks. There is:

• An algebraic framework and effective results

• Advances in algorithmics

• Efficient implementations in computer algebra systems

that systematize these lines of reasoning.

They provide automated ways of guessing and checking these
identities/recurrences and their differential analogues.
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Linear recurrences with polynomial
coefficients
A sequence u := (un)n∈N ∈ KN is holonomic (or P-recursive) if it
is a solution of a linear recurrence with coefficients in K[n].

• Fn+2 = Fn+1 + Fn

• nun+2 − (n2 + 100)un+1 − un = 0

In the special case when the recurrence is of order 1
(and u0 6= 0) the sequence u is said to be hypergeometric.

• (n + 1)un+1 = nun

The definition extends obviously to sequences with several
indexes and multivariate polynomial coefficients.
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Linear recurrences with polynomial
coefficients

• Elementary remark: Linear recurrences impose a structure
of vector space to their set of solution.

• Hence in order to prove the equality of two holonomic
sequences it is sufficient to:

- Find a common linear recurrence relation
- Check that the two sequences coincide on sufficiently many

initial conditions.

Remember the Cassini identity Fn+2Fn − F 2
n+1 = (−1)n.
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Linear recurrences with polynomial
coefficients

• Less obvious remark: The set of holonomic sequences on a
field K is a K-algebra.

• Hence if u and v are holonomic it is possible to:
- Find a recurrence canceling (u + v)
- Find a recurrence canceling (u ∗ v)

Find a recurrence canceling
(
n
k

)
+ k!Fn.
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Linear recurrences with polynomial
coefficients

• Non obvious at all: If (un,k) is holonomic, it is possible to:

- Find a recurrence canceling Un :=
+∞∑
k=0

un,k

- Find a recurrence canceling Un :=
n∑

k=0

un,k

Remember Apéry’s sequence un :=
∑n

k=0

(
n
k

)2(n+k
k

)2
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From existence theorems to efficient
algorithms
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Linear differential operators with
polynomial coefficients

The underlying theory (of D-modules and Ore/Weyl algebra)
applies just as well to functions of a continuous variable:

• A formal series
∑

n≥0 anX
n is holonomic (or D-finite) if it is

solution of a differential equation with polynomial
coefficients.

• Remark: A formal series is holonomic
∑

n≥0 anX
n if and

only if the sequence (an) of its coefficients is holonomic.

And algorithms also transpose.
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A large class of objects

Abramowitz and Stegun
∼ 60% of the entries are

holonomic

Plouffe and Sloane
∼ 25% of the entries are

holonomic
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Implementations and their applications

• Several packages are available in mainstream computer
algebra systems (Maple, Mathematica).

• Computer-algebra aided proofs of several theorems
(irrationality of ζ(3), q-TSPP conjecture,...)

• A Dynamic Dictionary of Mathematical Functions
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
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Confidence

• Static large tables of formulae are quite error-prone.

• Data-bases generated by generic computer-algebra
algorithms are much more reliable.

• Generating these data-bases benchmarks the
computer-algebra libraries and increase the confidence in
computer algebra aided proofs.
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Limits of computer algebra aided proofs

Beyond the possible but rather rare bugs that can affect these
programs:

• Computer algebra systems manipulate symbolic expressions,
not functions

0

0
= Error,

x − y

x − y
= 1

• Equality almost everywhere is equality.

• Experts know the dark corners of the algorithms they
design, but not necessarily the user.

Non-expert users can go wrong very quickly.
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Limits of computer algebra aided proofs

Examples of dark corners:

• Singularities: (n − 4)un+1 − (n − 4)un = 0 u5 =?
⇒ germs of sequences, not sequences.

• Rational fractions: un+1 − 1
n−4un = 0 u5 =?

⇒ germs of sequences, not sequences.

• Rational fractions: un+1 − n−4
n−4un = 0 u5 =?

⇒ Are we sure it never happens? No.

• Summation of rational fractions:
∑

k(un,k+1 − 1
k−4un,k)

⇒ Are we sure it never happens? No.
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Proof assistants

In a proof assistant, like the Coq system, the situation is much
different:

• The user defines the mathematical objects inside the logic.

