What is π ?

Yves Bertot

August 2012

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction

- A history of π
- Modifying the library: removing axioms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Computing π

Historically

- π is the surface of the circle, or the perimeter
- How does one model surface computation?
- Main tool: computing the surface under a curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Riemann or Newton integration

• Curve :
$$y = \sqrt{(1 + x^2)}$$

Coq standard library's approach

- Calculus: limits, derivatives, power series
- Alternated series
- Sine and Cosine functions defined as power series

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sine and Cosine definitions

•
$$\cos x = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i}}{(2i)!}$$

•
$$\sin x = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)!}$$

In formalized mathematics, we have to show that the limits exists

Formal definitions

Definition infinite_sum (s:nat -> R) (l:R) : Prop :=
forall eps:R, eps > 0 ->
exists N : nat, forall n:nat, (n >= N)%nat ->
R_dist (sum_f_R0 s n) l < eps.</pre>

Definition cos_n (n:nat) : R :=
 (-1) ^ n / INR (fact (2 * n)).

```
Definition cos_in (x l:R) : Prop :=
    infinite_sum (fun i:nat => cos_n i * x ^ i) l.
```

Lemma exist_cos : forall x:R, { l:R | cos_in x l }.
(* Proof using a general lemma: d'Alembert's theorem *)

Definition cos (x:R) : R :=
 let (a,_) := exist_cos (Rsqr x) in a.

Where is the circle?

- ▶ Lemma $\cos_p \text{lus}$: $\forall x, \cos(x + y) = \cos x \cos y \sin x \sin y$
 - Long and difficult proof, ad hoc
 - Should have done a general lemma (Mertens for the product of series)

- Lemma sin2_cos2 : $\forall x, \sin^2 x + \cos^2 x = 1$
 - Easy consequence
- \blacktriangleright Down to here, everthing is nice, but where is π

Standard library definition of π until 2012

- $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1}$
- An alternated series: the proof of convergence is easy
- \blacktriangleright Converges slowly, but good enough to show that 3 $<\pi<4$

- $\pi < 4$ at the first term, $3 < \pi$ at the 8^{th}
- Why choose this definition?

Required properties of π for trigonometry

- $\sin \frac{\pi}{2} = 1$: admitted as an axiom
- $\cos \frac{\pi}{2} = 0$: Important property
- $\blacktriangleright \cos(\frac{\pi}{2} x) = \sin x$
- Deduce all properties of sin from properties of cos

Proof of the axiom: work done by G. Allais

Proving the axiom : The tangent function

- Important properties of tan
- ► $tan(\frac{\pi}{4}) = 1$, $tan(x + y) = \frac{tan x + tan y}{1 tan x tan y}$, $tan' x = 1 + tan^2 x$
- Move interest to the inverse function of tan, called atan.
- atan' $x = \frac{1}{1+x^2}$
- Taylor expansion : $\frac{1}{1+x^2} = 1 x^2 + x^4 + \cdots (-1)^i x^{2i}$
- ▶ Integrating gives : atan $x = x \frac{x^3}{3} + \frac{x^5}{5} + \cdots (-1)^i \frac{x^{2i+1}}{2i+1}$

• We want to compute *atan* 1

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 目 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

<ロト (個) (目) (目) (目) (0) (0)</p>

Removing the axiom an elusive target

- Nice proof by G. Allais
- Reciprocal functions and their derivatives
- The power series $\sum_{i=0}^{\infty} \frac{(-1)^{i} x^{2i+1}}{2i+1}$ converges between 0 and 1
- The power series and atan coincide in this interval
- But all properties of sin, hence tan and *atan* depend on the axiom

How to write the sums

```
Lemma lower_bound_atan :
  forall x n, 0 < x < 1 ->
    sum_f_R0 (fun i => (-1)^ i * x^(2 * i + 1) /
        INR (2 * i + 1)) (2 * n + 1)
        < atan x.</pre>
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Difficulty with many types of numbers
- This proof done by comparing the derivatives
- Proofs about derivability often clumsy

Removing the axiom : drastic step

• Choose a new definition for π

Show that cos has a single root p between 0,2

- Between 0 and 2, $\sum_{i=0}^{2*k+1} \frac{(-1)^i x^{2i}}{(2i)!} < \cos x < \sum_{i=0}^{2*k+1} \frac{(-1)^i x^{2i}}{(2i)!}$
- Thus cos 2 < 0</p>
- ▶ We also have 0 < cos 1, and cos is continuous
- The Intermediate value theorem gives a root between 1 and 2
- Define π as 2p
- All properties of sin remain, but no axiom anymore
- Proofs about tan, atan go through and justify the power series

Machin formulas

- Better to compute *atan* for numbers smaller than 1
- Use the second trigonometric property of tan
- $atan\frac{1}{5} + atan\frac{2}{3} = atan \ 1 = \frac{\pi}{4}$
- $atan\frac{1}{5} + atan\frac{7}{17} = atan\frac{2}{3} \dots$
- After more computations : $\frac{\pi}{4} = 4atan\frac{1}{5} atan\frac{1}{239}$
- \blacktriangleright This was used in 1706 to compute the first 100 decimals of π

- Computes fairly fast in Coq
- Other Machin formulas can be obtained

►
$$atan\frac{1}{2} + atan\frac{1}{3}$$
 $2atan\frac{1}{3} + atan\frac{1}{7}$
 $3atan\frac{1}{4} + atan\frac{1}{20} + atan\frac{1}{1985}$
 $44atan\frac{1}{57} + 7atan\frac{1}{239} - 12atan\frac{1}{682} + 24atan\frac{1}{12943}$
(last one taken from Krebbers and Spitters)

What about the area of the circle?

- Area under the curve $y = \sqrt{1 x^2}$ between -1 and 1
- Necessary link to asin, easily formalized by mirroring atan
- Small difficulty: asin is defined only between −1 and 1, atan is defined over all R

 Propose to re-design IVT to accept functions only locally continuous and derivable

```
Lemma derivable_pt_lim_asin :
  forall x, -1 < x < 1 ->
  derivable_pt_lim asin x (1/sqrt (1 - x<sup>2</sup>)).
```

Approximation by inscribed polygons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Archimedes' approximations by polygons

- I don't know what Archimedes did, but...
- You can compute the surface of triangles as used in the polygons

•
$$a = 2b\sqrt{1-b^2}; \ b = \sqrt{\frac{1-\sqrt{1-a^2}}{2}}$$

Similar formula for a polygon outside

Proving and computing Archimedes' sequence

- Starting with an hexagon $a_0 = \frac{\sqrt{3}}{2}$, $a_1 = \frac{1}{2}$
- Successive values : 2.6, 3, 3.1, 3.132, 3.139, 3.141
- Proof of correctness: we show that the sequence is $3 \times 2^n \sin \frac{\pi}{3 \times 2^n}$
- ▶ This sequence can be computed in Coq, using Zsqrt to approximate $\sqrt{}$ (not proved correct)

Coq code for Archimedes's sequence

Definition compute_pi_archimedes n p:=
 dec (((3 * 2 ^ n)#1) * Qarch n p) (Z_of_nat p).