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Motivations

Formalization in a type-theory based proof assistant (Coq)

Of quantifier elimination procedures

Motivated by the application to the theory of real closed and
algebraically closed fields
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The language of rings and fields

Terms are:

Variables : x , y , . . .

Constants 0 and 1

Opposites: −t

Sums: t1 + t2

Differences: t1 − t2

Products: t1 ∗ t2

Divisions: t1 t2

Terms are polynomial expressions in the variables.
Terms are rational fractions in the variables.
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First order formulas in the language of ordered rings

Atoms are:

Equalities: t1 = t2

Inequalities: t1 ≥ t2, t1 > t2, t1 ≤ t2, t1 < t2

Formulas are:

Atoms

Conjunctions: F1 ∧ F2

Disjunctions: F1 ∨ F2

Negations: ¬F

Implications: F1 ⇒ F2

Quantifications: ∃x ,F , ∀x ,F

Formulas are quantified systems of polynomial constraints.
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A taste of the first order language of ordered rings
”Any polynomial of degree one has a real root.”

x

y

∀a∀b,∃x , a ∗ x + b = 0
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A taste of the first order language of ordered rings

”Any polynomial of degree two has at most two real roots.”

x

y

x

y

x

y

∀a∀b,∀c∀x∀y∀z ,

(ax2 + bx + c = 0 ∧ ay 2 + by + c = 0 ∧ az2 + bz + c = 0)

⇒ (x = y ∨ x = z ∨ y = z)
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A taste of the first order language of ordered rings

”Any polynomial has less roots than its degree.”

This demands higher order.

”Any number is either rational or non rational.”

The language is not precise enough.
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First order theory of discrete ordered rings

The theory of ordered rings (resp. fields) is:
I The theory of rings (resp. fields)
I A total order ≤
I Compatibility of the order with ring (resp. field) operations

The theory of discrete real closed field is the theory of real closed field
plus decidability of the order relation.
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Real closed fields, Algebraically closed fields

The theory of real closed fields is:
I The theory of ordered fields
I The axiom scheme: for all n ∈ N, any polynomial of degree 2n + 1 has

a root.

The theory of algebraically closed fields is:
I The theory of ordered fields
I The axiom scheme: for all n ∈ N, any polynomial of degree n + 1 has a

root.
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Examples of real closed fields

(Classical) real numbers

Real algebraic numbers

The field of Puiseux series on a RCF R
(generalizing formal power series)
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Examples of algebraically closed fields

(Classical) complex numbers

Algebraic numbers

Algebraic closure of finite fields
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First order theory of real closed fields

Theorem (Tarski (1948))

The classical theory of real closed fields admits quantifier elimination and
is hence decidable.

Same result holds for algebraically closed fields.

There exists an algorithm which proves or disproves any theorem of real
algebraic geometry (which can be expressed in this first order language).
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Remarks

We can decide whether an arbitrary given polynomial with rational
coefficients has a real root.

But we do not know whether this root is an integer or a rational.

There is indeed no algorithm to decide the solvability of Diophantine
equations (Matiyasevitch, 1970).
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Remarks

There is an algorithm which determines:

If your piano can be moved through the stairs and then to your
dinning room;

If a (specified) robot can reach a desired position from an initial state;

The solution to Birkhoff interpolation problem;

...
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Remarks

This algorithm gives the complete topological description of semi-algebraic
varieties.

Which seems a rather intricate problem...

Thanks to Oliver Labs for the pictures.
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Formalization in the Coq system

The Coq system: a type theory based proof assistant.

Coq is a (functional) programming language.

Coq has such a rich type system that the types of objects can be
theorem statements.

In the absence of axiom, proofs should be intuitionistic.
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Why formalizing these proofs in a proof assistant?

The idea is to adopt a reflexive approach:

Implement the quantifier elimination procedure inside the system;

Prove formally its correctness.

Hence:

We obtain a certified decision procedure.
(here for non linear arithmetics)

We legitimate axiom-free classical reasoning in these logical
fragments.