• The user specifies the mathematical objects inside the logic.

• For instance, the comparison relation between objects or the
behavior of partial operations are made precise.

• A machine-checked, axiom-free proof is very much trustable.

But the efficiency of computations is poorer and certification is
not an easy task.
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Computer algebra aided formal proofs

We can benefit from both ways of doing mathematics with a
computer:

• We guess recurrence operators using a computer algebra
system (here Maple).

• We check formally their validity inside the proof assistant
(here Coq).

We just pretty-print the output of a Maple session is some files,
later included in the files describing the formal proof.
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Formally proving Maple’s recurrences

• We prove new recurrences from known ones.

• We normalize the conjectured recurrence using the known
relations.

• The recurrence is reduced on independent shifts of the
known sequences (Grobner basis).

• We normalize their (rational fraction) coefficients: they
should be zero.

But we should handle denominators with care, which makes the
normalization less systematic.
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Example: Apéry’s proof that ζ(3) /∈ Q

The crux of the proof is to verify that the two sequences:

• an :=
∑n

k=0

(
n
k

)2(n+k
k

)2
• bn := an

∑n
k=1

1
k3 +

∑n
k=1

∑k
m=1

(−1)m+1

2m3(n
m)(n+m

m )
cn,k

satisfy the same linear recurrence of order two.
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Example: Apéry’s proof that ζ(3) /∈ Q

For this we follow the syntactic tree of the expressions defining
an and bn:

• We (easily) know the recurrences canceling the leaves of the
expressions of an and bn:

(
n
m

)
,
(
n+m
m

)
,
∑n

k=1
1
k3 .

• At each node of the tree we use Maple to guess new
recurrences for the auxiliary sequence, using the ones
previously computed.

• We prove formally and independently Maple’s conjectures
using the recurrences previously formally established.

• When proving a conjecture produced by Maple, we decorate
it with the necessary side conditions.
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• We prove formally and independently Maple’s conjectures
using the recurrences previously formally established.

• When proving a conjecture produced by Maple, we decorate
it with the necessary side conditions.
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Sketch of the proof

In order to prove that ζ(3) /∈ Q we show that otherwise we could
exhibit a sequence Sn such that:

• ∀n, Sn is an integer

• ∀n, Sn > 0

• lim
n→∞

Sn = 0
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Sketch of the proof

In fact prove that:

anζ(3)− bn → 0 and ∀n, an ∈ Z∗ bn ∈ Q∗

Now in fact if we pose dn := lcm(1, . . . , n) we even have:

2d3
n (anζ(3)− bn)→ 0

In fact:

Sn := 2d3
n (anζ(3)− bn) is the desired absurd sequence.
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Steps in the proof

• anζ(3)− bn → 0
considered elementary.

• 2d3
nbn ∈ Z:

considered as elementary arithmetic.

• dn ∼ en:
considered as standard.

• anζ(3)− bn > 0:
asymptotic of a remainder since anζ(3)− bn → 0

• 2d3
n (anζ(3)− bn)→ 0:

asymptotic of the sequence anζ(3)− bn
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Current state of the formalization

Today we have checked in Coq that: dn = O(3n)⇒ ζ(3) /∈ Q.

• Proof of the common recurrence using a Maple session;

• Some elementary number theory (p-valuation, discrete log,
binomials);

• A formal study of creative telescoping filling holes in the
computer algebra literature;

• Improved formal proof-producing normalization procedures
for ring/field expressions;

• Asymptotic reasoning using Cauchy reals and tactics for the
bureaucracy of εδ reasoning.
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Conclusion

• We now dispose of a systematic protocol to validate with a
formal proof the recurrences for holonomic sequences
guessed by th Algolib Maple library.

• We have used this protocol to formalize a large part of
Apéry’s proof that ζ(3) ∈ Q.

• Libraries from the Feit-Thompson proof have been
instrumental in many places.

• But good data structures are still to be found (for proofs
and for computations).

• Obtaining formal proofs in the differential case will be the
next challenge, but a lot more formalized material is needed.
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