(here for the first order theory of reals, complex...)
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From proofs to proof-producing procedure

The (so-called) reflexion scheme:

(Forall 1 (Exists 2 (...)) true

Lemma statement Abstract syntax Decision

Prop formula bool
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Quantifier Elimination

A theory T on a language Σ with a set of variables V

admits quantifier elimination if

for every formula φ(~x) ∈ F(Σ,V),

there exists a quantifier free formula ψ(~x) ∈ F(Σ,V)

such that:

T ` ∀~x , ((φ(~x)⇒ ψ(~x)) ∧ (ψ(~x)⇒ φ(~x)))
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Formal definition of a first order theory

For an arbitrary type term of terms, formulas are:

Inductive formula (term : Type) : Type :=

| Equal of term & term

| Leq of term & term

| Unit of term

| Not of formula

| And of formula & formula

| Or of formula & formula

| Implies of formula & formula

| Exists of nat & formula

| Forall of nat & formula.
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Formal definition of the ring signature

Terms on the language of fields.

Inductive term : Type :=

| Var of nat

| Const0 : term

| Const1 : term

| Add of term & term

| Opp of term

| Mul of term & term

| Inv of term
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Proving quantifier elimination on real closed fields

To state the theorem of quantifier elimination, we could:

Build the list T of formulas describing the axioms of a real closed
field structure.

Formalize first order provability, T ` φ, a predicate of type:

Definition entails

(T : seq (formula R))(phi : formula R) : bool :=

...

But given our motivations, this not the most relevant approach.
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Semantic quantifier elimination

A theory T on a language Σ with a set of variables V admits
semantic quantifier elimination if

for every φ ∈ F(Σ,V),

there exists a quantifier free formula ψ ∈ F(Σ,V)

such that for any model M of T , and for any list e of values,

M, e |= φ iff M, e |= ψ

This is the (a priori weaker) quantifier elimination result we formalize.
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Theory of real closed fields
We use a record type to define a type which is simultaneously equipped
with a field signature and a theory of real closed fields.

Record rcf := RealClosedField{

carrier : Type;

Req : carrier -> carrier -> bool;

zero : carrier;

one : carrier

opp : carrier -> carrier;

add : carrier -> carrier -> carrier;

mul : carrier -> carrier -> carrier;

inv : carrier -> carrier;

_ : associative add;

_ : commutative add;

_ : left_id zero add;

_ : left_inverse zero opp add;

...}.
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Instances of the theory of real closed fields

An instance of this theory is constructed when:

We have formed a concrete type
for instance the type Ralg of real algebraic numbers

We have defined field constants and implemented field operations
Zero, one, addition, ...

We have proved the theorems specifying these operations
Addition is commutative, ...

We have gathered all this in an element of the record type

Definition Ralg_rcf :=

RealClosedField Ralg Ralg0 Ralg1 Ralg_opp ...
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What do we formalize?

A signature Σ (of rings)
The type term

The terms on Σ
The elements t : term

The first order statements F(Σ,N)
The elements f : formula

The definition of Σ-structure
The type rcf (which contains specifications).

The Σ-structures themselves
The elements MyRcf : rcf
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What do we formalize?

An interpretation function [t(x)]R,e of terms in L(Σ,N)) in a
Σ-structure

eval: (seq (carrier R))-> term -> (carrier R)

An interpretation function [φ(x)]R,e of formulas in F(Σ,N)) in Coq
statements

holds: (seq (carrier R))-> formula -> Prop

R is a model of the theory of (discrete) real closed fields
R : rcf

R, e |= f
A proof of the Coq statement (holds e f)

Quantifier elimination is valid
forall (f : formaula R)(e : seq (carrier R)),

(holds e f)<-> (holds e (qe f))
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From proofs to proof-producing procedure

Decidability comes from the implementation of a correct sat operator:

(Forall 1 (Exists 2 (...)) true

Lemma statement Abstract syntax Decision

Prop formula bool

holds [::]

apply sat_correct.

sat [::]
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Summary

A formal definition of terms and first order formulas in Coq

A definition of structures and theories
(example of real closed fields)

An interpretation of abstract formulas as Coq formulas

A reflexion scheme to prove a Coq formula by computation
(computations on abstract formulas)

We study the theories for which the sat operator is implemented by
quantifier elimination.

Can this be more modular?
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A standard trick when atoms are decidable

Suppose it is possible to eliminate the ∃ in ∃x ,
∧n

i=1 Li .

Then it is possible to eliminate a single prenex ∃.

I Consider ∃x ,F where F is quantifier free
I F is equivalent to its disjunctive normal form:

∨n
i=1

∧m
j=1 Li,j

I The existential quantifier distributes over the disjunctions.
I The hypothesis is applied to every conjunction

∧m
j=1 Li,j

Then elimination holds for any formula, by induction on its structure:

I All cases are trivial except for quantified formulas.
I Existential case:

F ∃x ,F where F can be considered qf (by induction).
F The first lemma applies.

I Universal case: ∀x ,F where F can be considered qf (by induction).
F Since (F ∨ ¬F ) holds, ∀x ,F is equivalent to ¬∃x ,¬F .
F ¬F is quantifier free: the lemma applies to ∃¬F .
F The outermost negation does not introduce quantifiers.
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∨n
i=1

∧m
j=1 Li,j
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∧m
j=1 Li,j
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A modular formalization for quantifier elimination

We have formalized the previous remark using abstract formulas.

The proof is parameterized by a single existential operator:

Parameter proj : nat -> formula -> formula.

And its correctness hypotheses:
I Its output should be quantifier-free.
I Its output should be equivalent to its input.
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Projection theorems

In a candidate theory, we need to show that we can eliminate a single
existential quantifier on conjunctions of literals.

With geometer eyes, this is the typical shape of a projection operator.
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Emptiness of a one dimensional basic semi-algebraic set

If there is no free variable (no parameter), we want to decide whether

{x ∈ R | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

is empty or not, for P ∈ R[X ] and Q ⊂ R[X ] (finite).
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Algebraic characterization

The typical proof of such an emptiness test gives an algebraic
characterization of non-emptiness:

{x ∈ R | P(x) = 0 ∧
∧
Q∈Q

Q(x) > 0}

⇔ degree
(
gdco(

∏m
i=1 Qi)(P)

)
≥ 1 (2)

where gdcoQ(P) is the greatest divisor of P coprime to Q.
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Algebraic characterization is not enough

How does this scale to the parametric case? Example.

A. Mahboubi (INRIA) July 7th 2011 36 / 51



Back to quantifier elimination

We need a model-independent description of a finite partition of the
space of parameters C k into cells described by a quantifier-free
formula

Each cell corresponds to a possible value for the quantifier free
equivalent formula.

This description is obtained by analyzing the tree of successive zero
(or sign) tests performed when computing the algebraic
characterization

How to implement the construction of this formula?
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Back to quantifier elimination

We have designed a reflexion scheme in Coq for the decidability of
first order theories.

We want to implement decision procedures based on quantifier
elimination.

We have reduced full quantifier elimination to single existential
elimination, to be provided by the theory of interest:

Parameter proj : nat -> formula -> formula.

Single existential elimination is a projection theorem for the theory.

Projection typically comes from the existence of an algebraic
emptiness test.

How does this helps for the implementation of proj?
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Abstract polynomials

Consider the formula with a single existential quantifier:

∃x , αx2 + (βx + 1) + αγ = 0

The atom is a sign condition on the term αx2 + βx + γ;

The single quantifier binds the variable x ;

The term in the atom should be understood as a polynomial, element
of R[α, β, γ][x ]
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Abstract polynomials

Consider the formula with a single existential quantifier:

∃x , αx2 + (β + 1)x + αγ = 0

The term embedded in such an atom can be seen as an abstract
univariate polynomial, with abstract polynomial coefficients.

An abstract univariate polynomial is represented by lists of terms.
[α, β + 1, αγ] : (seq (term R))

An abstract coefficient is only a term.
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Abstract polynomials

From a (t : term) in an atom, and the name i of the variable
bound by the existential, we can extract the abstract univariate
polynomial in the variable xi thanks to the function:

Fixpoint abstrX (i : nat) (t : term R) : (seq term) :=

...

In a given context, an abstract univariate polynomial can be
interpreted by a usual univariate polynomial:

Fixpoint eval_polyF (e : seq R) (ap : (seq term)) :=

match ap with

|c :: qf => (eval_polyF e qf)*’X + (eval e c)

|[::] => 0

end.

We want the diagram to commute.
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Inside out

Fixpoint lcoef (p : {poly R}) : R :=
match p with
| [::] → 0
| c :: q → if (q == 0) then c else (lcoef q)
end.

Definition test (p : {poly R}) : bool := lcoef p > 0

Fixpoint cps lcoef

(k : R → bool)

(p : {poly R}) :

bool

:=

match p with
| [::] →

(k 0)

| c :: q →

cps lcoef

(fun l ⇒ if (q == 0) then (k c) else (k l))

q

end.

Definition cps test (p : {poly R}) : bool :=

cps lcoef

(fun r ⇒ if r > 0 then true else false)

p
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Continuation passing style

This is not (meant to be) code obfuscation.

We have exposed the control operations by the mean of a
continuation.

This version of the code is ready to be translated at the formula level:
I By turning boolean outputs into formulas outputs
I By turning polynomials and coefficients into terms

Remark : we can define a branching formula:
Definition ifF (condF thenF elseF : formula R) : formula R :=
((condF ∧ thenF) ∨ (( condF) ∧ elseF)).
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Formula level programs

Fixpoint cps lcoef
(k : R → bool) (p : {poly R}) : bool :=

match p with
| [::] → (k 0)
| c :: q → cps lcoef (fun l ⇒ if (q == 0) then (k c) else (k l)) q
end.

Fixpoint cps lcoefF
(k :

term R

→

(formula R)

) (p

F

:

(seq (term R)

)) :

(formula R)

:=
match p

F

with
| [::] →

(k (Const 0))

| c :: q → cps lcoefF

(fun l ⇒ ifF (Equal l (Const 0)) (k c) (k l))

q
end.
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Formula level programs

Definition cps test (p : {poly R}) : bool :=
cps lcoef
(fun r ⇒ if r > 0 then true else false)
p

Definition cps testF (p : seq (term R)) : formula R :=
cps lcoefF
(fun r ⇒ ifF (Lt (Const r) (Const 0)) trueF falseF)
p
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What happened in this transformation?

Consider an abstract polynomial pF : seq (term R)), extracted from a
basic formula:

The concrete shape of this polynomial depends on the values
instantiating the parameters.

(eval_polyF e pF) denoted [pF]_e

Any operation f on polynomials has a formula CPS counterpart fF.
and cps_lcoefF

Any test c on such a polynomial expression has a formula CPS
counterpart (fF kc).

cps_testF
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Correctness as observational equivalence

Now we have commutation:

Lemma cps_lcoefFP : forall k pF e, acceptable_cont k ->

qf_sat e (cps_lcoefF k pF)

=

qf_sat e (k (Const (lcoef [pF]_e))).
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A generic and uniform process

Program the concrete emptiness test for polynomials in R[X ];

For every elementary program used in the previous phase:
I Turn the concrete program into a CPS-formula one;
I State the lemma corresponding to its correctness with respect to the

concrete program;
I Prove this lemma by executing symbolically the code of the concrete

program in the proof.
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Gluing the programs, and the proofs

Combine the CPS-formula programs in the same way they are
combined in the concrete emptiness test program;

The quantifier elimination procedure of a single ∃ follows.

Combine the CPS-formula correctness lemmas accordingly.

The correctness proof follows.
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Summary

We have programmed in Coq a generic framework for certified
first-order quantifier elimination.

This framework only requires the theory-dependent proof that a single
existential can be eliminated.

We have found a generic way of designing the proof of this
theory-dependant part.

We have programmed and proved in Coq the cases of algebraically
closed fields and real closed fields.
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Perspectives

The formal library on real closed fields is a significant byproduct.

Some interesting formalization issues are raised by the construction of
instances of algebraically closed and real closed fields.

The main remaining issue is to relate this with the correctness proof
of (existing) efficient versions of quantifier elimination algorithms.
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